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For a circuit with ground return consisting of a long rectilinear overhead
conductor the vector magnetic potential is introduced. Transformation of the
differential equations describing the magnetic potential by means of Fourrier’s
transformation yields the vector potential in the form of an analytical formula. Next,
the magnetic field strength represented by improper integrals is determined.
Appropriate representation of those calculations reduces them to the calculation of
Laplace's transformation, thus yielding analytical formulae describing the magnetic
field in thecircuit with ground return.

The impedance of a circuit with ground return for a two-layer overhead
conductor isrepresented asthetotal of external and internal impedances. The external
impedance is determined using the vector magnetic potential to compute the induced
electric field strength. Theinternal impedance of the conductor is determined using the
solution of the Helmholtz's equation for electric field strength.

Finally a computer simulation in Delphi of the discussed question is presented.

Introduction. A circuit with ground return consists of a two-layer overhead conductor
placed at the height of y«. — Fig. 1. In the conductor sinuously aternating current of pulsation w
and complex r.m.s. value | isforced. The conductor has one of its terminals grounded.

The cylindrical conductor is two-layered with a core of radius R; and conductivity y;, and
with an external layer of radius Ry and R, and conductivity y, — Fig. 2. It is paralel to the
ground surface.
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Fig. 1. Acircuit with ground return Fig. 2. Two-layer conductor with current |

Moreover, we assume that the ground constitutes a homogenous environment of magnetic
permittivity uo and constant conductivity y , and we assume that the ground surface is a plane.

If we leave out phenomenataking place at the ends of the system, the electromagnetic field
in the system in question is two-dimensional and has the same form in al planes perpendicular to
the conductor axis, i.e. it isafunction of two variables x and y. Magnetic vector potential isused in
the analysis of the magnetic field.

Impedance of the loop with ground return equals the external impedance Z, and the interna
impedance of the conductor Z,,. Then the impedance of the loop with ground return per unit length

Z=272,+7Z,. Q)

Vector potential. In the system depicted in Fig. 1 the magnetic vector potential is parallel to
the conductor axis that is A(x, y) =1; A (X, y). In Ref. [2] M. Krakowski gives the Poisson’s
equation (Formula (11.83), p.257) in area “1” above the ground and Helmholtz's equation
(Formula (11.84), p.258) in area “2”, that isin the ground. According to the denotations used in
fig. 1, in particular having introduced distance xx, these equations are of the following form:

O°A(xY)  IAXY) _

X’ y =—Ho | 3(X—=%) (y — Y,) (2
and
92 A, (X, %A, (X,
A2(2 y) + A2(2 y) :ﬂZ AZ(X, y), (Za)
oX oy
where d(x—x,) and d(y —Y,) areDirac’sdiscrete functions, while
B? = jou,y . (2b)

Transformation of each following term in equations (2) and (2a) by means of Fourrier's
transform in relation to variable x, then formulation and transformation of boundary_conditions,
finally determination of inverse Fourrier's transform according to the way applied in Ref. [2,
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p. 258-260], yields the vector potential in area ,,1” (the formulais similar to formula (11.59) in
Ref. [2, p.260].

Al (X, y) = (3)

Mol 1 (x=x)"+(r+x)°
—|0;+—In 5 > |
T 4 (x=x) T+ (=)
where function Q; can be written as

o —o(y+y;) _
0 :Je Y2 coslm (x xk)]d(D‘. (33

0 w+w/wz+[32

After the substitution:

O =0u, do = Otdu,} @
0=,0O Uy 7y, ﬁ:ﬁa
and
p=a(y+ yk),} 4a)
q=o(X—X,)
the function Q; can be written as
—pu
cosqu du . ©)

_oo e
Q1<p,q)—£—u+m

Magnetic field. The magnetic field in area ,1" (above the ground) is computed from
equation [4]

H,(%,y) = rot 4,(x,y) =1, H,, (% y) +1, H, (x,Y) ©)

o
where the components of the magnetic field strength

Hy (x,y) =200 @
Ho 9y T

+L[[ Y+ Vi B Y=Y }
20 | (x—x )2+ ()t r=x) P+ -y’

1dOy oy + ), o(x —x; )] +
(62)

and

Hyy ()=~ 20D %o Loyt y)ee- 3,01 -

Ho ox T
} (6b)

X=Xy X=Xy

7 —
2m Lx—xk>2+<y+yk>2 (x=x)* + (=)’
In formula (6a) the derivative of function Q; inrelationto variable q

S
d0,, (p.q)= 22D _ _fue Vsingu (60)

dq 0u+\lu2+j

while in (6b) the derivative of function Q, in relation to variable p

o
d0y,(p,q) = 01(p.q) _ _[ue " cosqu du . (6d)

dp 0u+\lu2+j
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Substitution into formulae (6¢) and (6d) of the following

' 1. p
sinqu = ?(ejq” —e /1)

cosqu = %(ejq” +e /1 (7)

—u _ 2 .2
—u+\/u2—+j Ju”+j—u”)

yields respectively
1 I . -Su T . -Su
dqu(p,Cl)=§ j(u\/uz +j—u®)e™ du — J(u\/uz +j—u?)e™ du , (8
0 s=p—jg Y s=p+Jjq
1 . I . -Su T . -Su
dle(p,(I)=Ej J.(u\/u2+j—u2)e du +J(u\/u2+]—u2)e du (9)
0 s=p—jg 0 s=p+jq

For Re{s} = p >0 theintegral from formulas (8) and (9) is the Laplace's transform of the
integrand, i.e

)

J‘(u\/m —u?)e™ du= L{u\/uzi-l-j—u2 }z L{u\/r-l-j}— L{uz}. (10)

0

Laplace's transform from function u® and function u./u®+j is caculated by Mathematica 3.0
program — Ref. [6].

Thus the components of the magnetic field strength are written as analytical formulas which
enables usto calculate vector Hi(x, y) inany point of area , 1" above the ground

External impedance. External impedance Z, per unit length of aloop with ground return is
determined with assumption that the conductor in the circuit with ground return from Fig. 1 is of
infinite length. Then the vector magnetic potential in area ,1" above the ground is given by
formula (3).

External impedance of the conductor is given (formula (8.76) in Ref. [4, p.168]) by the
following formula:

J.Einl -d|

Z =-< 11
= (1)

where Ej, isthe strength of electric field induced due to time changes of the external magnetic
field, while the integration curveistheline C on the conductor surface.
The induced eectric field strength (for . A1 =1, Ay)
Einlz_ijlz_ijllz:Einlz 1,, (12)
from where after the substitution of formula (3) one obtains
Oyl

. P 2
0 Q(p,q+iln(x_xk)2+(y+yk)2 ’
T 4 (x=x) O -)

(13)

Ein]z(xay) ==
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where function

e "eosqu
4 du

Op,q)=j0(p.q9) =) | —F——du,
1 E|)‘u+\/u2+j

i.e. that the function is determined by the formula given by M.Krakowski in Ref. [4 (Formula
(9.137), p. 207].
Substitution into formula (13a) of the following

(13a)

cosqu = %(ejqu +elm)

1 e (14)
— 75— (Yu®+j-u)
U+JUu® +j
yields function Q given by the formula
1 T . -su T . -su
Q(p,q)za J(\/u2+]—u)e du —J(\/u2+]—u)e du (15)
0 s=p—jqg 0 s=p+jq

For Re{st =p>0 theintegral informula (15) isthe Laplace stransform of the integrand, i.e.
J.(\/uz +j—u)e™ du= L{\/uz +j —u}z L{\/uz +j}— L{u}. (16)
0

Laplace' s transform from function u and function +/u®+ | is calculated by Mathematica
3.0 program — Ref. [6].
According to the formula (11) and assuming that 2y, ))R,, externa impedance of the

conductor per unit length is given by the formula

E. -R 2
ZZ — inlz (xk 7yk 2) — w;uo Q(za yk ,O) + ilnﬂ . (17)
I n 2 R,

Internal impedance. Electric field strengths in a two-layer conductor are determined by
taking into consideration the given current |. In Ref. [2] the authors have proved that these fields
depend on the variabler of the cylindrical coordinate system and are given by following formulas:

—for 0<r<R
E,(r)=1,E,(r)=1,1C,J,(B,T), (18)
where B, == j@i7,
—for R <r<R,
E,(r)=1,E,(r)=1,1][C, J,(B,1)+C,N,(B,1)], (18a)

where 3, = VT oLy,

Jo(Br), N,(Br) —Besal functions of first and second kind, O order,
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Constants C;, C, and C3 are obtained form the following system of equations:

Jo(BL R) -Jo (B, R) -No(B; R) C, 0
Ny B R) 23/ (B,R) 2N, (B,R) || C,|=| 0 | 18b
5, (B, R) 5, (B, R) 5, (B, R) . 9 (18b)
0 ﬁ‘Jol 2 R ﬁNol . R 3 2R,
_ p, PR g Mol R

The internal impedance of the conductor segment equal s the quotient of the complex voltage
value along the line on that segment surface divided by the complex value of the current in the

conductor (Ref. [4], formula (8.77), p. 167):

[Es(r=Ry)-a
Z, =< - . (19)
Thus the internal impedance per unit length of the conductor
Z,=C, ‘]o(ﬁz Rz)+C3No([32 R,). (199)

Conclusions. To enable the determination of the magnetic field and impedance of a
circuit with ground return for a two-layer overhead conductor a project in Delphi has been
elaborated — Fig. 3.

Fig. 3. Form of a numerical smulator for determination
of the impedance of a circuit with ground return

For actual computations of the magnetic field we have chosen a two-layer conductor
AFL-20-840 placed at the height of yx=6 m. Fig. 4 depict the distribution of magnetic field
strengths along some chosen straight line in the system of the two-layer conductor-ground.



17

Fig. 4. Distribution of the magnetic field along the straight line
y=18m;, yy=6m, | = 1KA

Table
Impedance of a circuit with ground return
Impedancein
Type of conductor mO-m

1 AFL—20-670 0,09171 +j 0,69503
2 AFL-20-840 0,08310 +j 0,68767
3 AFL-8-350 0,12823 +j 0,71249
4 AFL-8-525 (line 400 kV) 0,10357 +j 0,70020
5 AFL—6-25 1,18235 +j 0,82786
6 AFL—6-240 0,16817 +j 0,72463
7 AFL-1,7-50 (ground cond.) 0,61650 +j 0,78787

For numerical computation of the impedance of a circuit with ground return we have chosen
afew types of two-layer conductors, and the computation results are presented in Table.
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