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I. Introduction

The coarse category (i.e. the category of coarse spaces
and coarse maps) was introduced by Roe in [9]. This
theory turned out to be an appropriate universe for
studying asymptotic properties of structures more gen-
eral then metric spaces.

I. Protasov classified some recent results concerning
algebraic structures in the coarse category as those be-
longing to the asymptotic algebra.

In particular, in [4] the hyperspace functor acting in
the category of coarse topological spaces was considered.
It was proved in [4] that the hyperspace functor deter-
mines a monad in the coarse category and the natural
problem arises whether another monads in the category
of compact Hausdorff spaces have their counterparts in
the coarse category.

In this paper we consider the case of probability mea-
sure monad. It was noted in [13] that the functor of
probability measures has no natural extension to the
category of coarse topological spaces and the main rea-
son of it is that this functor fails to preserve the class of
locally compact spaces.

We introduce a modified functor of probability mea-
sures. To be more precise, a probability measure in our
sense is a pair (µ, supp µ), where, as usual, supp µ de-
notes the support of µ. Then convergence means the
weak* convergence of measures together with conver-
gence of their supports. The obtained spaces have some
applications in the mathematical economics. Note also
that these spaces are tightly connected to the mm-spaces
in the sense of Gromov [5].

In this note we show that the modified probabili-
ty measure functor determines a monad in the coarse
category of proper metric spaces. We also consider the
notion of tensor product related to this monad.

II. The coarse category of metric spaces

We start with some necessary definitions (see, e.g.
[1]).

A metric space is said to be proper if every its closed
ball is compact.

A map f : X → Y between metric spaces is said to
be coarse [9] if:

1) f is coarsely uniform, i.e. for every ε > 0 there ex-
ists η > 0 such that d(x, y) < ε implies d(f(x), f(y)) < η
for every x, y ∈ X;

2) f is coarsely proper in the sense that the preimage
of every bounded set is bounded.

The proper metric spaces and coarse maps form a
category, which we denote by CMS.

A Spaces of probability measures

Given a metric space X, we denote by P (X) the space
of probability measures in X with compact support and
by exp X the hyperspace of X. The space P (X) is en-
dowed with the weak* topology and the space exp X
with the Vietoris topology (see, e.g., [3] for details).
Note that, for x ∈ X, by δx we denote the Dirac mea-
sure concentrated in x. For a metric space (X, d), the
Vietoris topology is generated by the Hausdorff metric,
dH ,

dH(A,B) = inf{ε > 0 | A ⊂ Oε(B), B ⊂ Oε(A)}.
Let P(X) = {(µ,A) ∈ P (X)×exp X | supp µ ⊂ A}.
If (X, d) is a proper metric space, we endow P(X)

with the metric d̂ = dP(X) defined as follows:

dP(X)((µ1, A1), (µ2, A2)) = dKR(µ1, µ2) + dH(A1, A2).

Here dKR denotes the Kantorovich-Rubinshtein met-
ric on the space of probability measures of a metric space
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(X, d) (see [7]). Given µ, ν ∈ P (X), we let

dKR(µ, ν) = inf
{∫

X×X

ddλ | λ ∈ P (X ×X)

is a measure with marginals µ, ν
}

.

Proposition 1. If (X, d) is a proper metric space,
then so is (P(X), d̂).

¤ Proof. It is sufficient to prove that any closed
ball centered at (δx0 , {x0}), for some base point x0 ∈
P(X) with d̂((µ, A), (δx0 , {x0})) ≤ r we have

supp µ ⊂ A ⊂ B = {y ∈ X|d(y, x0) ≤ r}.
Therefore, the closed ball of radius r centered at

(δx0 , {x0}) in P(X) is a closed subset of P (B)× exp B.
Since P (B)× exp B is compact, we are done. ¥

The set A is said to be the support of (µ,A) ∈ P(X).
The motivation of this term lies in the theory of normal
functors in the category of compact Hausdorff spaces
developed by E.V. Shchepin [10].

Proposition 2. The set Pω(X) of points with finite
supports is dense in P(X).

¤ Proof. This follows from the general results of
the theory of normal functors (see [10]). ¥

III. Modified probability measure
monad

Let (X, d) be an object of the category CMS.
Let us define the map ηX : X → P(X) as follows:

ηX(x) = (δx, {x}).

Proposition 1. The map ηX is coarsely uniform
and metric proper.

¤ Proof. Choose an arbitrary ε > 0 and such
points x, y ∈ X that dX(x, y) < ε. To show that ηX is
coarsely uniform we consider

dP(X)(ηX(x), ηX(y)) = dP(X)((δx, {x}), (δy, {y}))
= dKR(δx, δy) + dH({x}, {y}) = dX(x, y) + dX(x, y) =

= 2dX(x, y) < 2ε.

Thus, one can take δ = 2ε in the definition of coarse
uniformity.

Now we need to show that the map ηX is metric
proper. Fix an arbitrary ε > 0 and A ⊂ P(X) such that
diam A < ε.

Then

diam η−1
X (A) = diam {x ∈ X|ηX(x) = (δx, {x}) ∈ A}

= inf{dX(x, y)|x, y ∈ η−1
X (A)}.

Since diam A < ε, we see that

inf{dP(X)((ν1, B1), (ν2, B2))|(νi, Bi) ∈ A} < ε.

That (νi, Bi) ∈ A means there exist x1, x2 ∈ X such
that δx1 = ν1, δx2 = ν2 and B1 = {x1}, B2 = {x2}. (∗)

Then for arbitrary x1, x2 ∈ η−1
X (A) we can find

(νi, Bi) ∈ A that (∗) holds.
Since

dP(X)((δx1 , {x1}), (δx2 , {x2}))

= dKR(δx1 , δx2) + dH({x1}, {x2}) = 2d(x1, x2) < ε,

that is why d(x1, x2) < ε
2 and therefore diam η−1

X (A) <
< ε

2 . ¥

Proposition 2. The class of maps η = (ηX) is a
natural transformation of the identity functor into the
functor P.

¤ Proof. We have to show that the diagram

X
ηX //

f

²²

P(X)

P(f)

²²
Y

ηY // P(Y )

commutes. Here the map Pf : P(X) → P(Y ) acts by
the formula

Pf(µ,A) = (
k∑

i=1

αiδf(xi), f(A)).

Let x ∈ X, then ηY (f(x)) = (δf(x), {f(x)}) and

P(f)(ηX(x)) = P(f)(δx, {x}) = (δf(x), {f(x)}).

Therefore we are done. ¥
For the space P(X), one can define the space P2(X).

Obviously, the set P2
ω(X) of elements of the form

(M,A), where M =
k∑

i=1

αiδ(µi,Ai), A = {(µi, Ai)|i =

1, . . . , k
′}, for some k

′ ≥ k, µi =
li∑

j=1

βijδxij
, Ai =

{xij |j = 1, . . . , l
′

i , } l
′

i ≥ li, is dense in P2(X).
Define the map ψX : P2

ω(X)→Pω(X) by the formula

ψX(M,A) =




k∑

i=1

li∑

j=1

αiβijδxij
,

k
′⋃

i=1

Ai


 ,

where

µi =
li∑

j=1

βijδxij , Ai = {xij |j = 1, . . . , l
′

i }, l
′

i ≥ li.

Proposition 3. The map ψX is coarsely uniform
and metric proper.
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¤ Proof. We denote by ψ′X : P 2(X) → P (X)
and uX : exp2 X → exp X the monad multiplications for
for the probability measure monad and the hyperspace
monad respectively. Note that both of them preserve the
distances. Since P2

ω(X) is dense in P2(X), in order to
show that the map ψX : P2(X) → P(X) is coarsely uni-
form, we have to show that so is ψX : P2

ω(X) → Pω(X).

Let M=
k1∑

i=1

α1
i δ(µi,Ai), A={(µi, Ai)|i=1, . . ., k

′
1},

N =
k2∑

s=1
α1

sδ(νs,Bs), B = {(νs, Bs)|s = 1, . . . , k
′
2},

where

µi =
l1i∑

j=1

β1
ijδxij , Ai = {xij |j = 1, . . . , l

′1
i },

νs =
l2s∑

t=1
β2

stδyst , Bs = {yst|t = 1, . . . , l
′2

s }.
Now, estimate the distance between ψX(M,A),

ψX(N,B) in the space Pω(X). By the definition,

dP2
ω(X) (ψX(M,A), ψX(N,B)) =

= dPω(X)




k1∑

i=1

l1i∑

j=1

α1
i β

1
ijδxij ,

k
′
1⋃

i=1

Ai,

k2∑
s=1

l2s∑
t=1

α2
sβ

2
stδyst ,

k
′
2⋃

s=1

Bs


 =

= dKR




k1∑

i=1

l1i∑

j=1

α1
i β

1
ijδxij ,

k2∑
s=1

l2s∑
t=1

α2
sβ

2
stδyst


 + dH




k
′
1⋃

i=1

Ai,

k
′
2⋃

s=1

Bs




=
k1,l1i ,k2,l2t∑

i,j,s,t=1

ηijstd(xij , yst) + dH




k
′
1⋃

i=1

Ai,

k
′
2⋃

s=1

Bs


 . (∗)

Thus,

dP2
ω(X) ((M,A), (N,B)) = dKR

(
k1∑

i=1

α1
i δ(µi,Ai),

k2∑
s=1

α1
sδ(νs,Bs)

)
+ dH(A,B) =

=
k1,k2∑

i,s=1

γis

l1i ,l2s∑

j,t=1

γjtd(xij , yst) +
k1,k2∑

i,s=1

γisdH(Ai, Bs)

+dH

(
{(µi, Ai)|i = 1, . . . , k

′
1},

{(νs, Bs)|s = 1, . . . , k
′
2}

)
< δ

and we conclude that (∗) does not exceed 3δ. Therefore,
the map ψX is coarsely uniform.

In order to show that ψX is metric proper, we choose
an arbitrary set U ⊂ P(X) with diam U < ε.

Let (M,A), (N,B) ∈ ψ−1
X (U) and consider

dP2
ω(X)((M,A), (N,B)). Applying the reverse consider-

ations we can make the conclusion that diam ψ−1
X (U) <

< 8ε = δ. Therefore, ψX is metric proper and
we are done. ¥

Proposition 4. The class of maps ψ = ψ(X) is a
natural transformation of the functor P2 into the func-
tor P.

¤ Proof. Let (M,A) ∈ P2(X) and , then

M =
k∑

i=1

αiβ(µi,Ai),A = {(µi, Ai)|i = 1, . . . , k
′}, k′ ≥ k,

where µi =
li∑

j=1

βijδxij , Ai={xij |j=1, . . . , l
′

i }, l
′

i ≥ li.

Let us consider

ψX(M,A) =




k∑

i=1

li∑

j=1

αiβijδxij ,
k
′⋃

i=1

Ai


 ,

then

Pf(M,A) = Pf




k∑

i=1

li∑

j=1

αiβijδxij ,
k
′⋃

i=1

Ai


 =

=




k∑

i=1

li∑

j=1

αiβijδf(xij), f




k
′⋃

i=1

Ai







and, on the other hand,

P2f(M,A) =

(
k∑

i=1

αiδPf(µi,Ai),Pf(A)

)

=




k∑

i=1

αiδ liP
j=1

βijδf(xij),f(Ai)

!,Pf({(µi, Ai)})




=




k∑

i=1

αiδ liP
j=1

βijδf(xij),f(Ai)

!,








l1∑

j=1

β1jδf(x1j), f(A1)


 , . . . ,




l
k
′∑

j=1

βk′ jδf(x
k
′
j
), f(Ak′ )









 .

That is why

ψX(P2f(M,A)) =




k∑

i=1

αi

li∑

j=1

βijδf(xij),
k
′⋃

i=1

f(Ai)




=




k∑

i=1

li∑

j=1

αiβijδf(xij), f




k
′⋃

i=1

Ai





 .

¥
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Proposition 5. The map Pf : P(X) → P(Y ) is
coarsely uniform and metric proper if so is f : X → Y .

¤ Proof. Let (µ,A) ∈ P(X), then Pf(µ,A) =(
k∑

i=1

αiδf(xi), f(A)
)

, where f(A) =

= {f(xi)|i = 1, . . . , k
′} and (ν, B) ∈ P(X), then

Pf(ν, B) =




l∑

j=1

βjδf(yj), f(B)


 ,

where f(B) = {f(yj)|j = 1, . . . , l
′}.

Note that

dP(X)((µ,A), (ν, B)) = dKR(µ, ν) + dH(A, B) =

= dKR




k∑

i=1

αiδxi ,
l∑

j=1

βjδyj


 + dH(A,B) < ε.

Consider

d̂(Pf(µ,A),Pf(ν, B)) = dP(Y )

((
k∑

i=1

αiδf(xi),

f(A)) ,




l∑

j=1

βjδf(yj), f(B)





 =

= dKR




k∑

i=1

αiδf(xi),
l∑

j=1

βjδf(yj)


 + dH(f(A), f(B)).

First,

dKR




k∑

i=1

αiδxi ,
l∑

j=1

βjδyj


 =

k∑

i=1

l∑

j=1

γijdY (f(xi), f(yj)),

where γij are the constants defined from the definition of
the Kantorovich-Rubinstein metric (see [7] for details).

The map f is coarsely uniform, which means that
for every ε > 0 there exists δ > 0 such that

dX(x, y) < ε ⇒ dY (f(x), f(y)) < δ.

That is why

dKR




k∑

i=1

αiδxi
,

l∑

j=1

βjδyj


 ≤ δ

k∑

i=1

l∑

j=1

γij = δ.

It is not difficult to show that dH(f(A), f(B)) < δ.
Therefore, dP(Y )(Pf(µ,A),Pf(ν, B)) < 2δ and as a re-
sult the map Pf is coarsely uniform.

To prove the map Pf is metric proper we consider
an arbitrary subset A ⊂ P(Y ) with diamA < ε and
show that diamPf−1(A) < δ.

Let (ν1, B1), (ν2, B2) ∈ Pf−1(A) then there ex-
ist such (µ1, A1), (µ2, A2) ∈ A that Pf(νi, Bi) =
(µi, Ai), i = 1, 2. We have

dP(X)(ν1, B1), (ν2, B2)) = dKR(ν1, ν2) + dH(B1, B2)

= dKR

(
k1∑

i1=1

α1
i1δx1

i1
,

k2∑

i2=1

α2
i2δx2

i2

)
+ DH(B1, B2).

From the properness of f it follows

dKR

(
k1∑

i1=1

α1
i1δx1

i1
,

k2∑

i2=1

α2
i2δx2

i2

)

=
k1∑

i1=1

k2∑

i2=1

γi1i2dX(x1
i1 , x

2
i2) < δ,

dH(B1, B2) < δ.

Similarly as in the proof of Proposition 4.1 we see
that P(f) is a metric proper map. ¥

Recall that a monad on a category C is a triple
T = (T, η, µ) consisting of an endofunctor T : C → C
and natural transformations η : 1C → T (unit) and
µ : T 2 → T (multiplication) such that µ◦Tη = µ◦ηT = 1
and µ ◦ Tµ = µ ◦ µT .

Theorem 1. The triple P = (P, η, ψ) is a monad
on the category CMS.

¤ Proof. We are going to show that the diagrams

P(X)
ηP(X) //

1P(X)

$$IIIIIIIII

PηX

²²

P2(X)

ψX

²²
P2(X)

ψX // P(X)

P3(X)
P(ψX)//

ψP(X)

²²

P2(X)

ψX

²²
P2(X)

ψX // P(X)

are commutative.
We first start with Pω(X) and P2

ω(X). It is easy to
see that the first diagram is commutative, because

ψX(ηPω(X)(µ,A)) = ψX(δ(µ,A), {(µ,A)})

= ψX


δ kP

i=1
αiδxi

,{x1,...,x
k
′ }
!, {(µ, A)}




=




k∑

i=1

αiδxi
,

k′⋃

i=1

{xi}



and

ψX(Pω(ηX)(µ,A)) = ψX

(
k∑

i=1

αiδ(δxi
,{xi}), {(δx1 , {x1}),

. . . , (δx
k
′ , {xk′})}

)
=

=




k∑

i=1

αiδxi ,
k′⋃

i=1

{xi}

 .

Since the set Pω(X) is dense in P(X) and therefore
this set is coarsely dense in P(X). We conclude that the
diagram is commutative for each (µ,A) ∈ P(X) (see [4,
Proposition 2.3]).

8 Ìàòåìàòèêà
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Now consider a pair (M,A) ∈ P3
ω(X), where

M =
n∑

s=1

ηsδ(Ms,As), A = {(Ms,As)|i = 1, . . . , n
′}

with n
′ ≥ n, Ms =

ks∑
i=1

αs
i δ(µs

i ,As
i ), As = {(µs

i , A
s
i )|i =

1, . . . , k
′
s},

µs
i =

lsi∑

j=1

βs
ijδxs

ij
, As

i = {xs
i1, . . . , x

s

ils
′

i

},

Then we obtain

Pω(ψX)(M,A) =

(
n∑

s=1

ηsδψX(Ms,As), ψX({Ms,As})
)

,

where

ψX({Ms,As}) =




ks∑

i=1

lsi∑

j=1

αs
i β

s
ijδxs

ij
,

k
′
s⋃

i=1

(µs
i , A

s
i )


 .

Therefore
ψX(Pω(ψX)(M,A))

=




n∑
s=1

ks∑

i=1

lsi∑

j=1

ηsα
s
i β

s
ijδxs

ij
,

k
′
s⋃

i=1

n
′⋃

s=1

As
i


 .

Also,

ψPω(X)(M,A) =




n∑
s=1

ks∑

i=1

ηsα
s
i δ(µs

i ,As
i ),

n′⋃
s=1

As




and

ψX(ψPω(X)(M,A)) =




n∑
s=1

ks∑

i=1

lsi∑

j=1

ηsα
s
i β

s
ijδxs

ij
,

k
′
s⋃

i=1

n
′⋃

s=1

As
i




= ψX(Pω(ψX)(M,A)).

Similarly as above, we note that the set P3
ω(X) is

dense in P3(X) and the restriction of the diagram on
P3

ω(X) is commutative (see again [4, Proposition 2.3]).
This means that the second diagram is commutative

as well. ¥

IV. Tensor products

We are going to define two tensor products ⊗ and ⊗̃.
The tensor products in the category of compact Haus-
dorff spaces are investigated in [12]. Let a ∈ P(X), b ∈
P(Y ). For every x ∈ X we denote by iX : Y → X × Y
the map acting by the formula:

iX(y) = (x, y), y ∈ Y

and the map fb : X → P(X × Y ) in the following way

fb(x) = PiX(b), x ∈ X.

Definition 1. The element

a⊗ b = ψX×Y ◦ Pfb(a) ∈ P(X × Y ),

where a ∈ P(X), b ∈ P(Y ) is said to be the tensor prod-
uct ⊗ of a and b.

Similarly, we define a variation of this tensor prod-
uct. For every y ∈ Y we denote by

jy : X → X × Y, jy(x) = (x, y), x ∈ X

and the map

ga : Y → P(X × Y ), ga(y) = Pjy(a), y ∈ Y.

Definition 2. The element

a⊗̃b = ψX×Y ◦ Pga(b) ∈ P(X × Y ),

where a ∈ P(X), b ∈ P(Y ) is said to be the tensor prod-
uct ⊗̃ of a and b.

It is easy to see that the operations ⊗ and ⊗̃ coincide
for the modified probability measure monad.

Proposition 1. The tensor product ⊗ : P(X) ×
P(Y ) → P(X × Y ) is a coarse map (respectively ⊗̃).

¤ Proof. First, we are going to show that ⊗
is a coarsely uniform map, which means that for every
ε > 0 there exists δ > 0 such that

dP(X)×P(Y )((a, b), (c, d)) < δ ⇒ dP(X×Y )(a⊗b, c⊗d) < ε.

From (a, b) ∈ P(X)× P(Y ) we have

a = (µ1, A1) =
(

k1∑
i=1

α1
i δx1

i
, A1 = {x1

1, . . . , x
1
k′1
}
)

,

b = (ν1, B1) =

(
l1∑

j=1

β1
j δy1

j
, B1 = {y1

1 , . . . , y1
l′1
}
)

,

and from (c, d) ∈ P(X)× P(Y ) we have

c = (µ2, A2) =
(

k2∑
l=1

α2
l δx2

l
, A2 = {x2

1, . . . , x
2
k′2
}
)

,

d = (ν2, B2) =
(

l2∑
s=1

β2
sδy2

s
, B2 = {y2

1 , . . . , y2
l′2
}
)

.

Since

a⊗ b =

(
k1∑

i=1

l1∑
j=1

α1
i β

1
j δ(x1

i ,y1
j ), A1 ×B1

)
,

c⊗ d =
(

k2∑
l=1

l2∑
s=1

α2
l β

2
sδ(x2

l ,y2
s), A2 ×B2

)
,

we can obtain the distance between the a⊗ b and c⊗d :

dP(X×Y )(a⊗ b, c⊗ d)
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= dP(X×Y )







k1∑

i=1

l1∑

j=1

α1
i β

1
j δ(x1

i ,y1
j ), A1 ×B1


 ,

(
k2∑

l=1

l2∑
s=1

α2
l β

2
sδ(x2

l ,y2
s), A2 ×B2

))

= dKR




k1∑

i=1

l1∑

j=1

α1
i β

1
j δ(x1

i ,y1
j ),

k2∑

l=1

l2∑
s=1

α2
l β

2
sδ(x2

l ,y2
s)




+dH(A1 ×B1, A2 ×B2)

=
k1∑

i=1

l1∑

j=1

k2∑

l=1

l2∑
s=1

γijlsd
(
(x1

i , y
1
j ), (x2

l , y
2
s)

)

+dH(A1 ×B1, A2 ×B2), (∗)
where γijls are the constants defined from the
Kantorovich-Rubinshtein metric with the property
k1∑

i=1

l1∑
j=1

k2∑
l=1

l2∑
s=1

γijls = 1.

On the other hand,

dP(X)×P(Y )((a, b), (c, d))

= max





dP(X)

((
k1∑

i=1

α1
i δx1

i
, A1

)
,

(
k2∑
l=1

α2
l δx2

l
, A2

))

dP(Y )

((
l1∑

j=1

β1
j δy1

j
, B1

)
,

(
l2∑

s=1
β2

sδy2
s
, B2

))

= max





dKR

(
k1∑

i=1

α1
i δx1

i
,

k2∑
l=1

α2
l δx2

l

)
+ dH(A1, A2)

dKR

(
l1∑

j=1

β1
j δy1

j
,

l2∑
s=1

β2
sδy2

s

)
+ dH(B1, B2)

= max





k1∑
i=1

k2∑
l=1

γ1
ildX(x1

i , x
2
l ) + dH(A1, A2)

l1∑
j=1

l2∑
s=1

γ2
jsdY (y1

j , y2
s) + dH(B1, B2)

< ε,

so we are able to estimate each of (1) in the following
way

k1∑

i=1

l1∑

j=1

k2∑

l=1

l2∑
s=1

γijlsd
(
(x1

i , y
1
j ), (x2

l , y
2
s)

)
< 2ε

and
dH(A1 ×B1, A2 ×B2) < 2ε.

Fixing δ = 4ε we are done with coarse uniformity.
In order to show the metric properness, consider

a ⊗ b ∈ P(X × Y ). Let (δ(x0,y0), {(x0, y0)}) be a base
point of P(X×Y ). There exist compact neighborhoods
A and B of x0 and y0 in X and Y respectively such that
a⊗ b ∈ P(A×B).

Then ⊗−1(P(A × B)) ⊂ P(A) × P(B). Since the
latter set is compact, the map ⊗ is proper. ¥

V. Remarks

One can also obtain similar results for the following
metrization of the space P(X):

dP(X)((µ1, A1), (µ2, A2)) = max{dKR(µ1, µ2), dH(A1, A2)}.

We leave as an open question that of extension of
the above results onto the coarse categories (see, e.g.
[8, 6, 9, 11]).

One can also furmulate the following question: is
there a counterpart of the modified probability measure
monad in the asymptotic category of Dranishnikov [1]?
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