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A new problem of decreasing of the degree of closed-loop characteristic
polynomial by suitable choice of state feedbacks for strongly singular linear systemsis
formulated and solved. Necessary and sufficient conditions ar e established under which
it is possible to choose state feedbacks such that the nonzero closed-loop characteristic
polynomial has zero degree. A procedure for computation of the feedback gain
matricesis proposed.

Introduction. Dai has shown [1, 2] that for singular (descriptor) linear systems
Ex, = AXx +Bu,, E,Ae R™,Be R™™, detE =0 it is possible to choose a matrix Ke R™" of
the state-feedback u=Kx such that the nonzero closed-loop characteristic polynomial
det[Ez— (A+ BK)] has zero degree. It is easy to show that for standard systems (E=1) does not
exist such state-feedbacks.

Main subject of this note is to established necessary and sufficient conditions for strongly
singular linear systems under which it is possible to choose state feedbaks such that the nonzero
closed-loop characteristic polynomial has zero degree.

This procedure of decreasing of the degree of closed-loop characteristic polynomia by
feedbacks will be called the elimination of finite eigenvalues of matrices by feedbacks since the
closed-loop has no finite eigenvalues (poles).

This type of problem arises in designing of the perfect observers for linear standard systems
[1, 2, 4]. To the best knowledge of the author this elimination of finite eigenvalues of matrices by
feedbacksin linear systems has not been considered yet.

Problem formulation. Let R™™ be the set of nxm real matrices and R" := R™. Consider
the linear continuous-time system
Ex= Ax+Bu D
where x=x(t)e R"and u=u(t)e R" are the state and input vectors, respectively and
E,Ae R™ ,Be R™™.
Itisassumed that detE =0,rank B=m,

rank[Es— A,B]=n foral se C (thefield of complex numbers) (2
and the pencil (E, A) isnot regular, i.e.
det[Es— A]=0 foral seC. 3
We are looking for again matrix K e R™" of the state-feedback
u=v+Kx 4
such that
det[Es— (A+BK)]|=a #0 (5)

where o isarea number independent of s.
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The problem can be stated as follows. Given E,AB and o, find K satisfying (5).
We shall establish necessary and sufficient conditions for the existence of a solution to the
problem and we shall give a procedure for computation of the gain matrix K.

Problem solution. If m = n the problem can be solved as follows. We can always choose
A. so that det[Es— A.]=o . The assumptions rankB=m and m = n implies detB=0 and
from A = A+BK weobtain K=B"[A - A].

Thus, we assumethan m<n.
Theorem. There exists K satisfying (5) if and only if the conditions (2) is satisfied.
Proof. Necessity. From the equality

I
[Es—(A+BK)] =[Es— A B][ K} ©6)
it followsthat (5) implies (2).
Sufficiency. Let F(iy,i,,...,i,) bethe nxn minor composed of the iy,i,,...,i, columns of the

matrix [Es— A, B] and G(i,i,,...,i,) be the nxn minor composed of the i,,i,,...,i, rows of the

[
matrix )

Then from the Binett — Cauchy formula[3] we obtain
det[ Es—(A+ BK)] = D Fliy,i,iy )Glif in, i, ). 7)
I<i <y < -<i,<n+m

If (2) holds then there exists at least one nonzero minor F(k,,K,,...,k, ) which isindependent of s.

I
From the structure of [ K] it followsthat it is always possible to choose the entries of K so that

the minor G(k,,K,,....k
nonzero minors F(iy,i,,...,i, ) arezero. In this case from (7) and (5) we obtain

det[Es— (A+ BK)] = F (K, Ky ...k, JG(K, Ky o K ) =1 . 6)
Hence, it isaways possible to choose K so that

) is nonzero and all remaining minors Gli,i,,...,i,) corresponding to

n

(9)

The choice in general caseis not unique.

To simplify the choice of K the following procedure based on elementary operations is
recommended. The following elementary row and column operations will be used:

1) Multiplication of the ith row (column) by scalar c. This elementary row (column)

operation will be denoted by L[ixc] (Rixc]).

2) Addition the jth row (column) multiplied by a polynomial b=Db(s) to the ith row
(column). This elementary row (column) operation will be denoted by L[i + jxb] (Rfi + jxb]).

3) Interchange theith and jth rows (columns). This elementary row (column) operation will
be denoted by L[i, j] (R, j]).
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If the condition (2) is satisfied then there exists an unimodular matrix U =(s) (detU #0 is
independent of s) of elementary columns operations such that

[Es—ABU=[01,.]. (20)
From (6) and (10) we have
1 l Gl
[Es—(A+BK)]=[Es— A BJUU [_K]:[O In{é-]:G (1)
and
[Es—(A+BK)]=detG (12)
where
[Gl} =U 1[ ! ] G=G(K)e R™, (13)
G -K

To find G using elementary columns operations we perform the reduction (10) and we perform

. . : . | _
simultaneously corresponding elementary row operations of the matrix [ K} taking into account

the following correspondence [4]: Hixc] — L[ix<],Ri+ jxb] = L[j—-ixb], i, j]— L[i,]j].
Theentriesof K arechosensothat detG=c .

If the condition (2) is satisfied then the matrix K can be found by the use of the following
procedure

Procedure
Step 1. Using elementary column operations perform the reduction (10) and performing

I
simultaneously corresponding elementary row operations defined by U™ on the matrix [ K]

find the matrix G.
Step 2. Choose the entriesof K sothat detG =«
Example 1. Consider the system (1) with

1 00 0O 1 0 10
E=(0 1 0,A=|0 O OfB=(0 1]. (24)
0 00O -1 -2 0 00
. _|:k11 k12 k13:| . P _ .
Find K = such that (5) is satisfied for o =1. In this case
k21 k22 k23
s -1
n=3,m=2rank[E,B]=rankE=rankB=2 and detfEs— A]=[0 s =0 foral seC.
1 2
The condition (2) is satisfied since
s -1 0;10
rank[Es— A,B]=rank|0 s OEO 1(=3foral seC.
1 2 000

Hence problem has a solution and using the procedure we obtain
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Step 1. To reduce the matrix

s -1 010
[Es-AB]=|0 s 0 0 1
1 2 00O
to theform
00100
[01,]=|0 0 O 1 O (16)
0 0001

we peform the following elementary column operations R1+4x(-s)],R2+5%x(-9)],
R2+4],R2+1x(-2)],RL3],R34],R 4,5 or equivaently we postmultiply the matrix (15) by
the unimodul ar matrix

-2 000 1
1 00O0 O
u=l 0 100 O] (17)
1+2s 0 1 0 -s
| -s 001 O]
On the matrix
[ 1 0 0
0 1 0
[_'K]: 0 O 1 (18)
_k11 _k12 _k13
|~ k21 _kzz _k23_

we perform simultaneously the following elementary row operations L[4-1xSs]|,L[5+2x§9],
L[4+ 2],L[1+2%x2],L[13],L[34],L[4,5] or equivaently we premultiply the matrix (18) by the
unimodular matrix

0
0
U't=ls -1 (19)
0
1

O O O+ O
O O~ O O
O r O O O

and we obtain
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and
S— k11 -1- k12 - k13

G=| —ky s=kyp —ky]. (20)
1 2 0
Step 2. From (20) we have
det G = (Kyg + 2Ky )5 — KigKyp + Ko (14 Kip) + 2(Kpskyg — Ky ). (21)
1

We choosg, for example, kK,, =1Lk, =-2,k,, =-1k,, =k;; =0. Then detG = 2k,, and for k,, = >

we obtain (5) for ¢ =1. The desired matrix K hasthe form
0 -1 -2
= [O b }
2

Concluding remarks. A new problem of decreasing of the degree of closed-loop
characteristic polynomial by suitable choice of state feedbacks for standard linear systems has
been formulated and solved. Conditions have been established under which it is possible to choose
state feedbacks (4) for strongly singular system (1) such that (5) holds. It has been shown that the
problem has a solution if and only if the condition (2) is satisfied. A procedure for computation of
the matrix K of (4) has been proposed and illustrated by a numerical example. The considerations
presented for standard continuous-time linear systems are also valid with slight modifications for

strongly singular discrete-time linear systems.
An extension of this problem for linear two-dimensional systems[4, 5] isalso possible.
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