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It is known that the probability measure functor does not preserve the class of locally compact
metric spaces. Therefore, it does not have its straightforward counterpart in the coarse category.
We define a modified functor of probability measures on the category of proper metric spaces

and coarse maps.
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I. Introduction

The coarse category (i.e. the category of coarse spaces
and coarse maps) was introduced by Roe in [9]. This
theory turned out to be an appropriate universe for
studying asymptotic properties of structures more gen-
eral then metric spaces.

I. Protasov classified some recent results concerning
algebraic structures in the coarse category as those be-
longing to the asymptotic algebra.

In particular, in [4] the hyperspace functor acting in
the category of coarse topological spaces was considered.
It was proved in [4] that the hyperspace functor deter-
mines a monad in the coarse category and the natural
problem arises whether another monads in the category
of compact Hausdorff spaces have their counterparts in
the coarse category.

In this paper we consider the case of probability mea-
sure monad. It was noted in [13] that the functor of
probability measures has no natural extension to the
category of coarse topological spaces and the main rea-
son of it is that this functor fails to preserve the class of
locally compact spaces.

We introduce a modified functor of probability mea-
sures. To be more precise, a probability measure in our
sense is a pair (u,supp p), where, as usual, supp u de-
notes the support of . Then convergence means the
weak® convergence of measures together with conver-
gence of their supports. The obtained spaces have some
applications in the mathematical economics. Note also
that these spaces are tightly connected to the mm-spaces
in the sense of Gromov [5].

In this note we show that the modified probabili-
ty measure functor determines a monad in the coarse
category of proper metric spaces. We also consider the
notion of tensor product related to this monad.

II. The coarse category of metric spaces

We start with some necessary definitions (see, e.g.
).
A metric space is said to be proper if every its closed
ball is compact.

A map f: X — Y between metric spaces is said to
be coarse [9] if:

1) f is coarsely uniform, i.e. for every € > 0 there ex-
ists n > 0 such that d(z,y) < e implies d(f(z), f(y)) <n
for every z,y € X;

2) f is coarsely proper in the sense that the preimage
of every bounded set is bounded.

The proper metric spaces and coarse maps form a
category, which we denote by CMS.

A Spaces of probability measures

Given a metric space X, we denote by P(X) the space
of probability measures in X with compact support and
by exp X the hyperspace of X. The space P(X) is en-
dowed with the weak* topology and the space exp X
with the Vietoris topology (see, e.g., [3] for details).
Note that, for x € X, by §, we denote the Dirac mea-
sure concentrated in z. For a metric space (X, d), the
Vietoris topology is generated by the Hausdorff metric,
dHu

dy(A,B) =inf{e > 0| A C O(B), B C O-(A)}.

Let P(X) = {(u,A) € P(X) xexp X | supp pu C A}.
If (X,d) is a proper metric space, we endow P(X)
with the metric d = dp(x) defined as follows:

dpx)y((n1, A1), (p2, A2)) = drr(p1, po) + du(Ar, As).

Here dk g denotes the Kantorovich-Rubinshtein met-
ric on the space of probability measures of a metric space
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(X,d) (see [7]). Given u,v € P(X), we let

dKR(u,V):inf{/ dd\ | X € P(X x X)
XxX

is a measure with marginals f, y}.

Proposition 1. If (X, d) is a proper metric space,
then so is (P(X),@.

O Proof. It is sufficient to prove that any closed

ball centered at (0,,{x0}), for some base point zy €

~

P(X) with d((p, A), (80, {T0})) < 7 we have
suppp C A C B ={y € Xl|d(y,zo) < r}.

Therefore, the closed ball of radius r centered at
(020, {x0}) in P(X) is a closed subset of P(B) x exp B.
Since P(B) X exp B is compact, we are done. l

The set A is said to be the support of (i, A) € P(X).
The motivation of this term lies in the theory of normal

functors in the category of compact Hausdorff spaces
developed by E.V. Shchepin [10].

Proposition 2. The set P, (X) of points with finite
supports is dense in P(X).
[0 Proof. This follows from the general results of
the theory of normal functors (see [10]). W

III. Modified probability measure
monad

Let (X, d) be an object of the category CMS.
Let us define the map nx: X — P(X) as follows:

nx(z) = (62, {z}).

Proposition 1. The map nx is coarsely uniform
and metric proper.
O Proof. Choose an arbitrary ¢ > 0 and such
points z,y € X that dx(x,y) < e. To show that nx is
coarsely uniform we consider

dpx)(nx (%), nx(y)) = dpx) (62, {z}), (6, {y}))
= drr(0s,0y) +du({z},{y}) = dx(z,y) + dx(z,y) =
= 2dx(z,y) < 2e.

Thus, one can take § = 2¢ in the definition of coarse
uniformity.

Now we need to show that the map nx is metric
proper. Fix an arbitrary ¢ > 0 and A C P(X) such that
diam A < e.

Then

diamny' (A) = diam {z € X|nx(z) = (6, {z}) € A}

= inf{dx (z,y)|z,y € nx' (A)}.

Since diam A < ¢, we see that

il’lf{dp(x)((l/l,Bl), (VQ,BQ))|(Z/¢,BZ‘) S A} < €.

That (v, B;) € A means there exist x1, 2 € X such
that 5."51 = 1/1,5,%2 = V3 and Bl = {I1}7B2 = {1‘2} (*)

Then for arbitrary x1,z2 € ny'(A) we can find
(vi, Bi) € A that (%) holds.

Since

dp(x)((0ay, {21}), (0ay, {x2}))

= dKR<5I176m2> + dH({xl}v {332}) = 2d($1’ x2) <6

that is why d(21,22) < & and therefore diamny'(4) <
<5 .l

Proposition 2. The class of maps n = (nx) is a
natural transformation of the identity functor into the
functor P.

OO Proof. We have to show that the diagram

commutes. Here the map Pf: P(X) — P(Y) acts by
the formula

k
P11, 4) = (3 ibg(a £ (A))

Let x € X, then ny (f(z)) = (04(x), {f(x)}) and

P(f)(nx () = P(f)(0e,{x}) = (65@), {f(@)}).

Therefore we are done. W

For the space P(X), one can define the space P?(X).
Obviously, the set P2(X) of elements of the form
k

(M, A), where M = > a0, a,), A = {(s, Ai)|i =
i=1

’ ’ li
1,...,k}, for some k& > k, p; = > Bijle,,;, Ai =
j=1

{zijli=1,...,1,",} I,' > 1, is dense in P%(X).
Define the map vx : P2(X)—P,(X) by the formula

kL K
Ux (M, A) = | Y0 aifijde,. | 4 |
=1

i=1 j=1

where

l;
pi = Bijba, Ai=A{xili=1,....1;}, I, > 1.

j=1

Proposition 3. The map 1x is coarsely uniform
and metric proper.

MATEMATUKA



Modified probability measure functor of in the coarse category

O Proof. We denote by ¢ : P*(X) — P(X)
and uy: exp? X — exp X the monad multiplications for
for the probability measure monad and the hyperspace
monad respectively. Note that both of them preserve the
distances. Since P2?(X) is dense in P?(X), in order to
show that the map ¥ x : P?(X) — P(X) is coarsely uni-
form, we have to show that so is ¥x : P2(X) — P, (X).

kl ,
Let M= Za}é(uhAi), A:{([L“Al)|7/:1,,kl}7
i=1

ko )
N = ;ozié(ys,gs), B = {(ve,By)ls = 1,...,ky},
where B
5 /
= Z Bli0uyys Ai=A{zyli =1,... .1, '},
l2
Zﬁgt%gt, By = {yslt =1,...,1,2}.

Now, estlmate the distance between x(M,.A),
Yx (N, B) in the space P, (X). By the definition,

dpf}(X) (wX(Mv A)a ¢X(Na B)) =

1 ll

=dp,(x) ZZO‘ Ouzyijs

=1 j5=1

’
k2

k2
UAHZZO‘ 6. U Be | =

s=1t=1 s=1

ke 1

e [ 303w,

i=1 j=1

’
k2

ko
Zza“ﬂsﬁagﬂ +dy A, | ) B

s=1t=1 i=1 s=1

Ja Yo

B
o~

-
Il

k1,1t ka2 17
= E Nijstd(Tij, yst) + dp

CH\

ijs t=1 i=1

Thus,
k1

de,(X) (M, A),(N,B)) =dkr (Z azl(s(mw‘li)’
i=1

k2
Z aié(l’mBs)) + dH(.A, B) =

s=1
kiks L2 ki1,ks
= > s Y ved(@ig ye) + Y visdu(Ai, By)
i,s=1  jt=1 i,5=1

el ({(ni Al =1, k),

{(vs, By)|s = 1,...,@}) <4

and we conclude that (%) does not exceed 30. Therefore,
the map ¥ x is coarsely uniform.

In order to show that ¢ x is metric proper, we choose
an arbitrary set U C P(X) with diamU < e.

Let (M, A),(N,B) € x'(U) and consider
dpz(x)((M,.A), (N, B)). Applying the reverse consider-

ations we can make the conclusion that diam ’(/J;(l(U) <
< 8 = 0. Therefore, ¥x is metric proper and

we are done.

Proposition 4. The class of maps ¥ = ¥(X) is a
natural transformation of the functor P? into the func-

tor P.

O Proof. Let (M, A) € P?(X) and , then

k
M =" i ay A= {(u A)li=1,... . K}k >k,

=1

where u;

l;
= Biiba,, Ai={wili=1,.. 1 1 > 1

j=1

Let us consider

x (M

then

Pf(M

Zzazﬁzg z”»UA )

=1 j=1

Pf Z Z alﬁlj Zijo U A -

i=1 j=1

k1
> aibibpay f | U4

i=1 j=1 i=1

x‘\

and, on the other hand,

P2f(M, A) =

k
Z aié
i=1

k
(Z az-&v»f(m,Ai),Pf(A))

i=1

L ) s PrE iy Ai)})

Zl Bijbf () F(Ai)
=

k
= a;d 1 s
i—1 <E 5ij5f(z,ij)7f(A'i)>
i=1
1

%
l

Zﬁ1j5f(zlj),f(A1) e
=1

L
Zﬁk/ﬁf(zk,jy f(Ay)
j=1

That is why

Ux (P2 f(

’

k

Zaz Zﬂz]af (zi5)> U f(AL)
i=1

Zzazﬂw&f("cw) f U A

=1 j=1
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Proposition 5. The map Pf: P(X) — P(Y) is
coarsely uniform and metric proper if sois f: X — Y.
O Proof. Let (u,A) € P(X), then Pf(u, A) =

(E @i0f(z,) f(A)), where f(A) =
={f(z;))li=1,...,k'} and (v, B) € P(X), then
l

> e )]

{flypli=1,...,

Pf(v,B) =

where f(B) =
Note that

d/P(X)((lu7A)7 (v, B)) =dgr(u,v) +du(A, B) =

1)

=dkr ZO‘Z(SMZﬂ] +dHAB)
Consider
d(Pf(n, A), Pf(v, B)) = ((Zaqaﬂh

l
Zﬂj(sf(yj)’f(B) =

j=1

l
=dkr Zaﬁf Zﬁj5f<yj> +du(f(A), f(B)).

First,
k l k l
dKR Zai(swaﬂj&yj = ZZ’Y”dY (y])>
i=1 j=1 i=1j=1

where 7;; are the constants defined from the definition of
the Kantorovich-Rubinstein metric (see [7] for details).

The map f is coarsely uniform, which means that
for every € > 0 there exists 6 > 0 such that

dx (z,y) <e=dy(f(z), f(y)) <o.
That is why

k !
dgr | Y ibe, Y B;dy,
i=1 =1

It is not difficult to show that dg(f(A), f(B)) < é.
Therefore, dp(yy(Pf(u, A), Pf(v, B)) < 25 and as a re-
sult the map P f is coarsely uniform.

To prove the map Pf is metric proper we consider
an arbitrary subset A C P(Y) with diam.A < e and
show that diam Pf~1(A) < 4.

Let (v1,B1),(v9,B2) € Pf~1(A) then there ex-
ist such (/J,17A1), (‘LLQ,A2) e A that ,Pf(V“Bl) =

ko1
<6Y D =0

i=1 j=1

k1 ko
E 1 E 2
= dKR 041-15%11 3 ai26wg2

i1=1 ip=1

) + Dy (B, Bs).

From the properness of f it follows

k)l k}g
d a8 o)
KR 71 x! 19 2
i1 ig

i1=1 ig=1

k1 ko

- Z Z '7111ng

11=1142=1

<9,

17 ’LQ)

dH(Bl, Bg) < 6.

Similarly as in the proof of Proposition 4.1 we see
that P(f) is a metric proper map. H

Recall that a monad on a category C is a triple
T = (T,n,p) consisting of an endofunctor T: C — C
and natural transformations n: 1¢ — T (unit) and
w: T? — T (multiplication) such that uoTn = ponT = 1
and poTu = pouT.

Theorem 1. The triple P = (P,n,v) is a monad
on the category CMS.
O Proof. We are going to show that the diagrams

P(X) PAX)  PIX) L pr(x)

o N ]
(

NP(x)
—_—

X p(x)

are commutative.
We first start with P, (X) and P2(X). It is easy to
see that the first diagram is commutative, because

Ux (ﬁm(x) (Mﬂ A)) = /IZ)X((S(,LL,A)V {(/J'v A)})

= 5. o
wX (iglaiémiv{%,...,zk,}) {(/14 )}
k .
= | 2o, Ut
i=1 Pt
and
VYx (Pu(nx)(p, A)) = ¥x (Za 8(6s, foih)s 1 0urs {21}),

oy (Bay {ze DY) =

k k'
> aide,, L}
=1 i=1

Since the set P, (X) is dense in P(X) and therefore

(ui, A;), i=1,2. We have this set is coarsely dense in P(X). We conclude that the
diagram is commutative for each (u, A) € P(X) (see [4,
dP(X)(Vla Bl)7 (1/2, Bg)) = dKR(V17 VQ) + dH(Bla Bg) PI‘OpOSitiOIl 23])
8 MATEMATHKA
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Now consider a pair (M, A) € P2(X), where

M = Zns6(M57AS), A = {(MS,AS)|Z — 1’.“7n }

s=1
’ ks
with n > n, Ms = 3 afd(us a5y, As = {(1], 47)]i =
i=1
ks

A ={x},. .., :Ejl.?/ 1

i

3
E s

i = ﬂijd’tu7
Jj=1

Then we obtain

,Pw("/)X)(MvA) = <Z nsfswx(Ms,As)?d)X({MSv-AS})) ’

s=1
where
({MS’A } ZZO&SHU(SIS 7U /”'z’Af)
=1 j=1 =1
Therefore
¥x (Po(ihx ) (M, A))
n kg k; n,
ZZZ”GQ ﬁm(g U Af
s=11i=1 j=1 i=1s=1
Also,
n ks
Vp, o0 MLA) = [ Y0 msaibe an) UAé
s=11i=1
and

/
ks ks n

Yx (Yp, X)MIA ZZZ%@ 61]61337U UA;

s=11i=1 j=1

= ¥x (Pu(¥x) (M, A)).

Similarly as above, we note that the set P3(X) is
dense in P3(X) and the restriction of the diagram on
P3(X) is commutative (see again [4, Proposition 2.3]).

This means that the second diagram is commutative
as well. H

i=1s=1

IV. Tensor products

We are going to define two tensor products ® and ®.
The tensor products in the category of compact Haus-
dorff spaces are investigated in [12]. Let a € P(X),b €
P(Y). For every € X we denote by ix: Y — X xY
the map acting by the formula:

ix(y)=(z,y), yeY
and the map f,: X — P(X x Y) in the following way
fo(x) =Pix(b), z € X.

Definition 1. The element
a®b=1vxxy oPfpla) € P(X xY),

where a € P(X),b € P(Y) is said to be the tensor prod-
uct @ of a and b.

Similarly, we define a variation of this tensor prod-
uct. For every y € Y we denote by

Jy: X = X xY, jy(z) = (z,y), z€ X
and the map

Ga: Y — P(X X Y)a ga(y) = Pjy(a)ay ey.

Definition 2. The element
aéb = 1/)X><Y o Pga(b) S P(X X Y)7

where a € P(X),b € P(Y) is said to be the tensor prod-
uct @ of a and b.

It is easy to see that the operations ® and @ coincide
for the modified probability measure monad.

Proposition 1. The tensor product ®: P(X) X
P(Y) — P(X xY) is a coarse map (respectively ®).
O Proof. First, we are going to show that ®
is a coarsely uniform map, which means that for every
€ > 0 there exists § > 0 such that

dp(x)xP)((a;0), (¢;d)) < = dp(xxy)(a®b, c®d) <e.

From (a,b) € P(X) x P(Y) we have

k1
a = (//417141) = (Z Oézléw;,Al = {l’%,,l’}vi}> 5

,yi}>,

c = (ug, As) = <E 0‘157@ 2, Ay = {xl,...,ajié}> ,

l

d=(v2,By) = (Z B20,2, By = {yf7~-~,yi}> :
s=1

b:(ylvBl): Z ]valf{yla“'

and from (c,d) € P(X) x P(Y') we have

,_.

Since

a®b= <Z ZO& ﬁ 6(z1y.)7A1 ><B1>7

1=17=1

c®d=(22alﬁ§(w’y AQXBQ),

l=1s

we can obtain the distance between the a®b and c®d :

dp(xxy)(a®b,c®d)

MATHEMATICS
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ki Iy
=dpixxy) | | 20D B0y, A1 x By |
i=1 j=1 '
ko o
(Xt
=1 s=1
kl l1 kg lg
_ 151 2 02
=drr | DD aiBdu g, Y D aiBi0uz )
i=1j=1 =1 s=1

+dp(Ay x By, Ay x Bs)

k1 I ko la

=SS ied (), (2. 42)

i=1 j=1 I=1 s=1
+dH(A1 X Bl,AQ X BQ), (*)

where ;j; are the constants defined from the

Kantorovich-Rubinshtein metric with the property
kl l1 kg lz

200 20 > viis = L

i=1j=11=1s=1
On the other hand,

dp(x)xp(v)((a;b), (¢, d))

k?l k2
d'p(X) (( 10511(5I11,A1> 5 (lz 04%5%2,142>>
i= =1

ll l2
dp(y) ((El B; 5y_,1731> ; (E_:l 535y§732>>

= max

= Imax I Iy >
dxr <Z B0y, 32 53%3) +du(Bi1, B2)
s=1

k1 ko
> > vhdx (), xf) + du(Ay, Ag)
i=11=1
1 s
> > idy (), y2) + du (B, Bz)

j=1s=1

= max <eg,

so we are able to estimate each of (1) in the following
way

k1 I ko lo

SOSTISY ined (k). (F,97) < 2

i=1 j=11=1 s=1

and
dH(Al X Bl,AQ X BQ) < 2e.

Fixing § = 4e we are done with coarse uniformity.

In order to show the metric properness, consider
a®be P(X xY). Let (0(z0,40) 1(%0,%0)}) be a base
point of P(X xY'). There exist compact neighborhoods
A and B of zy and yo in X and Y respectively such that
a®beP(AxB).

Then @ Y(P(A x B)) C P(A) x P(B).
latter set is compact, the map ® is proper. B

Since the

V. Remarks

One can also obtain similar results for the following
metrization of the space P(X):

dp(x) (11, Ar), (p2, A2)) = max{dk r(p1, p2), du (A1, A2)}.

We leave as an open question that of extension of
the above results onto the coarse categories (see, e.g.
8, 6, 9, 11]).

One can also furmulate the following question: is
there a counterpart of the modified probability measure
monad in the asymptotic category of Dranishnikov [1]?
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MOJINDIKOBAHUN ®YHKTOP fIMQBIPHICHHX MIP
Y I'PYBIN KATEI'OPII

B. ®pigep, M. Sapiunnii

Jveiecorutl HautonaavHUl YHieepcumem, eya. Yruisepcumemcora 1, 79000, Jlvsis, Yrpaina

Jlobpe BimomMo, 1m0 (YHKTOp HMOBIpHICHHUX Mip He 36epirae Kaacy JOKAJBHO KOMITAKTHHX
MEeTPUYHHUX HPOCTOPiB. 3Bifcu BuiimBae, mo neit byHKTOp He Mae 0e3[mOCepeHROr0 aHAJIora
B rpy6iii kareropii. Mu o3nauyemo momudikoBanuit GpyHkTop HMOBIpHiCHMX Mip B KaTeropii
BJIACHUX METPUTHHUX IIPOCTOPIB i rpybux Bi106pakeHsb.
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