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Abstract. Most authors have ignored the effect of rotatory inertia and shear deformation. This 
practice is justified for slender flexible arms. According to the Timoshenko beam theory, the deflection 
due to shear force and rotatory inertia should be taken into account in modelling for high speed and high 
precision requirement when the ratio of the cross-sectional dimensions to length increases. 

Based on Hamilton’s principle and Timoshenko’s flexible beam theory, the dynamic model of a 
single non-slender flexible link is derived, and it is shown that the elastic motion is governed by a pair of 
coupled partial differential equations with coupled boundary conditions. Then the abstract form of the 
dynamic equations is studied, and the properties of the spectrum of the elastic operator appearing in the 
evolution equation are given. Furthermore, the eigenvalue problem of the elastic operator is solved in 
explicit form. The formulation and well-posedness of the state-space equation, as well as the transfer 
function of the dynamic control system of the non-slender flexible link, are studied by spectral analysis. 
Spectral analysis is used to study the well-posedness of the dynamic control system. The tracking control 
problem is studied and a feedback control scheme that controls the rigid-body motion and elastic 
behaviors simultaneously is derived based on a n-modal model. Closed-loop configuration of a control 
system, equivalent circuit of a dc-motor and the overall system block diagram are proposed. The 
stabilization of the closed-loop system is studied analytically.  

Finally, the tracking control problem is studied, a stabilizing feedback control law based on a 
n-modal model to suppress vibrations of the flexible link is derived, and the necessary and sufficient 
conditions that can guarantee the stability of the closed-loop system, are given. Simulation results 
are given as well. 

 

Introduction 
 

Research in flexible robot arms has been conducted for several years. For example, Tzafestas and 
Kanoh [1], and Fukuda [2] presented excellent surveys on the modelling and dynamic control of flexible 
links. There have been numerous works on modelling and control of flexible arms, and various approaches 
have been presented. Some have given successful experimental studies (e.g. Sakawa et al. [3], Barbier and 
Özüner [4]). Most authors have ignored the effect of rotatory inertia and shear deformation. This practice is 
justified for slender flexible arms. According to the Timoshenko beam theory [5], the deflection due to 
shear force and rotatory inertia should be taken into account in modelling for high speed and high precision 
requirement when the ratio of the cross-sectional dimensions to length increases. 

Earlier studies on the effect of shear flexibility and rotatory inertia on the bending vibrations of 
beams are presented by Traill-Nash and Collar [6]. New special attention has been given to the effect of 
rotatory inertia and shear flexibility on modelling and control of flexible robot links in [7, 8] and by Wang 
and Lu in [9]. Experimental analysis [8] showed that the errors due to neglecting the effect of rotatory 
inertia and of shear deformation become too significant to be tolerated for the inverse dynamic of non-
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slender flexible links. Our research was motivated by the efforts to give an analytical study of modelling 
and control of non-slender flexible links.  

Firstly, based on Hamilton’s principle and Timoshenko’s flexible beam theory, the dynamic model 
of a single non-slender flexible link is derived, and it is shown that the elastic motion is governed by a pair 
of coupled partial differential equations with coupled boundary conditions. Then the abstract form of the 
dynamic equations is studied, and the properties of the spectrum of the elastic operator appearing in the 
evolution equation are given. Furthermore, the eigenvalue problem of the elastic operator is solved in 
explicit form. The formulation and well-posedness of the state-space equation, as well as the transfer 
function of the dynamic control system of the non-slender flexible link, are studied by spectral analysis. 
Finally, the tracking control problem is studied, a stabilizing feedback control law based on an n- model to 
suppress vibrations of the flexible link is derived, and the necessary and sufficient conditions that can 
guarantee the stability of the closed-loop system, are given. Simulation result are given as well. 

 

Derivation of a dynamic model 
 

As shown in Fig. 1, a, the system is made of a single non-slender flexible link that rotates in the horizontal 
plane. The rigid body motion and elastic behavior are controlled simultaneously by one dc-motor that is located at 
the point O. The payload at the fee and of the link is modelled as a concentrated mass m. 

The coordinate changes employed are illustrated in Fig. 1, b. Let X, Y, Z designate the base coordinate 
system, where the X,Y axes span horizontal plane, and the Z axes is taken so that it coincides with the vertical 
rotation shaft of the motor. Let (x, y, z) denote the rotating coordinate system, and ( )tθ  be the rotation angle of the 

motor. In the rotating coordinate frame, let w(x, t) denote the deflection at point x and time t, and let ( )Φ , s t  be the 
slope of the deflection curve which is only due to the bending moment (see Fig. 1, c). 

 

MM x
x

∂
+ ∆

∂

VV x
x

∂
+ ∆

∂

 
Fig. 1. (a) Top view: the structure of a single flexible link;  

(b) the rotating coordinate frame; (c) force and moment balance 
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In order to establish the dynamic model of the single non-slender flexible link, we introduce 
Denavit-Hartenberg’s description. Let r be the position vector with respect to the rotating coordinate 
frame; r is defined by the following homogeneous coordinate: 

( ),  , ,  0, 1 Tr x w x t =   . (1) 

Let R be the position vector with respect to the reference coordinate frame X,Y,Z. Thus R A r= ⋅ , 
where A is the homogeneous coordinate transformation matrix, given by 

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

A

− 
 
 =
 
 
 

θ θ
θ θ

. (2) 

Inertia velocity is given by 

( ) ( ) sin cos ;  cos sin ;0; 0AR A r x w w x w w∂   = + ⋅ = − ⋅ + − + − −   ∂ 
& & & & && & & &θ θ θ θ θ θ θ θ θ

θ
. (3) 

Ignoring the high order non-linear term w&θ  in (3), gives 

( ) ( ) sin ;  cos ;0; 0
T

R x w x w = − ⋅ + + 
& && & &θ θ θ θ . (4) 

In this paper, we assume that flexible link shown in Fig 1 is a uniform beam of length l, and mass 

per unit length, ρ . The mass moment of the rectangular cross section Iρ  is given by 2 I k=ρ ρ , where k 

is the radius of gyration of the link section, given by 2 / 12k d= , and d is the thickness of the link. E and I 
are Young’s modulus and the moment of inertia of the cross-section, respectively; [ ]C K G A= ⋅ ⋅  is the 
shear stiffness, where G is the modulus of elasticity in shear, A is the cross-sectional area and K is a 
numerical factor that depends on the share of the cross-section. Here the internal viscous damping of 
Kelvin-Voigt type is considered in the modelling. Let 0>η  be a small damping constant of the link 
material. 

According to Timoshenko’s theory [5] the bending moment M and shear force V can be represented 

as Φ Φ    M E I E I
x x

∂ ∂
= +

∂ ∂
η , ( ) ( ) Φ   Φx xV C w C w= − − − −& &η . The dynamic model of the non-slender 

flexible link is derived using Hamilton’s principle as the following procedure. In fact, the kinetic energy is 
given by 

( ) ( ) ( ) ( )( ) ( )( )2 22 2

0 0

1 1 1 1 1  Φ  Φ , 
2 2 2 2 2

l l
TT

e hK R R dx k dx I mR l R l mk l t= + + + + + +∫ ∫ & & && & & & & &ρ ρ θ θ θ . (5) 

where hI  is the moment of inertia of the hub. The potential energy due to elastic deformation is given by 

( ){ }22

0

1    Φ Φ
2

l

e x xP E I C w dx= + −∫ . (6) 

Hamilton’s principle can be expressed as 

( )
2

1

0
t

e e
t

K P W dt− + =∫δ , (7) 

where W is the work done by the non-conservative force, expressed as 

( ) ( )
0 0

 Φ  Φ   Φ  Φ  
l l

f x x x xW C w w dx E I dx= + − − −∫ ∫& &&δ τ δ θ η δ η δ , (8) 
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and fτ  is torque applied to the link. Substituting (5), (6) and (8) into (7) gives 

( ) ( )  Φ 0   Φ 0h x x fI E I E I= + +&& &ηθ τ , (9) 
and 

( ) ( )
( ) ( )2 2

Φ Φ ,                                 

Φ Φ  Φ  Φ ,

x xx x xx

x x xx xx

w C w C w x

k C w C w E I E I k

 + − + − = −


+ − + − − − = −

& & &&&&

&&& &&

ρ η ρ θ

ρ η η ρ θ
 (10) 

with the boundary conditions 

( ) ( )
( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )2

0 0,   0 0;                                                   

Φ Φ ;

Φ  Φ Φ .            

x x

x x

w

m l w l C w l C w l

mk l E I l EI l

 = Φ =
 + = − + −

 + = − −

&&& &&

&&

&

&& &

θ η

θ η

 (11) 

The mathematical aspects of the above dynamic equations are studied in the next section. With 
negligible armature inductance, the dc-motor is modelled by 

 m fI + + =&& &θ µθ τ τ , (12) 

where mI  is the moment of inertia of the motor, µ  is the viscous friction coefficient and τ  is the torque 
supplied by the motor. 

 

Evolution equation 
 

The hybrid system (9), (10) with the boundary conditions (11) represents the results of the physically 
reasoned derivation of the basic dynamic model utilized below. In this section, we treat the boundary value 
problem governed by (10), (11) as a distributed parameter system that is in the form of an abstract second 
order evolution equation in Hilbert space H defined by 

( ) ( )2 2 20, 0, H L l L l R= ⋅ ⋅ , (13) 
with the inner product 

[ ] [ ] ( )2 2
1 2 3 4 1 2 3 4 1 1 2 2 3 3 4 4

0
; ; ; , ; ; ;

l

H
u u u u v v v v u v k u v dx mu v mk u v= + + +∫ ρ ρ , (14) 

where we take 
( ) ( ) ( ) ( )1 2 3 4,  , Φ ,  , ,  , Φ ,  u w t u t u w t l u t l= ⋅ = ⋅ = ⋅ = ⋅ . 

Let V be a subspace of H, defined by 

[ ] ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
1 2

1 2 3 4
3 1 4 2 1 2

0, ,  0,  ,
; ; ;  

, ,  0 0, 0 0

u H l u H l
V u u u u H

u u l u u l u u

 ⋅ ∈ ⋅ ∈ = ∈ 
= = = =  

, (15) 

with the inner product 

[ ] [ ] ( )´ ´ ´ ´
1 2 3 4 1 2 3 4 1 1 2 2 3 3 4 4

0
; ; ; , ; ; ;

l

V
u u u u v v v v u v u v dx u v u v= + + +∫ , (16) 

where the symbol (´) indicates the partial derivative with respect to x and  denotes a Sobolev space. 
Define the operator A by 

( ) ( ) ( )´ ´ ´ ´́ ´ ´
2 1 2 1 2 4 3 42 2 2

  ; ; ;c c E I c E Ian u u u u u u u u
mk k mk

 
= − − − − 

  ρ ρ ρ
, 

( ) ( ) ( ) ( ) ( ){ }´ 1 ´ 2
1 20, , 0, u D A u V u H l u H l∀ ∈ = ∈ ⋅ ∈ ⋅ ∈ , 

(17) 

where ( )D A  denotes the domain of A. 
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Let Ω  be a vector defined by 

[ ]Ω 1  1  Tx l= − . (18) 
Thus the partial differential equations (10) with the boundary condition (11) can be rewritten in the 

following abstract form 
( ) ( ) ( ) ( ) Ω  u t Au t Au t t+ + =& & &&& η θ , (19) 

where ( ) ( )  u t D A V H∈ ⊂ ⊂ . 
For the elastic operator A, we obtain the following properties: 
1. The operator A defined by (17) is a densely defined, self-ad-joint positive operator, and has a compact 

inverse operator 1A− . 

2. A is closed operator with countable many eigenvalues { } 1λn n
∞

=  and corresponding generalized 

eigenvectors { } ,   
1,  1
jm

i j
∞

= =Ψ  that satisfy the following conditions: 

a) 1 20 λ . . . . . ., lim λn
n→∞

< < < < = ∞λ , 

b) λ , 1, 2, , , , 1, 2, , ij i ij j jA i m m jΨ = Ψ = … < ∞ = … ∞ , 

c) the set ( ){ }Ψij ⋅  of the eigenvectors forms a complete orthonormal system in H, and 

( ) ( )
1 1

,   , 
im

ij H ij
i j

u u u H
∞

= =
⋅ = < Ψ > Ψ ⋅ ∀ ∈∑ ∑ . (20) 

The eigenvalue problem of A is solved in the next section. 
 

Eigenvalue problem 
 

From the property (b) of the second property for the elastic operator A, we see that 
AΨ = Ψλ , (21) 

where λ  is an eigenvalue of the operator A and ( )D AΨ ∈  is the corresponding eigenvector. With the 
definition of A, can be rewritten in the following form: 

( ) x xx
c w wΦ − = λ
ρ

, (22a) 

( )2 2  x xx xx
c Bw
k k

Φ − − Φ = Φλ
ρ ρ

, (22b) 

( ) ( ) ( )x
c w l w l
m

Φ − = λ , (22c) 

( ) ( )2
 x

B l l
mk

Φ = Φλ , (22d) 

( ) ( )0 0,   Φ 0 0w = = , (22e) 
where B EI= . It is convenient to write (22) in dimensionless form. Therefore we define 

( ) ( ) ( ) ( )/ , / , x x l w x w x l x x= = Φ = Φ , and introduce a new function v defined by 

( )xv w x= Φ − . (23) 
It is easily verified that v satisfies the following ordinary differential equation: 

( ) ( ) ( ) ( )22 2 21 0nv v w v+ + − − =ω α β ω αβ , (24) 

where ( )nv  indicates the nth partial derivative with respect to x, and , ,  ω α β  are defined by 
4

2 l
B

=
ρ λ

ω ,  
2

,B
Cl

=α   
2

2
k
l

=β . (25) 
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The parameters , ω α  and β  have the following important practical meanings: ω  is the natural 
frequency of vibration; α  is proportional to flexibility; β  is proportional to rotatory inertia. 

In the remainder of this section we still write x  as x for simplicity. The general solution of (24) is 
given by: 

( )
2

1 2 3 4
2

1 2 3 4

sin cos sin cos ,  1; 

sin cos sin cos ,  1, 

c px c px c qx c qx
v x

c px c px c hrx c hrx

 + + + >= 
+ + + <

ω αβ

ω αβ
 (26) 

where , 1, , 4 ic i = …  are constants determined by (22c) – (22e) and 

( ) ( )

( ) ( )

1/222 2 4 2

1/222 2 4 2

2 2

2 4 ;

2 4 ;

.                                                                 

p

q

r q

  = + + − +   
  = + − − +   
 = −



ω α β ω α β ω

ω α β ω α β ω  (27) 

Using (23) and the boundary condition (22e), we have the following relationship: 
2 2 2

1 3 2 4
2 2 2

1 3 2 4

0,  0,   1ˆ ˆ

ˆ

;

0,  0,   1,ˆ

c p c q c p c q

c p c r c p c q

 + = + = >


+ = + = <

ω αβ

ω αβ
 (28) 

where 2p̂  and 2q̂  are defined by 

( ) ( )

( ) ( )

1/222 2 4 2

1/222 2 4 2

2 4 ,

2 4 .

ˆ

ˆ

p

q

  = − − − +    

  = − + − +   

ω α β ω α β ω

ω α β ω α β ω

 (29) 

It’s not difficult to verify the following relationship using (22c, d) and (28) 

( ) ( )
( ) ( )

11 12 1

21 22 2
0

a a c
a a c

   
=   

  

ω ω
ω ω

, (30) 

where 

( )
( )

( )

2

11
2

sin sin cos cos ,  1; 

sin sin cos cos ,  1. 

p pmp q p q
q l

a
p pmp hr p hq
r l

 − + − >= 
 − + − <


ω αβ
ρ

ω
ω αβ

ρ

 (31) 

( )

2
2 2

2 2

12 2 2
2

2 2

cos cos sin sin ,  1; 

cos cos sin sin ,  

ˆ ˆ
ˆ

1
ˆ

. 

ˆ

ˆ ˆ
ˆ

p qmp q p p p q
lq q

a
p p rmp hr p p hr

lq q

  
 − − − >    = 

 
− − + <     

ω αβ
ρ

ω

ω αβ
ρ

 (32) 

( )
( )

( )

22
2 2 2 2

21 22
2 2 2 2

ˆ cos cos sin sin ,  1; 

 cos cos sin sin ,  1.

ˆ ˆ ˆ

ˆ
 ˆ ˆ ˆ

qmp p p q q p p p q
l q

a
qmp p p q hr p p hr

l r

  
 − − − >    = 

 
− − + <     

ω β
ω αβ

ρ
ω

ω β
ω αβ

ρ

 (33) 
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( )
( ) ( )

( ) ( )

2
2 2 2

22 2
2 2 2

 sin sin cos cos ,  1; 

 sin sin cos cos , 

ˆ ˆ

ˆ 1. ˆ  

mp p p q q p p q
l

a
mp p p r hr p p hr

l


− + − − >

= 
 − − − − <


ω β
ω αβ

ρ
ω

ω β
ω αβ

ρ

 (34) 

Consequently, the characteristic equation is given by 
( ) ( ) ( ) ( )11 22 21 12 0a a a a− =ω ω ω ω . (35) 

In the case where 2  1>ω αβ  can be expressed in the following explicit form: 

( ) ( )

( ) ( ) ( )

( ) ( )

( )

2 2
2 2

2 22 6 4
2

1/22 22 2 4 2

22 2

  2 1 2  2 cos cos  

sin sin    3
 

sin  4  4 cos

  4

m m p q
l l

p qm
p q

pm p q
p

m q

   
− + + − − − + + +      

   
   + + − − + − ⋅ +     

     + − − + − − + ⋅ +         

+ − +

ω β ω β
ω α β ω α β

ρ ρ

ω α β β ω α β α ω α β
ρ

ω α β ω α β ω
ρ

ω α β
ρ

( )
1/224 2 sin 4 cos 0.qp

q
     + + − + ⋅ =         

ω α β ω

 (36) 

Let ( )1
nω  and ( )2

nω  be the solution of (35) such that 

( ) ( ) ( ) ( ) ( ) ( )
1

21 1 1 2 2 2
1 2 1 2

10 ω ω . . . ω ω ω . . .  lim nN n→∞

 
< < < < < < < < < = ∞ 

 
ω

αβ
. 

Then for every 1n ≥ , the eigenvalue λn  of A is given by 

2
2

λ ωn n
l

=
β

ρ
, (37) 

where ωn  is defined by 
( )

( )

1

2

ω , , 
ω

ω , . 

n
n

N n

n N

n N−

 ≤= 
 >

 (38) 

The corresponding eigenvector ( ) ( ) ( ) ( )( ), , , T
n n n n nw w l lΨ = ⋅ Φ ⋅ Φ  can be easily determined by 

( )

2
2

1 2 22 2

2
2 

1 2 22 2

cos sin cos sin ,ω 1;
ω

 
cos sin co

ˆ

ˆ

ˆ

ˆ
sh sinh ,ω 1.

ω

n n n n
n n n n

n
n

n n n n n
n n n n

n

p p q qp nl c p x c p x p x c x
l l l lq n

w x
p p r p nr rl c p x c p x p x c x
l l l lq n

 
+ − − >  

 
=

 
 + − − <
 
 









αβ
α

αβ
α

 (39) 

( )

2
1 22

2 2 2
1 22

2
1 22

2 2 2
1 22

1 sin cos
ω

1  sin cos ,ω 1

ˆ

;
ω

1 sin cos
ω

1  sinh c

ˆ ˆ

ˆ

ˆ osh ,ω 1.ˆ
ω

n n
n

n

n
n n n

nn
n

n n
n

n

n
n n n

nn

p p
p c x c x

l l

p q qq c x p c x
q l l

x
p p

p c x c x
l l

p r rq c x p c x
q l l

 
+ + 

 

 
+ − + > 

 
Φ =

 
+ + 

 















+ − + < 



  

α

αβ
α

α

αβ
α

 (40) 
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It 1c  and 2c , satisfy the relations in (28), are chosen so that ( ) 1n H
Ψ ⋅ = , then we obtain a set of 

orthonormalized eigenvectors. 

From (36) it’s easily seen that, when 2, ωnn → ∞ , tends to satisfy 
sin sin 0n np q⋅ = , (41) 

which is obtained by dividing both side of (36) by 4ωn  and by letting n → ∞ . Thus for large values of n, 
we see that 

( )2 2ω ~ On n . (42) 

The case where 2 1ω =
αβ

 is specially treated as follows. In this case, the general solution of (24) is 

( ) 1 2 3 4sin cosv x c c x c px c px= + + +  where ( )2 2p = +ω α β , and then the eigenvector corresponding to 

2 1
=ω

αβ
 is given by 

( ) 3 42
1 1 cos sinp pw x pc x pc x

l l
  = − + −  

  ω α
, 

( ) 4 31 cos sinp px c x c p x
l l l

   Φ = − − +   
   

β β
α

, 

 

(43) 

where 1 2, 3,c c c  and 4c  satisfy the following relations: 1 4c c=
β
α

, 2 3c pc= , 1 3 2 4 0b c b c+ =  and 

( ) ( )1 sin 1 cosmb p p p p
l

= − + + − −
ρ

, 2 cos sinmb p p p
l

 = + + − 
 

β
α ρ

 and 3c  and 4c  are chosen so that 

Ψ  has unit norm. 
 

Control system 
 

In this section, we consider the tracking control problem of the end-point position of the non-slender 
flexible link discussed in the previous sections. We assume that the output of the control system of the 
flexible link is obtained by a strain gauge attached at the link at 0x = , which can be expressed as 

( ) ( ),  0y t tΦ′=  i.e. the bending moment at 0x =  is measured. 

Formulation and well-posedness 
Firstly, we recall two types of definitions of the formulation of linear infinite-dimensional systems 

state-space description (Pritchard-Salamon class) and frequency domain description (Callier-Desoer class), 
which have been developed for the control theory of infinite-dimensional systems, and which are relevant 
to our present study. 

Pritchard-Salamon class (Pritchard and Salamon [10]). 
We suppose that state-space is Hilbert space X, and input and output space are mU R=  and pY R= , 

respectively, and that 
– There exist two separable Hilbert space V and W with continuous, dense injection W X V⊂ ⊂  and 

that A generates a C0-semigroup S(t) on V. It is consistent in the sense that restrictions of S(t) to X and W 
define C0-semigroups, respectively, which are still written by S(t). We further assume that ( )vD A W⊂ , 

( )*
* *

wD A V⊂  where ( )vD A  denotes the domain of A considered as an operator on V. 
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– ( ), mB L R V∈  and for ( )2 0,  , mu L T R∈  we have ( ) ( ) ( )2 0,  , 
0

m

T

w L T R
S T s Bu s ds u− ≤∫ β . 

– ( ),  pE L W R∈  and for all x W∈ we have ( ) ( )2 0,  , 
 p VL T R

E S x x⋅ ≤ γ . 

– There exist generalized transfer function ( )G s  for ( )s A∉σ  which satisfied the compatibility 

relationship for µ , ( )s A∉σ . 

( ) ( ) ( ) ( ) ( )1 1G s G s E A s A B− −− = − − −µ µ µ  where ( )Aσ . denotes the spectrum of the operator 

A. ( )G s  is analytic and bounded in  Re s >α , where α  is the exponential growth rate of S(t). 
Definition 1 
a) We say that (E, A, B) is in a Pritchard-Salamon class if (s0) – (s2) hold. 
b) We say that (E, A, B) is well-posedness in time and frequency domain on [ ]0,  T  if (s0) – (s3) 

hold. 
Callier-Desoer class (Callier and Desoer [11]). 
Definition 2 
a) For 1R∈µ , we say that ( )f A∈ µ  if 

( ) ( ) ( )
0

0, 0;

 , otherwise,i i
i

t
f t

f t f t t
∞

=

<
=  + −


∑α δ
 (44) 

where ( ) ( ) ( )1exp 0,  , if t t L t− ∈ ∞α µ  and if  are real number, 0 10 ... , t t= < < δ , represent the delta 

distribution, and ( )
0

exp  i
i

f t
∞

=
− <∑ µ θ . 

b) We say that ( )f A−∈ µ  if there exist a 1 <µ µ  for which ( )1f A∈ µ . 

c) ( )Â µ  and ( )Â− µ  denote the classes of Laplace transform of ( )A µ  and ( )A− µ , respectively. 

d) ( ) ( ){ } and  is bounded away from zero at  ˆ iˆ ˆ nˆ  A f A f C∞ +
− −= ∈ ∞ µµ µ  where { },  C s Re s+ = ≥µ µ , 

and f̂  is bounded away from zero at ∞  in C+
µ  if there exist 0>η  and 0>ρ  such that ( )f̂ s ≥η  for all 

s C+∈ µ  such that s − ≥µ ρ . 

e) ( ) ( ) ( )
1ˆ ˆˆ   B A A

−∞
− −  = ×   µ µ µ  is Callier-Desoer class. 

f) ( ) ( ) ( ) ( )( )ˆ  ˆp m
ijG s q s B A

×
− = ∈  µ µ  if ( )ijq s  are in ( ) ( )( )ˆˆ  B A−µ µ for all , i j . 

In the following procedure, we give the state-space and frequency domain descriptions of the non-
slender flexible link, respectively. We choose ( )1/2X D A H= ⊕  as the state-space and the inner product 
of X is defined by 

1 1 1/2 1/2
1 1 1 1 2 2

2 2
, ,  ,  ,  H H H

x y
H x y A x A y x y

x y
   

= + +   
   

, (45) 

where H  is defined by (13) and 1/2A  is the square root operator of A given by (17). Since A is positive 

self-adjoint operator with the compact inverse on H, 1/2A  makes slues, and ( ) ( )1/2D A D A⊂ . 
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Under the transformation 1x u= , 1x u= & , the dynamic system (19) with the output equation (43) is 
formally equivalent to 

, x Ax Bf y Ex= + =& , (46) 

where 1 2  
T

x x 
   , and A, B, E are defined by 

0 0
, 

Ω
I

A B
A A

   
= =   − −   η

, (47) 

( ) ( )0   0 , E f t = Φ =′ 
&&θ . (48) 

It is easy to see that A has eigenvalue nµ , , 1, 2, , n n− = …µ  given by 

( ),
2n n n ng− = − ±
η

µ µ λ λ , (49) 

where ,nλ  1, 2,n = …  are given by (37), and is defined by ( )ng λ  

( )

1/2
2 2 2 2

1/2
2 2

1 1, 0;
4 4

1 ,   otherwise.      
4

g

i

    − − >   
   = 
  −  

 

η λ λ η λ λ
λ

λ η λ

 (50) 

The normalized eigenvectors corresponding to nµ  and n−µ  are 

,     n
n n

n n

Ψ 
Ψ =  Ψ 

ρ
µ

 n
n n

n n
− −

−

Ψ 
Ψ =  Ψ 

ρ
µ

, (51) 

where nΨ , 1, 2,n = …  are given by (39), (40) and 

( )1/221n n n± ±= + +ρ λ µ . (52) 

The eigenvectors of the adjoint operator *A  of A are 
          

,     1
n

n n nn
n n

n

−

Ψ 
 Ψ = Ψ + − Ψ    

ρ λ
µ

λ
 

          

1
n

n n n
n n

n

− −
−

Ψ 
 Ψ =  + − Ψ    

ρ λ
µ

λ
, (53) 

where n±ρ  is taken as 
1

2 11
1 n

n n n n
n

−
−

± ± ±
  +

= + −     

λ
ρ λ µ ρ

λ
, (54) 

such that { },  n mΨ Ψ  forms a biorthogonal sequence in X, i.e. 

1,  ;
,  

0,  .n mX mn
m n
m n

=
Ψ Ψ = =  ≠

δ  (55) 

Let ,  n nc b  be defined by 
* ,    n n

n nc E b B= Ψ = Ψ , (56) 

where *B  is the adjoint operator of B given by 
1 1

* 2
2 2

,  Ω , H
x x

B x X
x x

   
   = ∀ ∈
      

r
. (57) 
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For large values of n, using (42), we have the following useful estimations: 

( )
( )

( )
´

1

0 1 ,    ;
0

0 ,    .
n

nn

n positive
c

n n negative−

= Φ = 


ρ  (58) 

( )
( )

2

1

0 ,    ;1
 ,  Ω

0 ,    .

nn
n n Hn

n

n n positive
b

n n negative

−

−

 +  = − Ψ =     

rλ
µ ρ

λ
 (59) 

( )

( )2

0 1 ,    ;
 

0 ,    .n
n positive

Re
n n negative

= 


µ  (60) 

Using the estimations (58) – (60), it is easy to verify that 

 
, 0 1

 

n n

n n

c b

Re

+∞

=−∞
< ∞ ≤ ≤∑ α

α
µ

. (61) 

One may to prove that the state-space description (46) belongs to Pritchard-Salamon class, and has a 
well-defined transfer function G(s) given by 

( )  
 

n n

nn

c bG s
s

∞

=−∞
=

−∑ µ
, (62) 

with the impulse response h(t) 

( ) ( )   n n
n

n

h t exp t c b
∞

=−∞

= ∑ µ . 

The frequency domain description G(s) defined by (62) is in Callier-Desoer class ( )ˆ oβ . 
(E, A, B) subject to (46) is well posed. 
Modal Control 
As mentioned above, we see that the solution of the evolution equation (19) can be expressed as 

( ) ( ) ( ) ( )
1 1

1, ,    nH n n n
nn n

u t x u t u t t
∞ ∞

= =
= Ψ Ψ = Ψ∑ ∑ λ

. (63) 

where ( ) ,  n nHu t Au= Ψ  is the solution of 

( ) ( ) ( ) ,  n n n n n n n Hu t u t u t f+ + = Ω Ψ& && ηλ λ λ , (64) 
with the initial values ( ) 00 ,  n nHu Au= Ψ .  and ( )0 ,  n n to n Hu u= Ψ& λ , 
where 0u , tou  are the initial values of the system (19). 

Using the coordinate system based on an orthonormal basis { } 1Ψn n
∞

= , we may represent 

[ ]1 2,  T
nu u u u= … …  [ ]1 2,A diag= …λ λ . Let [ ]1 1   

T
n n n n nx x x u u = = 

& . We rearrange the state  
TT Tu u 

 
&  

as 1
1 2  

TTx x …  , where nx  satisfies 

0 1 0
,n n

n n n nH
x x f

   
= +   − − Ω Ψ   

&
λ ηλ λ

. (65) 

Taking n n nx T Z= , nT  is given by 
1 1
2 2 , 1, 2,

1 1
2 2

n

n n

T n
−

 
 

= = … 
 
  

µ µ
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Then above transformation carries (65) into 

( )
˙

10 1
,

0 1
n

n n n n n H
n

Z Z g f−

−

   
= + Ω Ψ   −  

µ
λ λ

µ
. (66) 

Since ( )2g λ  is strictly increased with respect to λ , there exist a 0n  such that 

0

0

;,  
( )

, ,
n

n
n

g n n
g

ig n n
>

=  ≤
λ  (67) 

where 
1/2

2 21
4n n ng  = − 

 
λ η λ  and 

1/2
2 21

4n n ng  = − 
 

η λ λ are real numbers. 

As 0n n≤ , 1
nZ , and 2

nZ  are complex conjugates. Thus taking 

( )1 2
01

1
0

;1 ,  
2

,  .  

n n
n

n

Z Z n n
Z

Z n n

 + ≤= 
 >

 (68) 

( )2 1
02

2 2
0

,  

,  ,  1   

;

,

n n
n

n

i Z Z n n
Z

Z n n i

 − ≤= 
 > = −

 (69) 

then 1 1  
TT TZ Z Z = …   satisfies 

,   Z AZ Bf y C Z= + = ⋅& , (70) 

where A, B, C are defined by [ ]1 2blog diag , ,  A A A= … , 1 2,  
TT TB B B = …  , [ ]1 2, ,  C C C= …  and for every 

n (n=1, 2,…) 

0

0

1
2

1
, .2

0
, ,

0

n n

n nn

n

n

g

gA n n

n n
−

 − − 
 
 −= ≤  
 

> 
 

ηλ

ηλ

µ
µ

 (71) 

0

0

0
, ,   

1

1
, ,   .

1

;n
n H

n
n

n
n H

n

n n
g

B
n n

g

  
Ω Ψ ≤  

  = 
  Ω Ψ >  − 

λ

λ
 (72) 

( )

( ) ( )

´

0

´ ´

0

0
,   0 , 

0 0
,   , 

2 2

;

.

n

n
n

n n

n n

n n

C

n n

  Φ   ≤
    = 

  Φ Φ
  >
  

λ

λ λ

 (73) 

Taking     
TTZ Z =  

&% θ θ , the modal state-space equation of the flexible link is expressed by 

1 :  ,   Z AZ Bf y C ZΣ = + = ⋅% %% % % %% , (74) 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Dynamic Modelling and Control System of a Single Non-Slender… 

 

23 

where   
T

yy  =  
&% θ θ  and 

0 1 0 0 1 0 0
0 0 0 , 1 , 0 1 0
0 0 0 0

A B C
A B C

     
     = = =     
          

% %% . 

We introduce the following notation: 

0 1 0 0 1 0 0
0 0 0 , 1 , 0 1 0

0 0 0 0

n n n

n n n
A B C

A B C

     
     

= = =     
     
     

% %% , 

where , , n n nA B C  are defined by 

[ ]

[ ]

1 2

1 2

1 2

  , , , ;

,               ;  

, ,  .                 

n
n

Tn T T T
n

n
n

A blog diag A A A

B B B B

C C C C

 = …

  = …  
 = …

 (75) 

Then using this notation, in view of (74), we obtain the (2n+2) – dimensional approximation system 
of 1Σ . 

2 :   n n n n n n nZ A Z B f y C ZΣ = + = ⋅% %% % % %% . (76) 
In what follows, the feedback controller is designed based on n-modal state-space equation 2Σ  in 

the customary way. 
In practice, β  is usually small compared with α , thus we have good reason to assume 

≠α β , (77) 
where α , β  are defined by (25). 

The conditions for controllability and observability of the system 2Σ  are presented next; these are 
required for the design of compensator. 

One may to proof that ( , , n n nA B C ) is controllable and observable if 

( )´ 0 0,  1, 2i i nΦ ≠ = … . (78) 

,  , n n nA B C% %%  is controllable and observable if the conditions in (78) hold. 
Using (40) and the assumption (77), we see that it is easy to verify that the conditions in (78) hold 

for all i. 
The design of the compensator is in two parts: 
a) Constructing the estimator of modal state nZ . We take the Luenberger observer [12] of nZ  as 

  ˆ n n n n n n nZ A G C Z G y B f = − + + 
%% %& , (79) 

where nG  is the estimator gain selected in such way that the spectrum of matrix n n nA G C−  lies to the 

left of a vertical line  Re s = −σ , and 0>σ  can prescribed by the investigator because ( ,n nC A ) is 

observable and 0  0  n nG G =  
% . Using the information of output y% , the estimator (79) produces the 

estimate ˆnZ  of nZ . 
b) Designed the feedback control law. The form of the feedback control scheme is taken as 

( ) 1 2 3 ˆ
nf t k k k Z= + +&θ θ . (80) 
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Let [ ]1 2 3  TK k k k=%  denote the feedback gain that can be determined by the pole allocation method 

or the steady-state optimal regulator method. 
(i) Pole allocation method [12]. In this case, the feedback control gain can be chosen in such way 

that the eigenvalues of ˆ ˆn nA B K+ %  lie to the left of a vertical line  Re s = −σ  because (  , n nA B% % ) is 
controllable. 

(ii) Optimal regulator method [13]. In order to suppress the tip vibrations, the form of the 
performance index is taken as 

( )
( ) ( ) ( ) ( )
( )

( )
2 2 2 2 2 2

1 2 3 4 5 6
2

0 1

, , , ,
2

q w t l q w t l q t l q t l q q
I f exp t dt

r f t

∞  + + Φ + + + + =  
+  

∫
& && θ θ θ

σ , (81) 

Using the expression (63), (64), I(f) can be rewritten as ( ) ( ){ } ( )2
1

0
  2nT nI f Z Q Z r f t exp t dt

∞
= +∫ % % σ . 

Then the feedback gain K%  is determined by solving the Ricatti equation. 
In summary, the finite dimensional feedback controller can be formally formulated by 

( ) [ ]
3

3 1 2

  ;
:  

,  , , 0 . 

ˆ ˆ

ˆ

n n n n n n n

n

Z A G C Z G y B f

f t k Z Ky K k k

  = − + +  Σ 
 = + =

% %&

%
 (82) 

Let ( )d tθ  and ( )d t&θ  be given desired rotation angle and angular velocity of the motor, 
respectively. 

Then the closed-loop configuration of the control system can be illustrated by Fig. 2, in which 

1 2d d dv k k= + &θ θ  and 0v  is observation noise. 
If the rotation motor is an armature-controlled dc-motor with negligible armature inductance, then 

( ) ( ) ( ) ( ),   a q a b a aV t R i t l t k i t= + =τ , (83) 

where ak  is known as the motor torque proportional constant, , ,  a a ai R V  are armature current, resistance 
and voltage, respectively (see Fig. 3, a). bl  is the back electromotive force which is proportional to the 
angular velocity of the motor, i.e.: 

b bl k= &θ , (84) 
where bk  is a proportional constant. 

Combination of (9), (12), (80), (83) and (84) gives the following feedback control law 

( ) ( ) ( )
0 0

0 0
t t

a
a m h b

a

R
V I I f fdt EIy EIy k fdt

k

   
= + + + − − + +      

   
∫ ∫% % %& &&µ θ η θ , (85) 

where df f v= −% , and dv−&θ , and &θ  and y are known. 
The structure of the overall control system is show in Fig. 3, b. 
 

 
Fig. 2. Closed-loop configuration of a control system 
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Stabilization 
Firstly, we recall the definition of stabilization for the Pritchard-Salamon system [14]. 
Definition 3. 
We assume that (E, A, B) is a Pritchard-Salamon system, which satisfies (s0) – (s3) in Definition 5.1, 

and s(t) is a 0C -semigroup generated by A, G(s) is the well-defined transfer function of (E, A, B). Then 
a) (E, A, B) is said to be σ -exponentially stable if S(t) is exponentially stable with decay rate 

exceeding σ . 

b) (A, B) is said to be σ -exponentially stabilizable on W if there exist an operator ( ) , mK L W R∈   

such that the perturbed [ ]A BK+ -semigroup ( )KS t  is σ -exponentially stable on W. 

c) (E, A) is said to be σ -exponentially detectable on V if there exists an operator ( ) ,  pL L R V∈  

such that the perturbed [ ]A LK+ -semigroup ( )LS t  is σ -exponentially stable on V. 

d) (E, A, B) is said to be σ -input-output stable if the system transfer function G(s) ( ) ( )ˆG s A−∈ σ . 
 

 
a 

 
b 

Fig. 3. Equivalent circuit of a dc-motor (a); the overall system block diagram (b)  
 

Consider the n-modal control system 2Σ  controlled by the controlled by the controller 3Σ ; the 
closed-loop structure is shown in the Fig. 4, a. 

We introduce the new state , 
Tn nT nT

cX Z e =  
% , where ˆn n ne Z Z= − ; then the closed-loop state 

equation can be rewritten as ,n n
c c c c cX A X B v= +&  n

c c c cy C X v= +  where ,  
TT T

c d ov v v ==   , 

, nT
cy y f  =   

% , and 

3

3

;       ;
,

0;             

0 0, . 
0

n n n

c n n n

n n
c cn

A B K B k
A

A G C

B CB C
K kG

  +  =
  −  


   
 = =  
      

% % % %

% %
%%

 (86) 
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From the expression of cA  in (86), we see that the eigenvalues of the operator cA  are 

( ) ( ) ( ) n n n n n
cA A B K A G C= + ∪ −% % %σ σ σ . (87) 

It may be proved that the closed-loop system ( 2 3,  Σ Σ ) shown in the Fig. 4, a σ -exponentially 
stable as well as σ -input-output stable. 

 
 

 
a 

 
b 

Fig. 4. Closed-loop configuration of a finite dimensional approximation control system (a); 
the illustration of a perturbation feedback (b) 

 

One may be to imply that the compensator 3Σ  can stabilize the n-modal control system 2Σ  in the 
sluse of σ -exponentially stable. For application, we hope that the controller 3Σ  can also stabilize the 
original control system 1Σ  in the same sense. In what follows, we focus on the non-slender flexible link 
system 1Σ ? 

From the above discussion, we see that ( ° ° °, ,C A B ) is also a Pritchard-Salamon system and has 

transfer function ° ( )G s  which is in Callier-Desoer class, expressed as 

( ) ( ) ( )
2
1

, 
1

G sG s G s
G s

s

 
  
 = = 
  
  

% θ
θ . (88) 

Let ( )nG s  be the transfer function of ( , ,  n n nC A B ) expressed as 

( )
i in

n

ii n

c bG s
s=−

=
−∑ µ

. (89) 

Consequently, the transfer function of 2Σ  is 

( )
( )
( )

.n
n

G s
G s

G s

 
=  

  

% θ , (90) 
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The transfer function of 3Σ , ( )nK s , can be expressed as 

( ) ( ) ( )
11 1

3 3  n n n n n n n n nK s I k s I A G C B k s I A G C B K
−− −   

= − − + − + +   
   

% % . (91) 

Let ( )n s∆  denote the residual term defined by 

( )
( ) ( )

0n
ns

G s G s

 
∆ =  

−  
. (92) 

In Fig. 4, b, we view the system 1Σ  as the result from system 2Σ  perturbed by the term ( )n s∆ . In 
the following discussion, we assume that 

1
1, 1, 2, ,  

2 2n n≠ = … < <
η η

σ λ λ σ
η

. (93) 

One may to prove that the closed-loop system shown in Fig.4(b) σ -input-output stable if and only if 

( ) ( ) ( ) ( )
1

1n n ns K s I G s K s
−

−

∞ ∞

  ∆ < −    
% , (94) 

where • ∞ .  is the L∞ -norm, defined by 

( )Ω 2
.G sup G j∞ = Ω , (95) 

and 2M  is the largest singular value of M. 

The closed-loop system shown in Fig. 2 is σ -exponentially stable if and only if condition (94) 
holds, as well. 

 

Computer simulation 
Here the non-slender flexible link is assumed to be made of aluminium. The experimental 

parameters used in our simulation are: 
1, 27 ,L m=  ( ) 5 23, 2 4, 0 10A m−= × × , 10 41,092 10I m−= × ,  

62,1067 10C N= × , 10 27,11 10 /E N m= × , 13, 475 10 /kg m−= ×ρ , 
362,0 10M kg−= × , 20, 03hI kg m= ⋅ , 2 0,005mI kg m= ⋅ , 0,002= =µ η . 

By solving the characteristic equations (35), we obtain the eigenvalues. Consequently, eigenvectors 
can be calculated by the formulae (39), (40). In our simulation, the flexible link is approximated by the first 
five modes, and the controller is designed based on the first three modes. iλ , i±µ , and ( )( )' 0  1, 2, 5i iΦ = …  
are listed in the Table. 

Table 
Modal parameters for first five flexible modes 

n nλ  nRe μ   =n n Im μ g  ′nΦ  
1 6,77∙101 -6,77∙10-2 8,77∙100 -3,05∙100 
2 3,03∙103 -3,03∙100 5,50∙101 -2,54∙101 
3 2,55∙104 -2,55∙101 1,58∙102 -8,24∙101 
4 1,03∙105 -1,03∙102 3,04∙102 -1,76∙102 
5 2,90∙105 -2,90∙102 4,45∙102 -3,09∙102 

 

That 62, 2856 10−= ×α  and 75, 2907 10−= ×β  implies that ( )' 0 0iΦ ≠  for any i, which guarantees 
the controllability and the observability of the system (  iC ,  ,iA   iB ) for any i. In our simulation, the 

feedback gain K%  is determined by the L Q R method, and the weighting parameters are 
1 2 3 4 130q q q q= = = = , 5 6 100q q= = , 1 1r = , 3=σ . Observing the Table and the experimental 
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parameters, we see that assumption (93) holds, and condition (94) can be easily verified by the following 

simply calculations: ( ) 1 46,0362 10n n nK I G K
−

−

∞
− = ×%  and 54, 7509 10n

∞
−∆ = × . These imply that 

the controller can stabilize the non-slender flexible link. 
The initial values are assumed to be 0 0 0tu u= = , and the desired rotation angle ( ) 60d t °=θ  and 

 0d =&θ . The transient responses of the tip displacement w(t, l), tip slop arising from bending ( ),t lΦ , the 

motor rotation angle θ , the angular velocity &θ  and the corresponding torque supplied by the motor are 
shown in Fig. 5, a–e, while the same transient responses and the torque are shown in Fig. 6 in the case 
where 3 0k = . The simulation results give good proof of the validity of our results. 

 

 
 

a b 

TI
P

 D
E

FL
E

C
TI

O
N

  
c d 

 
e 

Fig. 5. (a) Hub angle with flexibility feedback; (b) hub angular velocity with flexibility feedback;  
(c) tip deflection with flexibility feedback; (d) slope due to bending deflection at tip deflection with flexibility 

feedback; (e) control torque applied to link with flexibility feedback 
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Conclusions 
 

In this paper we have given an analytical study on the modelling and control of single non-slender 
flexible links. Our results are as follows: 

a) By Hamilton’s principle, it was shown that the elastic motion of the non-slender flexible link 
governed by a pair of coupled partial differential equations with coupled boundary conditions. 

b) Using spectral analysis, we showed that the dynamic control system has a well-posed state-space 
description (Salamon class) as well as well-defined transfer function belonging to Callier-Desoer class. 

c) The feedback modal control scheme was presented. An easily checkable condition that is 
sufficient and the necessary for the stabilization of the closed-loop control system was given. The results of 
a computer simulation study were presented to illustrate our results. 

Although in our present study, the dynamic equation is necessary for modelling and control of single 
non-slender flexible links, it is more complex than that of slender flexible links, and its computational cost 
is so high that it is not necessary for the slender case. Thus, it is of interest to note how to identify whether 
a flexible links is slender. This will be presented elsewhere. 

 

  
a b 

  
c d 

 
e 

Fig. 6. Hub angle without flexibility feedback (a); hub angular velocity without flexibility feedback (b);  
tip deflection without flexibility feedback (c); slope due to bending deflection at tip deflection without flexibility 

feedback (d); control torque applied to link without flexibility feedback (e)  
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