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We consider an inverse problem for determining a time-dependent coefficient for the heat

equation. The coefficient at the higher-order derivative is a product of two functions which
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Introduction

Degenerate parabolic problems arise in a lot fields of
natural and social sciences. There are some works ded-
icated to the inverse problems for partial differential
equations degenerating with respect to a spatial vari-
able [1]-[3]. The case of the inverse problem for a weakly
degenerate parabolic equation with unknown coefficient
which tends to zero as a power functiont’,0 < 3 < 1
at the higher-order derivative was investigated in the
articles [4]-[6] and when 5 > 1 in [7].

In the bounded domain Qr = {(z,t) : 0 < =z <
h,0 <t < T} we consider the heat equation

up = a(O)Y()uge + f(z,t), (z,t) € Qr, (1)
with unknown coefficient a(t) > 0,t € [0, T, initial con-
dition

u(x,0) =

p(r), z€ [Ov h]’ (2)

boundary conditions

w(0,t) = pu(t), wulh,t)=pa(t), tel0,1], (3)

and overdetermination condition

a(t)(t)ux (0, t) t€0,T]. (4)

= N3(t)a

Suppose that ¥ (t) — given monotone increasing func-
tion, 1 (t) > 0,t € (0,T] and 1 (0) = 0. It means that the
equation (1) is degenerate. Assuming temporally that
function a(t) is known, we represent the solution of di-
rect problem (1)-(3) with the aid of Green function in
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the form
h t
/G1 x,t,£,0) (f)d§+/G1§($,t,0,T) X
0 0
xa(T)Y(r)pur (7)dr — /Glg(:v,t h, T)a(T)y(r) X

h

t
X (7)dr + / / Gr(x,t,€,7)f(€,7)dedr,  (5)
0 O

where G1(x,t,&,7) is the Green function. It is known
that the Green functions for the first (k = 1) and the
second (k = 2) boundary problems for the equation (1)
are defined as follows:

1
Gz, t,6,7) = 2,/7(0(t) — 0(7)) :
x>

(oo ),

4(0(t) - 0(7))

, (x + &+ 2nh)? _
—|—(—1)kexp<—4(9(t)_0(7_))>>, k=12,
mwz/@ﬁmumr (6)

0

It is easy to see that the following properties of the
Green functions are correct:

Gl&(x7t7§77-) = —GQx(l',t,§7T),
Gor(2,1,8,7) = —a(7)Gaee (@, 1,€, 7). (7)

Suppose that given data satisfies the following con-
ditions:
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(A1) ¢ € CHO,hl; wi € CHO,T), i = 1,2, u3 €

C[0,T]54 € C[0,T); f € CH(Qr);

(A2) 90,(1') > 071' € [Oah]af(ovt) - N“ll(t) > 07 MIQ(t) -
f(hyt) > 0,t € [0,T],pus(t) > 0,t € (0,7];
fo(z,t) > 0,(z,t) € Qr;¢(t) > 0— monotone
increasing function on (0,T],4(0) = 0;

(A3) the compatibility conditions of the zero order are
verified: o(0) = 111 (0), ¢(h) = p12(0).

Integrating by parts and applying the compatibility
conditions and (7), find from (5) the derivativeu, (z,t) :

h

Ug (2, t) Z/GQ(-TJ,&O)‘P/

0

&)d¢+ | Ga(z,t,0,7) x
/

t

4 (7)) dr + / Gl 1, 7) (i (7) —

0

x(f£(0,7) =

t

h
)dr + / / Gola, 1,6, 7) fe(€, T)dedr.  (8)
0

0

Put z = 0 in the formula (8) and substitute the re-
sult into (4). In such way we obtain the equation with
respect to unknown function a(t) :

h
3“)) ( / Ga(0, 1, €, 0) (€)de +
+ / Ga(0,6,0,7)(F(0,7) — iy (7))dr +

+ / Ga(0, 4, h, T (i (7) — f(h,7))dr +
t h —1

+ 0/ 0/ Gz(O,t,ﬁ,T)fg(ﬁ,T)dde> ,

Let study the behavior of the denominator. From the
equality

€[0,7].(9)

h
/Gg(az,t,f,T)d§ _1
0

we obtain the following estimates for the first and forth
summands:

0< M=
0= min ¥l

h
/GQOth (€)de <

0
< max ¢'(z) = M,

z€[0,h] (10)
t h
0<t min fy(z,t)< //G20,t,§,
(z,t)€Qr
X fe(§,m)dédr <t max f.(z,t). (11)

(z,t)€EQr

To estimate the others summands, denote

Amax(t) = Orgggta(T), Amin(t) = Orﬁn;gta(T). (12)
Extracting from the series the addend which corre-

sponds to n = 0, we have for the second summand from

(9)
/ Ga(0,,0,7)(£(0,7) — 4 ())dr =
[IOD i) L, [ SO0 )
J Ji—e NCOER

2 2
" <o«
9( ) 7Tamin(t)

-1/

f 1

X O/(/@/J(J)da) dT+2,O/%r(9(t) =50)) X
> n2h?

X nE:1exp (_G(t) — 0(7_))(17).

For the third summand we obtain

(13)

/ Ga(0, £, 7)(th(7) — f(hy7))dr <
0

(14)

Taking into account the known inequality [8, c. 13]

that the last summand from (13) and expression in (14)
are bounded. We will distinguish two cases of the de-
generation.

< K*,Vz € [0,400), we conclude

Definition. The degeneration is called weak if for

t ot —1/2
t — 0 the expression / (/ LZJ(J)dU) dr tends to ze-

0
ro, and it is called strong if the named expression tends

to infinity when ¢ tends to zero.

I. Weak degeneration

Consider the case of the weak degeneration. As a
solution of the problem (1) - (4) we define a pair
of function (a(t),u(x,t)) from the space C[0,T] x
C*HQr)NCH(Qr),a(t) > 0,t € [0,T)], which verify
the equation (1) and conditions (2) - (4).

To prove the existence of solution of the problem (1) -
(4), we apply the Schauder fixed-point theorem. For this
we establish apriori estimates of solution of the equati-
on (9). We start by the estimation of functiona(t) from

60
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above. For this we need the estimate of u,(0,¢) from
below. Taking into account (11), (13), (14) we conclude
that the second, third and forth summands in the ex-
pression (9) are positive and tend to zero whent — 0.
At the same time, the inequality (10) holds for the first
summand.

Hence, we have

ug(0,t) > Mo, € [0,T7. (15)

Suppose that the following condition is satistied:
p3(t)
—+0 1h(t)

Substituting (15) into (9) and taking into account
the condition (A4), we obtain

ps(t)
a(t) < —— < A; < o0, € 10,7). 16
Estimate u,(0,t) from above. Using (10), (11), (13),
(14) we have
ug(0,t) < C3 + C’4/ (17)
\/7

Setting (17) in the equation with respect toa(t) and
applying (12) and (A4), we get

a(t) > M3( ) >
e ><03+c4/¢7>
Cs
> ' >
dr
“ +C40/ o)~ 0)
Cs
>

oo [(foom) o

Using the definition of weak degeneration, we obtain

or

2
amin(t) > 205 = A() > 0. (18)
\/ 062 +4C3Cs5 + Cg

Write the equation (9) as operator equation a(t) =
Pa(t) with respect to a(t) where operator P is defined
by the right-hand side of the equation (9). Define the
set N = {a(t) € C[0,T] : Ap < a(t) < A;}. According
to obtained estimates (16), (18), the operator P maps
the set NV into itself. The proof of the compactness of

operator P on N is analogous to the case of weak power
degeneration for the heat equation [4].
Thus, the following existence theorem is established.

Theorem 1. Suppose that

t—-+0

—1/2
lim </w(0)da> dr = 0. If the conditions (A1)

- (A4) are satisfied, then the solution of the problem (1)
- (4) exists for x € [0,h],t € [0,T).

Let prove the uniqueness of solution of the prob-
lem (1) - (4). Suppose that there exist two solutions
(a;(t),u;(z,t)),i = 1,2. Denote the difference of the
solutions by a(t) = a1(t) — az(t),u(x,t) = uy(z,t) —
us(x,t). For these functions we get the following prob-
lem:

up = a1 (V) uge + a(®)Y()uzgz, (z,t) € Qr,(19)
u(z,0) =0, x€][0,h], (20)

u(0,t) = u(h,t) = t €10,T], (21)

ai ( )UI(O t) (t)u2z(0 t) te [OaT] (22)

Introduce the Green functions G%(x,t,&,7) for the
equations u; = a;(t)9(t)ugs, ¢ = 1,2 with boundary con-
ditions (21). Using G1(z,t,&,7) we put the solution of
the problem (19) - (21) as follows:

h

- / / Gl (@, &, 7)a(7) (7 )usee (€, T)dEdT. (23)
0 0

Calculating the derivative of (23) and substituting it
into (22), we obtain the integral equation with respect

to a(t) :
Z/K(t,T)a(T)dT (24)

where

K(t,T)=

—aq (t)ag

h
Y() 1
(t),ug(t) b/Glz(OvtagvT) X
Xt (T)ugee (§, 7)dE.

Let prove the integrability of the kernel K (¢, 7). Put
the solution us(x,t) under the form (5) and calculate
the second derivative:

h

t
wras (@, 1) = / G2, 1,€,0)¢" (€)dE + / Ge(a,1,0,7) x
0

0

% (i () — F(0,7))dr + / G2, (.t 7)(f(hT) —
0

t h
— (7)) — / / G2 (1,6, 7) fel€, r)dedr.  (25)

0 0
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Evaluate every summand of this expression. For the

2z
first one we have

————=, ¢ |. Evaluate the following summand:
Cobo(1)

h e 2
e 7 do
/G?(ﬂc,t,f, 0)¢"()dg| < max |o"()] Ri1 = Cio / 2 =
0 2x P (901 <90(t) - C’xUQ ))
—— 9
Coblo(t)
To estimate the second summand from (25) we use 0
the explicit form of the Green function from (6): Cio —o?
< — 3 e 7 do <
¥(0y " (160(2))) 5,
¢
R= /Gﬂ(x t,0,7)(py (1) — f(0,7))dr| < C7 x Cobo(t)
< L (27)
t . = 0 Cot)
X </ _ 92 ))372 exp <_4(92 (t) — 92(7))>d7 T For the second s2ummand we use the change of vari-
0 x
lez = 0o(t) — —— :
; able z o(t) Coo?
+/ _92 772 Z |z + 2nh| x -
0 n=—co I S
( 2nh)? ’ Coo(t) 2
x+2n e 7 do
—_ = . = <
X exp( 4(62 (t) — 92 (T)) > dT) R1 + R2 (26) ng CIO J 671 » x2 >~
w 0 O( ) - 090_2
. Coblo(t)
Denote /w(o)do 0o(t) and consider R; applying < Croexp| — a? %
2 - Coblo(t)
the change of variable z = () : 2z
o(?) Cobo(1)
do
—3/2 X 5 <
1 X
R1 < Cg/ /¢ X # "LZ) 00 90(15) — 090_2
Cyby(t)
22
X exp dr < < Chrox exp —W X
90
Co /¢ 29,
‘. / , X / EESTETE)
1/2 3/2 —1 _
00" (1) 0 ° ¥ (0 (1 = 2)00(t))) Let z = 0y(0) and estimate the denominator:
% @ d z?
P Cobo(t)z y Rip < Ci3x eXP<—0990(t)> X
. 05 (3/400(t))
Realize the change of variable 0 = —————: % Y(o)do <
Cobo(t)= (60(t) = 00(0))%/24:(0y " (B0 (0))) ~
0
00 *O’Qd T2
Ry < Cho ‘ d 5 . < Crawexp  Cyby(t) )
_ x
r (0 (90 ! <9o(t) - 0902>> 071(3/460(t))
Coblo(t) o do <
I CTORS TXO) e
In the obtained integral we decompose the interval ¢ _
2 0149 (3/490
of integration on the parts Z and = 0o (t) < Ciat
\/0990 " /Coby (1) 0 0
62
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We obtained this estimate with the aid of the in-
equality 2? exp (—qz?) < M, , < oo,z € [0,00),p >
0,q > 0.

Finally, we have for R the following estimation:

j Cll
R < Cut ( / ww)do) MO

+ C15. (28)
The others summands in ug..(z,t) are evaluated by
the same way. Hence, we find

|u2L.L(x7t)| < Clﬁt (/¢(U)d0’) +
0

Ci7
—  + (5.
R0

Substituting (29) into the kernel K (¢, 7), we come to
the inequality

t —1/2
|K(t,7)| < Chg (/1/1(0)(10) .

From this, it follows that the singularity of the kernel
of the equation (24) is integrable. Hence, the Volterra in-
tegral equation of the second kind (24) has only trivial
solution a(t) = 0, and therefore u(z,t) = 0, (z,t) € Q.
Thus, the following uniqueness theorem is proved.

(29)

(30)

Theorem 2. Suppose that the conditions (A4) and

(AB) ¢ €  C*0,hju; € CUO,T) i =
1,2, 03 € C[0,T); v € C[0,T); f €
ClO(QT)hud() > 0, w(q > 0,t € (0,7],4(0) =

o, (o) oo

are fulfilled.
Then the solution of the problem (1)-(4) is unique.

II. Strong degeneration

Consider the strong degeneration case. As a so-
lution of the problem (1) - (4) we define a pair
of functions (a(t),u(x,t)) from the space C[0,7] X
C*YQr)NC(Qr),u.(0,t) € C(0,T),a(t) > 0,t €
[0,T], which verify the equation (1) and the conditi-
ons (2) - (4). Taking into account the definition, from
(10), (11), (13), (14) we conclude that all summands of
the derivative u, (0, t), except one, are bounded. Integral

[ F0,7) — ()

N CORIo)

dt tends to infinity when ¢t — 4-0.

Substitute (31) into (9) and use (12), after what we

obtain
alt) < : warmx(t)u:&() s . (32)
FO,7) — pi(r < Y(o > dr
s oo o
Denote
H(t) = Vs (?) . (33)

t

o0 [(r0.0)- i (/w )d

0

From the conditions (A1), (A2), it follows that the
function H (t) is continuous and positive on the segment
(0,T). Assume that the following condition is fulfilled:

(A6) there exists the  finite  positive  limit
ps(t)
t—+0 1/)(15)15

Prove that the function H(t) tends to a finite positive
limit when ¢ — +0. Applying the mean value theorem
and the condition (A6), we have

lim H(t) = lim m(Eualt) _
t—+0 t—+0 dT
V0.4~ (e) [ =
_ VA
2(7(0,0) — #0))

where ¢* is some point from the segment [0, 7.
Using the definition of H (¢), from (32) we obtain the
estimate

Amax(t) < Hpmax(t) Amax(t) < Hr2nax( ), (34)

where Hpax(t) = Jnax, H(7). This means that we have

amax(t) or

the estimate of a(t)_fr_om above

a(t) < Ay < oo, te][0,T]. (35)

To evaluate uy;(0,t) from above we use (10), (11),
(13), (14). Then

U, (0,t) < Cy9 + — /f

Substituting (36) into (9) and applying (12), we find

—m()

L dr. 36
NOEG) (36)

Then the estimate of u,(0,t) from below takes form b NGO + 0]
’ amin (1) H (t)
: 37
/ 10O ’;l ) 47 (31) = Cud(MH() (37)
Vow® - 9tn) Vara (D
MATHEMATICS 63
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Consider the fraction in the denominator from
(37). Applying the mean value theorem we obtain

t o, 0t -1/2
0/(/1/)(0)610) dr =2 ﬁ, where t* € [0,T].

It follows from the strong degeneration definition that

t
the expression @ tends to zero whent — +0. Then
Co1 () H (1) ¥(t)
A« =2 -
from (A6) we have ORE Caz\[ = Apply
ing this in (37), we obtain
min t Hmin t
Amin(t) > Gmin () ®) or
t
Caa LE ) +1
H2. (t
min (t) > imin (*) te[0,T], (38)

2
<C22 @ + 1)

where Hpin(t) = Or<nir<1tH (7). Consequently, we find the

estimation of a(t) from below

a(t) > Ag >0, te€][0,T]. (39)
Hence, we have established the apriori estimates of
solutions of the equation (9).

Put the equation with respect to a(t) into the form

a(t)—g(%(?) or a(t) = Pa(t), te€[0,T], (40)
s (t) P(t)

where Jis(t) = , 0(0,t) = uy(0,1) - Define

V(1)
the set N = {a(t) € C[0,T] : Ag < a(t) < A1}. Ac-
cording to obtained estimates (35), (39), the operator P
maps the set A into itself. Let show that P is compact
on N. Following the Ascolli-Arcella theorem, it is nec-
essary to establish that for all ¢ > 0 there exists such
d > 0, that

IP(ts) = P(t)] <z,
|t2 — tl‘ < (5,

Va(t) e N,

when ti,t2 € [0,T).

We will show how to verify this inequality, on the
example of the following expression which enters to the
integral operator P :

K= ‘W J(0.7) = 4 (7)Ga(0.2,0.7)dr
0
—W/(f(O,T) — p1(7))G2(0,t1,0,7)dr
0

Suppose that ¢;,7 = 1,2 are sufficiently small. Con-

sider the integral

7= \[*D [(50.7) - i) Go00.4,0, 7 =
0

Using the notation (12), boundedness of integrand
¥(t)

in l?g, and tendency of & to zero when t — +0, we

obtain that .[?2 tends to zero as t — +0. Consider I?l
applying the mean value theorem:

where t € [0, T]. Denote thr-rs-lo K\ = ». Then, returning

to K, we get
K <
to
< ‘ P [ (70,7 = i (7)Gal0, 12,0, = s +
to J
ty
P(ty)

_|_

/ (F(0,7) = 44 (7)) G0, 1,0, 7)dr — 50

0

1

There exists such value t,, that for 0 < ¢; < t, <
T,i=1,2, the following inequalities are verified:

<&
5"

D [ (50,7 = s (r)Gal0, 11,0, =

t;
0

Hence, K < e when 0 <t; <t,,i=1,2.

Consider the expression K in the case when ¢, <

64
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to
,7) = 1 (7)

P(t2)
U s
n?h? ty
X Z exp( e )>d + 1/175151) X

K <

/ o e ()
x / 107 =) 3 |

exp (

Vo) —0(r) /f @—e;x

2h2 w(tl)
X Z exp< 0lia) — 07 )>d7' s

n=—oo

(tl) 9(T

EK1+K2+K3. (41)

The integrand of K3 has integrable singularity, thus
K3 < 024 t1 — to. FOI" K we have

\/ _\/¢(t1) (/ dr n
t J VO(t2) — 6(7)
2h2
/ *2 = Zexp( 0(7)>dT> <

Y(t1)tz Y(ts)
. \/w(t2)t1 (\/Aol/}(t*) + ¢(t2)t2>,

For all € > 0 there exists § > 0 that K; < £ when
|t — t1| < 6. Detaching from the series in K> the sum-
mand which corresponds ton = 0, we obtain

Ky, < Css

< Cos

t1

1 1
Ko < Oy / - dr +
(0 V) —6(r) /o) -
n?h?
t oo |XP\ T OG-0
Am/ -
IS
n?h?
exp <_ e(tl)e(r)> w(t )
— dr RN, = Koy + Koo.
0(t1) — () uyst
Put K55 into the form
t
Koy = 2Co7 @ X
1
ty 0(t2)—0(7)
> d 1 n2h?
== - <
X/Z dz(\/EeXp( . ))dzdr_
0 "=Llaw)—6(r)

< Cagy/ I/J(tl)tl/lb(g)dg

There exists such § > 0 that Koo < £ when |to—11| <
0. Consider the expression

_ O(t2) — 6(t1)

V() - 6(r)

—0(7)

1
Taking into account that the function 59(1&) is in-

creasing and 90((722;1 < 7,7 <t;,i=1,2, we can write
for K21 '
t 0(ts) — O(t tit
Koy < Cor Y(t) (0(t2) — 0(t1))Vtala

t1

dr

! @rqx@—ﬂ<¢“57+¢“;7>g

X

Cor/P(t1)ta LR S P
tl ,/ t2 \/tl—’T \/tQ_T T=
_ Caotan/¥ 1) _ —
_EET?QTWﬁ Via + vty — t).

From this, it is easy to see that tlirri Ky =0.
1—1l2

The proof of compactness of the others summands
of the integral operator P is realized by the analogous
way. Thus, the operator P is compact on the set N.
According to Schauder fixed-point theorem there exi-
sts a solution of the problem (1) - (4) with appropri-
ate smoothness. Hence, the existence of solution for the
problem (1) - (4) in the case of strong degeneration is
proved.

Let prove the uniqueness of solution for the problem
(1) - (4). Supposing the existence of two solutions for
the problem (1) - (4), we get the problem (19) - (22) for
its differences. Write the equation (22) under the form

ua (0, £)3h(t)

a(t) = —aq1(t)aa(t) o)

. te[0,T].  (42)

We will realize the proof of uniqueness by evaluating
a(t) from the equation (42). Consider for example one of
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the summands of u,(0,t) = w2, (0,t) — u1,(0,t). Denote

J— 1 J—
:f/ F0.7) — pi(r >>< oG

1 9 /
_elu)elm>‘” 7 / (F(0,7) = 15(7))

n2h?
g Z( 92( >exp<_92<t> 02(r>> )

1 n2h2 B
_gl(t)_gl(ﬂexp<_91(t)91(7)>>d7— =1 + Is.

Applying the estimates (38), we have

01(t) — 01(7) — 02(t) + 02(7)] <

S'dmax(f)/tw(o)da

0:(1) — 03(7) = / ai(0)(o)do >

t

/ (a1(0) — a2(0))$(0)do

T

<

Hys () /¢(U)dg, i=1,2, (43)

> :
(sz @ + 1) T

where Umax (t) = Jnax, |a1 (7) — a2(7)|. Then write for I

2 )
nl< — / (F(0,7) — 4t5(7))

02(t)—02(7) J L2y
XL (\[ Zexp( >>dz

1(8)—01(7)
Taking into account the boundedness of integrand
and inequality (43), we obtain the estimate

dr.

L] < 030/\01(15)—91(7)—92(t)+02(7-)\d7-§

< F(t)amax (t) )

t
where F'(t /dT/w )do. Put I; under the form

e 1/ Moo,
e V(ORI CIORIAD)

(0:(t) — 91( ) 92( )+92(7'))d
+\/91 — 01 (T

NOGE

Using (43) and definition of the function H(t), we

get for I

¥(t)

(o

f mln( )

—~1/2
7)) </¢(0d0)> dr <

3
(CQQ M + 1) u3(t)

: 2H§m< oy (0

Others summands in the expression u, (0, t) are eval-
uated as I. Then we have from (42)

Amax(t) X

Hp o (t )<C22 M +1

2H. ()

min

+F*( )amaX<t)

zimax (t)

IN

6max (t) +
(44)

where the function F*(t) > 0 vanishes at t = 0.
From the existence of limit tliIJIrlO H(t) > 0 it follows

3
H o (t )<022 @ + 1)

li !
im = —.
tHJ’»O 2H§lll’l( ) 2

Hence, there exists such valuet; : 0 < t; < T, for

which the inequality holds

3
Hi ot >(c22 L 1)
<

2H 50 (1)

min

€0,t].  (45)

1w

Then we rewrite the inequality (44) under the form

éllam‘ ( ) F*( )amax( ) S 0 or
Amax () (5 — F*(t)) < 0.

It may be indicated such valuets : 0 < to < 7T, for
which 1 — F*(t) > 0 as t € [0,t5]. Then Gmax(t) < 0
on the segment [0,¢2], what is impossible. Consequent-
ly, a1(t) = aa(t) on the segment [0,t*], where t* =
min(ty,t2). In the case t > t* the theorem is proved
analogously as in the case of weak degeneration. Thus,
the following theorem is proved.

Theorem 3. Suppose that
—1/2
lim </w ) dr = oo. Let the conditions
t—+0

(Al) (A3), (A6) are satisfied. Then there exists the
unique solution of the problem (1) - (4) defined for
€ [0,h],t € [0,T].

Remark. The conditions (A2) may be weakened.
In the case of weak degeneration instead of condition
f(0,t) — u(t) > 0 one can suppose f(0,t) — pu(t) > 0.
Analogously, in the case of strong degeneration it may
be supposed the condition ¢’(z) > 0.
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An inverse problem for a generally degenerate heat equation

As it may be seen from above, the weak degeneration
is provided by the behavior only of the function us(t)
which tends to zero whent — 40 by the same law as the

function a(t). In the case of the strong degeneration this
dependence between given data is more complicated.

Jlitreparypa

[1] Tamxues M.M. O6parHas 3amada [y BIPOXKIAI0-
MIETOCH AUOTHYeCKOro ypasaenns // Ilpuvenenne
MeTo10B (PYHK. aHaJ. B ypaBHeHusx Mar. ¢hus. — Ho-

Bocubupck, 1987. — C. 66-71.

[2] Ennecbaes T. O HEKOTOPBIX OGPATHBIX 33189aX IS
BBIPOXKIAIOIIUXCs TUTEPOOINIECKUX ypaBHeHul //
Huddepenn. ypasaenns. — 1976. —11, Ne3. — C. 502—
510.

[3] Enmecbaee T. O6 oxmHo#t obpaTHO# 3a1aue s
BBIPOXKIAOIIErocst  rUepOOIuYecKOro  ypaBHeHUs
Broporo nopsinka // N3sectua AH Ka3zCCP. Cepus
duz.-mar. — 1987. — Ne3. — C. 27-29.

[4] Isamuos M.I., Canzina H.B. O6eprena 3amaua g
PIBHSHHS TEIJIONPOBIAHOCTL 3 BUPOKEHHAM // YKD.

mar. xypHuaa. — 2005. — T.57, Ne11. — C. 1563-1570.

[5] Cannina H. O6eprena 3amada ayst mapaboaivaHOTO
pieHsiHHS 3 BUpOAxKeHHAM // BicHuk JIbBiB. yH-TY.

Cepia mex.-mat. — 2005. — Bun.64. — C. 245-257.

[6] Cannina H.B. Inenrudikamnis crapiroro koediries-
Ta B mapabosivHOMY DIiBHSIHHI 3 BHDOJKEHHSM //
Haykosnii Bicuuk Yepsnienpkoro yu-ty. “Maremarn-
ka”. — 2006. — Ne288. — C. 99-106.

[7] Ivanchov M., Saldina N. An inverse problem for
strongly degenerate heat equation// J. Inv. Ill-Posed
Probl. — 2006 — V.14. — Ne5 —P. 1-16.

[8] Ivanchov M. Inverse problems for equations of
parabolic type. — Lviv: VNTL Publishers, 2003.

OBEPHEHA 3AJTAYA JIJI4d PIBHAHHA TEIIJIOITPOBIZIHOCTI
3 BUPOJA2KEHHAM 3ATAJIBHOI'O TUITY

H. Cannina

JIvsiscoruli Hautonaavrul yrisepcumem imens Ieana Ppanka,
sys. Ywisepcumemcenka, 1 79000 Jlveis, Yxpaina

PosrastnyTo obepHeHy 3amady BH3HATMEHHS HEBIIOMOTO KoedirieHTa JJyIst PIBHSHHS TEIIONPO-
sBigaocti. Koedirmienr 3a crapmrol moxiguoi npencrasieHuit y Burisgl 1o0yTKY ABOX (DYHKILIN,
3aJIe2KHUX BiJl 9acy, O/IHA 3 SKHMX II€PETBOPIOETHCS B HYJIb B IIOYATKOBUIN MOMeHT uacy. Po3rus-
HyTO BHUIAJKNA CUJIBHOTO Ta CIAOKOTO BHPOIKEHHs. 3’dCOBAHO yMOBH ICHYBAaHHS Ta €IUHOCTI

PO3B 3Ky 3ajati.

Keywords: obepHeHa 3agaya, piBHAHHSA TENAONPOBIAHOCTI, CMbHE Ta cnabke BUPOAKEHHS, Teope-

ma Lllayaepa.
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