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Introduction

Degenerate parabolic problems arise in a lot �elds of
natural and social sciences. There are some works ded-
icated to the inverse problems for partial di�erential
equations degenerating with respect to a spatial vari-
able [1]-[3]. The case of the inverse problem for a weakly
degenerate parabolic equation with unknown coe�cient
which tends to zero as a power function tβ , 0 < β < 1
at the higher-order derivative was investigated in the
articles [4]-[6] and when β > 1 in [7].

In the bounded domain QT ≡ {(x, t) : 0 < x <
h, 0 < t < T} we consider the heat equation

ut = a(t)ψ(t)uxx + f(x, t), (x, t) ∈ QT , (1)

with unknown coe�cient a(t) > 0, t ∈ [0, T ], initial con-
dition

u(x, 0) = ϕ(x), x ∈ [0, h], (2)

boundary conditions

u(0, t) = µ1(t), u(h, t) = µ2(t), t ∈ [0, T ], (3)

and overdetermination condition

a(t)ψ(t)ux(0, t) = µ3(t), t ∈ [0, T ]. (4)

Suppose thatψ(t)− given monotone increasing func-
tion, ψ(t) > 0, t ∈ (0, T ] and ψ(0) = 0. It means that the
equation (1) is degenerate. Assuming temporally that
function a(t) is known, we represent the solution of di-
rect problem (1)-(3) with the aid of Green function in

the form

u(x, t) =

h∫

0

G1(x, t, ξ, 0)ϕ(ξ)dξ +

t∫

0

G1ξ(x, t, 0, τ)×

×a(τ)ψ(τ)µ1(τ)dτ −
t∫

0

G1ξ(x, t, h, τ)a(τ)ψ(τ)×

×µ2(τ)dτ +

t∫

0

h∫

0

G1(x, t, ξ, τ)f(ξ, τ)dξdτ, (5)

where G1(x, t, ξ, τ) is the Green function. It is known
that the Green functions for the �rst (k = 1) and the
second (k = 2) boundary problems for the equation (1)
are de�ned as follows:

Gk(x, t, ξ, τ) =
1

2
√

π(θ(t)− θ(τ))
×

×
∞∑

n=−∞

(
exp

(
− (x− ξ + 2nh)2

4(θ(t)− θ(τ))

)
+

+(−1)k exp

(
− (x + ξ + 2nh)2

4(θ(t)− θ(τ))

))
, k = 1, 2,

θ(t) =

t∫

0

a(τ)ψ(τ)dτ. (6)

It is easy to see that the following properties of the
Green functions are correct:

G1ξ(x, t, ξ, τ) = −G2x(x, t, ξ, τ),
G2τ (x, t, ξ, τ) = −a(τ)G2ξξ(x, t, ξ, τ). (7)

Suppose that given data satis�es the following con-
ditions:
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(À1) ϕ ∈ C1[0, h]; µi ∈ C1[0, T ], i = 1, 2; µ3 ∈
C[0, T ];ψ ∈ C[0, T ]; f ∈ C1,0(QT );

(À2) ϕ′(x) > 0, x ∈ [0, h]; f(0, t) − µ′1(t) > 0, µ′2(t) −
f(h, t) ≥ 0, t ∈ [0, T ], µ3(t) > 0, t ∈ (0, T ];
fx(x, t) ≥ 0, (x, t) ∈ QT ; ψ(t) > 0− monotone
increasing function on (0, T ], ψ(0) = 0;

(À3) the compatibility conditions of the zero order are
veri�ed: ϕ(0) = µ1(0), ϕ(h) = µ2(0).

Integrating by parts and applying the compatibility
conditions and (7), �nd from (5) the derivativeux(x, t) :

ux(x, t) =

h∫

0

G2(x, t, ξ, 0)ϕ′(ξ)dξ +

t∫

0

G2(x, t, 0, τ)×

×(f(0, τ)− µ′1(τ))dτ +

t∫

0

G2(x, t, h, τ)(µ′2(τ)−

−f(h, τ))dτ +

t∫

0

h∫

0

G2(x, t, ξ, τ)fξ(ξ, τ)dξdτ. (8)

Put x = 0 in the formula (8) and substitute the re-
sult into (4). In such way we obtain the equation with
respect to unknown function a(t) :

a(t) =
µ3(t)
ψ(t)

( h∫

0

G2(0, t, ξ, 0)ϕ′(ξ)dξ +

+

t∫

0

G2(0, t, 0, τ)(f(0, τ)− µ′1(τ))dτ +

+

t∫

0

G2(0, t, h, τ)(µ′2(τ)− f(h, τ))dτ +

+

t∫

0

h∫

0

G2(0, t, ξ, τ)fξ(ξ, τ)dξdτ

)−1

, t ∈ [0, T ]. (9)

Let study the behavior of the denominator. From the
equality

h∫

0

G2(x, t, ξ, τ)dξ = 1

we obtain the following estimates for the �rst and forth
summands:

0 < M0 = min
x∈[0,h]

ϕ′(x) ≤
h∫

0

G2(0, t, ξ, 0)ϕ′(ξ)dξ ≤

≤ max
x∈[0,h]

ϕ′(x) = M1, (10)

0 ≤ t min
(x,t)∈QT

fx(x, t) ≤
t∫

0

h∫

0

G2(0, t, ξ, τ)×

×fξ(ξ, τ)dξdτ ≤ t max
(x,t)∈QT

fx(x, t). (11)

To estimate the others summands, denote

amax(t) ≡ max
0≤τ≤t

a(τ), amin(t) ≡ min
0≤τ≤t

a(τ). (12)

Extracting from the series the addend which corre-
sponds to n = 0, we have for the second summand from
(9)

t∫

0

G2(0, t, 0, τ)(f(0, τ)− µ′1(τ))dτ =

=

t∫

0

f(0, τ)− µ′1(τ)√
π(θ(t)− θ(τ))

dτ + 2

t∫

0

f(0, τ)− µ′1(τ)√
π(θ(t)− θ(τ))

×

×
∞∑

n=1

exp

(
− n2h2

θ(t)− θ(τ)

)
dτ ≤ C1

(
1√

πamin(t)
×

×
t∫

0

( t∫

τ

ψ(σ)dσ

)−1/2

dτ + 2

t∫

0

1√
π(θ(t)− θ(τ))

×

×
∞∑

n=1

exp

(
− n2h2

θ(t)− θ(τ)

)
dτ

)
. (13)

For the third summand we obtain
t∫

0

G2(0, t, h, τ)(µ′2(τ)− f(h, τ))dτ ≤

≤ C2

t∫

0

1√
θ(t)− θ(τ)

×

×
∞∑

n=−∞
exp

(
− h2(2n− 1)2

4(θ(t)− θ(τ))

)
dτ. (14)

Taking into account the known inequality [8, c. 13]
1√
z

∞∑
n=1

exp

(
−n2h2

z

)
≤ K∗,∀z ∈ [0,+∞), we conclude

that the last summand from (13) and expression in (14)
are bounded. We will distinguish two cases of the de-
generation.

De�nition. The degeneration is called weak if for

t → 0 the expression
t∫

0

( t∫

τ

ψ(σ)dσ

)−1/2

dτ tends to ze-

ro, and it is called strong if the named expression tends
to in�nity when t tends to zero.

I. Weak degeneration
Consider the case of the weak degeneration. As a

solution of the problem (1) - (4) we de�ne a pair
of function (a(t), u(x, t)) from the space C[0, T ] ×
C2,1(QT )

⋂
C1,0(QT ), a(t) > 0, t ∈ [0, T ], which verify

the equation (1) and conditions (2) - (4).
To prove the existence of solution of the problem (1) -

(4), we apply the Schauder �xed-point theorem. For this
we establish apriori estimates of solution of the equati-
on (9). We start by the estimation of functiona(t) from
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above. For this we need the estimate of ux(0, t) from
below. Taking into account (11), (13), (14) we conclude
that the second, third and forth summands in the ex-
pression (9) are positive and tend to zero when t → 0.
At the same time, the inequality (10) holds for the �rst
summand.

Hence, we have

ux(0, t) ≥ M0, t ∈ [0, T ]. (15)

Suppose that the following condition is satistied:

(À4) there exists the �nite positive limit lim
t→+0

µ3(t)
ψ(t)

.

Substituting (15) into (9) and taking into account
the condition (A4), we obtain

a(t) ≤ µ3(t)
ψ(t)M0

≤ A1 < ∞, t ∈ [0, T ]. (16)

Estimate ux(0, t) from above. Using (10), (11), (13),
(14) we have

ux(0, t) ≤ C3 + C4

t∫

0

dτ√
θ(t)− θ(τ)

. (17)

Setting (17) in the equation with respect toa(t) and
applying (12) and (A4), we get

a(t) ≥ µ3(t)

ψ(t)

(
C3 + C4

t∫

0

dτ√
θ(t)− θ(τ)

) ≥

≥ C5

C3 + C4

t∫

0

dτ√
θ(t)− θ(τ)

≥

≥ C5

C3 +
C4√

amin(t)

t∫

0

( t∫

τ

ψ(σ)dσ

)−1/2

dτ

.

Using the de�nition of weak degeneration, we obtain

a(t) ≥ C5

C3 +
C6√

amin(t)

or

amin(t) ≥
(

2C5√
C2

6 + 4C3C5 + C6

)2

= A0 > 0. (18)

Write the equation (9) as operator equation a(t) =
Pa(t) with respect to a(t) where operator P is de�ned
by the right-hand side of the equation (9). De�ne the
set N = {a(t) ∈ C[0, T ] : A0 ≤ a(t) ≤ A1}. According
to obtained estimates (16), (18), the operator P maps
the set N into itself. The proof of the compactness of

operator P on N is analogous to the case of weak power
degeneration for the heat equation [4].

Thus, the following existence theorem is established.

Theorem 1. Suppose that

lim
t→+0

t∫

0

( t∫

τ

ψ(σ)dσ

)−1/2

dτ = 0. If the conditions (A1)

- (A4) are satis�ed, then the solution of the problem (1)
- (4) exists for x ∈ [0, h], t ∈ [0, T ].

Let prove the uniqueness of solution of the prob-
lem (1) - (4). Suppose that there exist two solutions
(ai(t), ui(x, t)), i = 1, 2. Denote the di�erence of the
solutions by a(t) ≡ a1(t) − a2(t), u(x, t) ≡ u1(x, t) −
u2(x, t). For these functions we get the following prob-
lem:

ut = a1(t)ψ(t)uxx + a(t)ψ(t)u2xx, (x, t) ∈ QT ,(19)
u(x, 0) = 0, x ∈ [0, h], (20)

u(0, t) = u(h, t) = 0, t ∈ [0, T ], (21)
a1(t)ux(0, t) = −a(t)u2x(0, t), t ∈ [0, T ]. (22)

Introduce the Green functions Gi
1(x, t, ξ, τ) for the

equations ut = ai(t)ψ(t)uxx, i = 1, 2 with boundary con-
ditions (21). Using G1

1(x, t, ξ, τ) we put the solution of
the problem (19) - (21) as follows:

u(x, t) =

t∫

0

h∫

0

G1
1(x, t, ξ, τ)a(τ)ψ(τ)u2ξξ(ξ, τ)dξdτ. (23)

Calculating the derivative of (23) and substituting it
into (22), we obtain the integral equation with respect
to a(t) :

a(t) =

t∫

0

K(t, τ)a(τ)dτ, (24)

where

K(t, τ) = −a1(t)a2(t)
ψ(t)
µ3(t)

h∫

0

G1
1x(0, t, ξ, τ)×

×ψ(τ)u2ξξ(ξ, τ)dξ.

Let prove the integrability of the kernelK(t, τ). Put
the solution u2(x, t) under the form (5) and calculate
the second derivative:

u2xx(x, t) =

h∫

0

G2
1(x, t, ξ, 0)ϕ′′(ξ)dξ +

t∫

0

G2
1ξ(x, t, 0, τ)×

×(µ′1(τ)− f(0, τ))dτ +

t∫

0

G2
1ξ(x, t, h, τ)(f(h, τ)−

−µ′2(τ))dτ −
t∫

0

h∫

0

G2
1ξ(x, t, ξ, τ)fξ(ξ, τ)dξdτ. (25)
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Evaluate every summand of this expression. For the
�rst one we have

∣∣∣∣∣

h∫

0

G2
1(x, t, ξ, 0)ϕ′′(ξ)dξ

∣∣∣∣∣ ≤ max
x∈[0,h]

|ϕ′′(x)|.

To estimate the second summand from (25) we use
the explicit form of the Green function from (6):

R ≡
∣∣∣∣∣

t∫

0

G2
1ξ(x, t, 0, τ)(µ′1(τ)− f(0, τ))dτ

∣∣∣∣∣ ≤ C7 ×

×
( t∫

0

x

(θ2(t)− θ2(τ))3/2
exp

(
− x2

4(θ2(t)− θ2(τ))

)
dτ +

+

t∫

0

1
(θ2(t)− θ2(τ))3/2

∞∑
n=−∞

n6=0

|x + 2nh| ×

× exp

(
− (x + 2nh)2

4(θ2(t)− θ2(τ))

)
dτ

)
≡ R1 + R2. (26)

Denote
t∫

0

ψ(σ)dσ = θ0(t) and consider R1 applying

the change of variable z =
θ0(τ)
θ0(t)

:

R1 ≤ C8

t∫

0

x

( t∫

τ

ψ(σ)dσ

)−3/2

×

× exp

(
− x2

C9

t∫

τ

ψ(σ)dσ

)
dτ ≤

≤ C8

θ
1/2
0 (t)

1∫

0

x

z3/2ψ(θ−1
0 ((1− z)θ0(t)))

×

× exp

(
− x2

C9θ0(t)z

)
dz.

Realize the change of variable σ =
x√

C9θ0(t)z
:

R1 ≤ C10

∞∫

x√
C9θ0(t)

e−σ2
dσ

ψ

(
θ−1
0

(
θ0(t)− x2

C9σ2

)) .

In the obtained integral we decompose the interval

of integration on the parts
[

x√
C9θ0(t)

,
2x√

C9θ0(t)

]
and

[
2x√

C9θ0(t)
,∞

)
. Evaluate the following summand:

R11 ≡ C10

∞∫

2x√
C9θ0(t)

e−σ2
dσ

ψ

(
θ−1
0

(
θ0(t)− x2

C9σ2

)) ≤

≤ C10

ψ(θ−1
0 ( 3

4θ0(t)))

∞∫

2x√
C9θ0(t)

e−σ2
dσ ≤

≤ C11

ψ(θ−1
0 ( 3

4θ0(t)))
. (27)

For the second summand we use the change of vari-
able z = θ0(t)− x2

C9σ2
:

R12 ≡ C10

2x√
C9θ0(t)∫

x√
C9θ0(t)

e−σ2
dσ

ψ

(
θ−1
0

(
θ0(t)− x2

C9σ2

)) ≤

≤ C10 exp

(
− x2

C9θ0(t)

)
×

×

2x√
C9θ0(t)∫

x√
C9θ0(t)

dσ

ψ

(
θ−1
0

(
θ0(t)− x2

C9σ2

)) ≤

≤ C12x exp

(
− x2

C9θ0(t)

)
×

×
3
4 θ0(t)∫

0

dz

(θ0(t)− z)3/2ψ(θ−1
0 (z))

.

Let z = θ0(σ) and estimate the denominator:

R12 ≤ C13x exp

(
− x2

C9θ0(t)

)
×

×
θ−1
0 (3/4θ0(t))∫

0

ψ(σ)dσ

(θ0(t)− θ0(σ))3/2ψ(θ−1
0 (θ0(σ)))

≤

≤ C13x exp

(
− x2

C9θ0(t)

)
×

×
θ−1
0 (3/4θ0(t))∫

0

dσ

(θ0(t)− 3
4θ0(t))3/2

≤

≤ C14θ
−1
0 (3/4θ0(t))

θ0(t)
≤ C14t

( t∫

0

ψ(σ)dσ

)−1

.
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We obtained this estimate with the aid of the in-
equality xp exp (−qx2) ≤ Mp,q < ∞, x ∈ [0,∞), p ≥
0, q > 0.

Finally, we have for R the following estimation:

R ≤ C14t

( t∫

0

ψ(σ)dσ

)−1

+
C11

ψ(θ−1
0 ( 3

4θ0(t)))
+ C15. (28)

The others summands in u2xx(x, t) are evaluated by
the same way. Hence, we �nd

|u2xx(x, t)| ≤ C16t

( t∫

0

ψ(σ)dσ

)−1

+

+
C17

ψ(θ−1
0 ( 3

4θ0(t)))
+ C18. (29)

Substituting (29) into the kernelK(t, τ), we come to
the inequality

|K(t, τ)| ≤ C19

( t∫

τ

ψ(σ)dσ

)−1/2

. (30)

From this, it follows that the singularity of the kernel
of the equation (24) is integrable. Hence, the Volterra in-
tegral equation of the second kind (24) has only trivial
solution a(t) ≡ 0, and therefore u(x, t) ≡ 0, (x, t) ∈ QT .
Thus, the following uniqueness theorem is proved.

Theorem 2. Suppose that the conditions (A4) and

(À5) ϕ ∈ C2[0, h]; µi ∈ C1[0, T ], i =
1, 2; µ3 ∈ C[0, T ]; ψ ∈ C[0, T ]; f ∈
C1,0(QT ); µ3(t) > 0, ψ(t) > 0, t ∈ (0, T ], ψ(0) =

0; lim
t→+0

t∫

0

( t∫

τ

ψ(σ)dσ

)−1/2

dτ = 0.

are ful�lled.
Then the solution of the problem (1)-(4) is unique.

II. Strong degeneration
Consider the strong degeneration case. As a so-

lution of the problem (1) - (4) we de�ne a pair
of functions (a(t), u(x, t)) from the space C[0, T ] ×
C2,1(QT )

⋂
C(QT ), ux(0, t) ∈ C(0, T ], a(t) > 0, t ∈

[0, T ], which verify the equation (1) and the conditi-
ons (2) - (4). Taking into account the de�nition, from
(10), (11), (13), (14) we conclude that all summands of
the derivative ux(0, t), except one, are bounded. Integral

t∫

0

f(0, τ)− µ′1(τ)√
π(θ(t)− θ(τ))

dτ tends to in�nity when t → +0.

Then the estimate of ux(0, t) from below takes form

ux(0, t) ≥ 1√
π

t∫

0

f(0, τ)− µ′1(τ)√
θ(t)− θ(τ)

dτ. (31)

Substitute (31) into (9) and use (12), after what we
obtain

a(t) ≤
√

πamax(t)µ3(t)

ψ(t)

t∫

0

(f(0, τ)− µ′1(τ))

( t∫

τ

ψ(σ)dσ

)−1/2

dτ

. (32)

Denote

H(t) ≡
√

πµ3(t)

ψ(t)

t∫

0

(f(0, τ)− µ′1(τ))

( t∫

τ

ψ(σ)dσ

)−1/2

dτ

. (33)

From the conditions (A1), (A2), it follows that the
function H(t) is continuous and positive on the segment
(0, T ]. Assume that the following condition is ful�lled:
(À6) there exists the �nite positive limit

lim
t→+0

µ3(t)√
ψ(t)t

= M.

Prove that the functionH(t) tends to a �nite positive
limit when t → +0. Applying the mean value theorem
and the condition (A6), we have

lim
t→+0

H(t) = lim
t→+0

√
πψ(t∗)µ3(t)

ψ(t)(f(0, t∗)− µ′1(t∗))

t∫

0

dτ√
t− τ

=

=
√

πM

2(f(0, 0)− µ′1(0))
,

where t∗ is some point from the segment [0, T ].
Using the de�nition ofH(t), from (32) we obtain the

estimate

amax(t) ≤ Hmax(t)
√

amax(t) or amax(t) ≤ H2
max(t), (34)

where Hmax(t) ≡ max
0≤τ≤t

H(τ). This means that we have
the estimate of a(t) from above

a(t) ≤ A1 < ∞, t ∈ [0, T ]. (35)

To evaluate ux(0, t) from above we use (10), (11),
(13), (14). Then

ux(0, t) ≤ C20 +
1√
π

t∫

0

f(0, τ)− µ′1(τ)√
θ(t)− θ(τ)

dτ. (36)

Substituting (36) into (9) and applying (12), we �nd

a(t) ≥ µ3(t)
ψ(t)

√
πamin(t)

(
C21 +

t∫

0

(f(0, τ)− µ′1(τ))×

×
( t∫

τ

ψ(σ)dσ

)−1/2

dτ

)−1

≥
√

amin(t)
C21ψ(t)√

πµ3(t)
+

1
H(t)

≥

≥
√

amin(t)H(t)
C21ψ(t)H(t)√

πµ3(t)
+ 1

. (37)

Mathematics 63
Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



N. Saldina

Consider the fraction in the denominator from
(37). Applying the mean value theorem we obtain

t∫

0

( t∫

τ

ψ(σ)dσ

)−1/2

dτ = 2

√
t

ψ(t∗)
, where t∗ ∈ [0, T ].

It follows from the strong degeneration de�nition that

the expression
√

ψ(t)
t

tends to zero when t → +0. Then

from (A6) we have C21ψ(t)H(t)√
πµ3(t)

≤ C22

√
ψ(t)

t
. Apply-

ing this in (37), we obtain

amin(t) ≥
√

amin(t)Hmin(t)

C22

√
ψ(t)

t
+ 1

or

amin(t) ≥ H2
min(t)(

C22

√
ψ(t)

t
+ 1

)2 , t ∈ [0, T ], (38)

where Hmin(t) ≡ min
0≤τ≤t

H(τ). Consequently, we �nd the
estimation of a(t) from below

a(t) ≥ A0 > 0, t ∈ [0, T ]. (39)

Hence, we have established the apriori estimates of
solutions of the equation (9).

Put the equation with respect to a(t) into the form

a(t) =
µ̃3(t)
ṽ(0, t)

or a(t) = Pa(t), t ∈ [0, T ], (40)

where µ̃3(t) =
µ3(t)√
tψ(t)

, ṽ(0, t) = ux(0, t)

√
ψ(t)

t
. De�ne

the set N = {a(t) ∈ C[0, T ] : A0 ≤ a(t) ≤ A1}. Ac-
cording to obtained estimates (35), (39), the operatorP
maps the set N into itself. Let show that P is compact
on N . Following the Ascolli-Arcella theorem, it is nec-
essary to establish that for all ε > 0 there exists such
δ > 0, that

|P (t2)− P (t1)| < ε, ∀ a(t) ∈ N ,

when |t2 − t1| < δ, t1, t2 ∈ [0, T ].

We will show how to verify this inequality, on the
example of the following expression which enters to the
integral operator P :

K ≡
∣∣∣∣∣

√
ψ(t2)

t2

t2∫

0

(f(0, τ)− µ′1(τ))G2(0, t2, 0, τ)dτ −

−
√

ψ(t1)
t1

t1∫

0

(f(0, τ)− µ′1(τ))G2(0, t1, 0, τ)dτ

∣∣∣∣∣.

Suppose that ti, i = 1, 2 are su�ciently small. Con-

sider the integral

K̂ ≡
√

ψ(t)
t

t∫

0

(f(0, τ)− µ′1(τ))G2(0, t, 0, τ)dτ =

=

( t∫

0

f(0, τ)− µ′1(τ)√
θ(t)− θ(τ)

dτ + 2

t∫

0

f(0, τ)− µ′1(τ)√
θ(t)− θ(τ)

×

×
∞∑

n=1

exp

(
− n2h2

θ(t)− θ(τ)

)
dτ

)√
ψ(t)
πt

≡ K̂1 + K̂2.

Using the notation (12), boundedness of integrand

in K̂2, and tendency of
√

ψ(t)
t

to zero when t → +0, we
obtain that K̂2 tends to zero as t → +0. Consider K̂1

applying the mean value theorem:

K̂1 = C23

√
ψ(t)

t

t∫

0

(f(0, τ)− µ′1(τ))×

×
( t∫

τ

ψ(σ)dσ

)−1/2

dτ = C23

√
ψ(t)

t

(f(0, t̃)− µ′1(t̃))√
ψ(t̃)

×

×
t∫

0

dτ√
t− τ

= 2C23

√
ψ(t)
ψ(t̃)

(f(0, t̃)− µ′1(t̃)),

where t̃ ∈ [0, T ]. Denote lim
t→+0

K̂1 = κ0. Then, returning
to K, we get

K ≤

≤
∣∣∣∣∣

√
ψ(t2)

t2

t2∫

0

(f(0, τ)− µ′1(τ))G2(0, t2, 0, τ)dτ − κ0

∣∣∣∣∣ +

+

∣∣∣∣∣

√
ψ(t1)

t1

t1∫

0

(f(0, τ)− µ′1(τ))G2(0, t1, 0, τ)dτ − κ0

∣∣∣∣∣.

There exists such value t∗, that for 0 < ti < t∗ ≤
T, i = 1, 2, the following inequalities are veri�ed:

∣∣∣∣∣

√
ψ(ti)

ti

ti∫

0

(f(0, τ)− µ′1(τ))G2(0, ti, 0, τ)dτ − κ0

∣∣∣∣∣ <
ε

2
.

Hence, K < ε when 0 < ti < t∗, i = 1, 2.

Consider the expression K in the case when t∗ <
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t1 < t2 :

K ≤
∣∣∣∣∣

√
ψ(t2)

t2
−

√
ψ(t1)

t1

∣∣∣∣∣

t2∫

0

f(0, τ)− µ′1(τ)√
π(θ(t2)− θ(τ))

×

×
∞∑

n=−∞
exp

(
− n2h2

θ(t2)− θ(τ)

)
dτ +

√
ψ(t1)
πt1

×

×
t1∫

0

(f(0, τ)− µ′1(τ))
∞∑

n=−∞

∣∣∣∣∣
exp

(− n2h2

θ(t2)−θ(τ)

)
√

θ(t2)− θ(τ)
−

−
exp

(− n2h2

θ(t1)−θ(τ)

)
√

θ(t1)− θ(τ)

∣∣∣∣∣dτ +

t2∫

t1

f(0, τ)− µ′1(τ)√
θ(t2)− θ(τ)

×

×
∞∑

n=−∞
exp

(
− n2h2

θ(t2)− θ(τ)

)
dτ

√
ψ(t1)
πt1

≡

≡ K1 + K2 + K3. (41)

The integrand of K3 has integrable singularity, thus
K3 ≤ C24

√
t1 − t2. For K1 we have

K1 ≤ C25

∣∣∣∣∣

√
ψ(t2)

t2
−

√
ψ(t1)

t1

∣∣∣∣∣

( t2∫

0

dτ√
θ(t2)− θ(τ)

+

+2

t2∫

0

1√
θ(t2)− θ(τ)

∞∑
n=1

exp

(
− n2h2

θ(t2)− θ(τ)

)
dτ

)
≤

≤ C26

∣∣∣∣∣1−
√

ψ(t1)t2
ψ(t2)t1

∣∣∣∣∣

(√
ψ(t2)

A0ψ(t∗)
+

√
ψ(t2)t2

)
.

For all ε > 0 there exists δ > 0 that K1 < ε when
|t2 − t1| < δ. Detaching from the series in K2 the sum-
mand which corresponds to n = 0, we obtain

K2 ≤ C27

( t1∫

0

∣∣∣∣∣
1√

θ(t2)− θ(τ)
− 1√

θ(t1)− θ(τ)

∣∣∣∣∣dτ +

+2

t1∫

0

∞∑
n=1

∣∣∣∣∣

exp

(
− n2h2

θ(t2)−θ(τ)

)

√
θ(t2)− θ(τ)

−

−
exp

(
− n2h2

θ(t1)−θ(τ)

)

√
θ(t1)− θ(τ)

∣∣∣∣∣dτ

)√
ψ(t1)
πt1

≡ K21 + K22.

Put K22 into the form

K22 = 2C27

√
ψ(t1)

t1
×

×
t1∫

0

∞∑
n=1

∣∣∣∣∣∣∣

θ(t2)−θ(τ)∫

θ(t1)−θ(τ)

d

dz

(
1√
z

exp
(
−n2h2

z

))
dz

∣∣∣∣∣∣∣
dτ ≤

≤ C28

√
ψ(t1)t1

t2∫

t1

ψ(σ)dσ.

There exists such δ > 0 that K22 < ε when |t2−t1| <
δ. Consider the expression

1√
θ(t1)− θ(τ)

− 1√
θ(t2)− θ(τ)

=
θ(t2)− θ(t1)√
θ(t2)− θ(τ)

×

× 1√
θ(t1)− θ(τ)(

√
θ(t1)− θ(τ) +

√
θ(t2)− θ(τ))

=

=
θ(t2)− θ(t1)

θ(t1)

√√√√θ(t2)

(
1− θ(τ)

θ(t1)

)(
1− θ(τ)

θ(t2)

) ×

× 1
(√

1− θ(τ)
θ(t1)

+

√√√√θ(t2)
θ(t1)

(
1− θ(τ)

θ(t2)

)) .

Taking into account that the function 1
t
θ(t) is in-

creasing and θ(τ)ti
θ(ti)

≤ τ, τ ≤ ti, i = 1, 2, we can write
for K21

K21 ≤ C27

√
ψ(t1)

t1

(θ(t2)− θ(t1))
√

t1t2

θ(t1)
√

θ(t2)
×

×
t1∫

0

dτ

√
(t1 − τ)(t2 − τ)

(√
t1 − τ

t1
+

√
t2 − τ

t2

) ≤

≤ C27

√
ψ(t1)t2

θ(t1)
√

θ(t2)

t1∫

0

(
1√

t1 − τ
− 1√

t2 − τ

)
dτ =

=
C29t2

√
ψ(t1)

θ(t1)
√

θ(t2)
(
√

t1 −
√

t2 +
√

t2 − t1).

From this, it is easy to see that lim
t1→t2

K21 = 0.

The proof of compactness of the others summands
of the integral operator P is realized by the analogous
way. Thus, the operator P is compact on the set N .
According to Schauder �xed-point theorem there exi-
sts a solution of the problem (1) - (4) with appropri-
ate smoothness. Hence, the existence of solution for the
problem (1) - (4) in the case of strong degeneration is
proved.

Let prove the uniqueness of solution for the problem
(1) - (4). Supposing the existence of two solutions for
the problem (1) - (4), we get the problem (19) - (22) for
its di�erences. Write the equation (22) under the form

a(t) = −a1(t)a2(t)
ux(0, t)ψ(t)

µ3(t)
, t ∈ [0, T ]. (42)

We will realize the proof of uniqueness by evaluating
a(t) from the equation (42). Consider for example one of

Mathematics 65
Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



N. Saldina

the summands of ux(0, t) ≡ u2x(0, t)− u1x(0, t). Denote

I ≡ 1√
π

t∫

0

(f(0, τ)− µ′1(τ))

(
1√

θ2(t)− θ2(τ)
−

− 1√
θ1(t)− θ1(τ)

)
dτ +

2√
π

t∫

0

(f(0, τ)− µ′1(τ))×

×
∞∑

n=1

(
1√

θ2(t)− θ2(τ)
exp

(
− n2h2

θ2(t)− θ2(τ)

)
−

− 1√
θ1(t)− θ1(τ)

exp

(
− n2h2

θ1(t)− θ1(τ)

))
dτ ≡ I1 + I2.

Applying the estimates (38), we have

|θ1(t)− θ1(τ)− θ2(t) + θ2(τ)| ≤

≤
∣∣∣∣∣

t∫

τ

(a1(σ)− a2(σ))ψ(σ)dσ

∣∣∣∣∣ ≤ ãmax(t)

t∫

τ

ψ(σ)dσ,

θi(t)− θi(τ) =

t∫

τ

ai(σ)ψ(σ)dσ ≥

≥ H2
min(t)(

C22

√
ψ(t)

t
+ 1

)2

t∫

τ

ψ(σ)dσ, i = 1, 2, (43)

where ãmax(t) ≡ max
0≤τ≤t

|a1(τ)−a2(τ)|. Then write for I2

|I2| ≤ 2√
π

t∫

0

(f(0, τ)− µ′1(τ))×

×
∣∣∣∣∣

θ2(t)−θ2(τ)∫

θ1(t)−θ1(τ)

d

dz

(
1√
z

∞∑
n=1

exp

(
−n2h2

z

))
dz

∣∣∣∣∣dτ.

Taking into account the boundedness of integrand
and inequality (43), we obtain the estimate

|I2| ≤ C30

t∫

0

|θ1(t)− θ1(τ)− θ2(t) + θ2(τ)|dτ ≤

≤ F (t)ãmax(t),

where F (t) =

t∫

0

dτ

t∫

τ

ψ(σ)dσ. Put I1 under the form

I1 =
1√
π

t∫

0

f(0, τ)− µ′1(τ)√
(θ2(t)− θ2(τ))(θ1(t)− θ1(τ))

×

× (θ1(t)− θ1(τ)− θ2(t) + θ2(τ))dτ√
θ2(t)− θ2(τ) +

√
θ1(t)− θ1(τ)

.

Using (43) and de�nition of the function H(t), we

get for I1

|I1| ≤

(
C22

√
ψ(t)

t
+ 1

)3

2
√

πH3
min(t)

ãmax(t)×

×
t∫

0

(f(0, τ)− µ′1(τ))

( t∫

τ

ψ(σdσ)

)−1/2

dτ ≤

≤

(
C22

√
ψ(t)

t
+ 1

)3

µ3(t)

2H4
min(t)ψ(t)

ãmax(t).

Others summands in the expressionux(0, t) are eval-
uated as I. Then we have from (42)

ãmax(t) ≤
H4

max(t)

(
C22

√
ψ(t)

t
+ 1

)3

2H4
min(t)

ãmax(t) +

+F ∗(t)ãmax(t), (44)

where the function F ∗(t) > 0 vanishes at t = 0.
From the existence of limit lim

t→+0
H(t) > 0 it follows

lim
t→+0

H4
max(t)

(
C22

√
ψ(t)

t
+ 1

)3

2H4
min(t)

=
1
2
.

Hence, there exists such value t1 : 0 < t1 ≤ T, for
which the inequality holds

H4
max(t)

(
C22

√
ψ(t)

t
+ 1

)3

2H4
min(t)

≤ 3
4
, t ∈ [0, t1]. (45)

Then we rewrite the inequality (44) under the form
1
4 ãmax(t)− F ∗(t)ãmax(t) ≤ 0 or

ãmax(t)( 1
4 − F ∗(t)) ≤ 0.

It may be indicated such value t2 : 0 < t2 ≤ T, for
which 1

4 − F ∗(t) > 0 as t ∈ [0, t2]. Then ãmax(t) ≤ 0
on the segment [0, t2], what is impossible. Consequent-
ly, a1(t) ≡ a2(t) on the segment [0, t∗], where t∗ =
min(t1, t2). In the case t > t∗ the theorem is proved
analogously as in the case of weak degeneration. Thus,
the following theorem is proved.

Theorem 3. Suppose that

lim
t→+0

t∫

0

( t∫

τ

ψ(σ)dσ

)−1/2

dτ = ∞. Let the conditions

(A1) - (A3), (A6) are satis�ed. Then there exists the
unique solution of the problem (1) - (4) de�ned for
x ∈ [0, h], t ∈ [0, T ].

Remark. The conditions (A2) may be weakened.
In the case of weak degeneration instead of condition
f(0, t) − µ(t) > 0 one can suppose f(0, t) − µ(t) ≥ 0.
Analogously, in the case of strong degeneration it may
be supposed the condition ϕ′(x) ≥ 0.
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As it may be seen from above, the weak degeneration
is provided by the behavior only of the function µ3(t)
which tends to zero when t → +0 by the same law as the

function a(t). In the case of the strong degeneration this
dependence between given data is more complicated.
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ÎÁÅÐÍÅÍÀ ÇÀÄÀ×À ÄËß ÐIÂÍßÍÍß ÒÅÏËÎÏÐÎÂIÄÍÎÑÒI
Ç ÂÈÐÎÄÆÅÍÍßÌ ÇÀÃÀËÜÍÎÃÎ ÒÈÏÓ

Í. Ñàëäiíà
Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Iâàíà Ôðàíêà,

âóë. Óíiâåðñèòåòñüêà, 1 79000 Ëüâiâ, Óêðà¨íà

Ðîçãëÿíóòî îáåðíåíó çàäà÷ó âèçíà÷åííÿ íåâiäîìîãî êîåôiöi¹íòà äëÿ ðiâíÿííÿ òåïëîïðî-
âiäíîñòi. Êîåôiöi¹íò çà ñòàðøî¨ ïîõiäíî¨ ïðåäñòàâëåíèé ó âèãëÿäi äîáóòêó äâîõ ôóíêöié,
çàëåæíèõ âiä ÷àñó, îäíà ç ÿêèõ ïåðåòâîðþ¹òüñÿ â íóëü â ïî÷àòêîâèé ìîìåíò ÷àñó. Ðîçãëÿ-
íóòî âèïàäêè ñèëüíîãî òà ñëàáêîãî âèðîäæåííÿ. Ç'ÿñîâàíî óìîâè iñíóâàííÿ òà ¹äèíîñòi
ðîçâ'ÿçêó çàäà÷i.
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