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Abstract. Most authors have ignored the effect of rotatory inertia and shear deformation. This
practice is judtified for dender flexible arms. According to the Timoshenko beam theory, the deflection
due to shear force and rotatory inertia should be taken into account in modelling for high speed and high
precision reguirement when theratio of the cross-sectiona dimensionsto length increases.

Based on Hamilton's principle and Timoshenko' s flexible beam theory, the dynamic mode of a
single non-slender flexible link is derived, and it is shown that the elagtic motion is governed by a pair of
coupled partial differential equations with coupled boundary conditions. Then the abstract form of the
dynamic equations is studied, and the properties of the spectrum of the elastic operator appearing in the
evolution equation are given. Furthermore, the eigenvalue problem of the elagtic operator is solved in
explicit form. The formulation and well-posedness of the state-space equation, as well as the transfer
function of the dynamic control system of the non-slender flexible link, are studied by spectral analysis.
Spectral analysis is used to study the well-posedness of the dynamic control system. Thetracking control
problem is studied and a feedback control scheme that controls the rigid-body motion and eastic
behaviors simultaneously is derived based on a n-modal model. Closed-loop configuration of a control
system, equivalent circuit of a dc-motor and the overal system block diagram are proposed. The
stabilization of the closed-loop system is studied analytically.

Finally, the tracking control problem is studied, a stabilizing feedback control law based on a
n-modal model to suppress vibrations of the flexible link is derived, and the necessary and sufficient
conditions that can guarantee the stability of the closed-loop system, are given. Simulation results
aregiven aswell.

Introduction

Research in flexible robot arms has been conducted for several years. For example, Tzafestas and
Kanoh [1], and Fukuda [2] presented excellent surveys on the modelling and dynamic control of flexible
links. There have been numerous works on modelling and control of flexible arms, and various approaches
have been presented. Some have given successful experimental studies (e.g. Sakawa et al. [3], Barbier and
Oziiner [4]). Most authors have ignored the effect of rotatory inertia and shear deformation. This practiceis
justified for dender flexible arms. According to the Timoshenko beam theory [5], the deflection due to
shear force and rotatory inertia should be taken into account in modelling for high speed and high precision
requirement when theratio of the cross-sectional dimensions to length increases.

Earlier studies on the effect of shear flexibility and rotatory inertia on the bending vibrations of
beams are presented by Traill-Nash and Collar [6]. New special attention has been given to the effect of
rotatory inertia and shear flexibility on modelling and control of flexiblerobot linksin [7, 8] and by Wang
and Lu in [9]. Experimental analysis [8] showed that the errors due to neglecting the effect of rotatory
inertia and of shear deformation become too significant to be tolerated for the inverse dynamic of non-
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slender flexible links. Our research was motivated by the efforts to give an analytical study of modelling
and control of non-slender flexiblelinks.

Firstly, based on Hamilton's principle and Timoshenko's flexible beam theory, the dynamic model
of asingle non-slender flexible link is derived, and it is shown that the elastic motion is governed by a pair
of coupled partial differential equations with coupled boundary conditions. Then the abstract form of the
dynamic equations is studied, and the properties of the spectrum of the elastic operator appearing in the
evolution equation are given. Furthermore, the eigenvalue problem of the elastic operator is solved in
explicit form. The formulation and well-posedness of the state-space equation, as well as the transfer
function of the dynamic control system of the non-slender flexible link, are studied by spectral analysis.
Finally, the tracking control problem is studied, a stabilizing feedback control law based on an n- model to
suppress vibrations of the flexible link is derived, and the necessary and sufficient conditions that can
guarantee the stability of the closed-loop system, are given. Simulation result are given as well.

Derivation of a dynamic model

As shown in Fig. 1, a, the system is made of a single non-dender flexiblelink that rotates in the horizontal
plane. Therigid body motion and dastic behavior are controlled simultaneoudy by one dc-motor thet is located at
thepoint O. The payload at the fee and of thelink is modelled as a concentrated massm

The coordinate changes employed are illugtrated in Fig. 1, b. Let X, Y, Z designate the base coordinate
system, where the X)Y axes span harizontal plane, and the Z axes is taken so that it coincides with the vertical

rotation shaft of the motor. Let (X, y, 2) denote therotating coordinate system, and ¢ (t) betherotation angle of the

motor. In the rotating coordinate frame, let w(x, t) denote the deflection at point xand timet, and let @ (s,t) bethe
dope of the deflection curve which is only due to the bending moment (see Fig. 1, ©).

AY AY

Fig. 1. (a) Top view: the structure of a single flexible link;
(b) the rotating coordinate frame; (c) force and moment balance
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In order to establish the dynamic model of the single non-slender flexible link, we introduce
Denavit-Hartenberg's description. Let r be the position vector with respect to the rotating coordinate
frame; r is defined by the following homogeneous coordinate;

r=gx, w(xt), 0, lﬂT . (1)

Let R be the position vector with respect to the reference coordinate frame X,Y,Z. Thus R= Ax
where A is the homogeneous coordinate transformation matrix, given by

écosq -sing 0 Ou

€ a
A:@smq cosq O Ou @

e o 0 1 0u

é a

g 0 0 0 1j

Inertiavelocity is given by

&:éﬁ@ +Axk =& (xd+W)sing - dwcosq;(xd + W) cosq - - dwsing;0;0U. 3
SﬂqH& & (xd +W)sing - dweosq;(xd +w)cosq - -d u (3

Ignoring the high order non-linear term cf‘w in (3), gives

L i T

I&:g (xé+\&/)smq,(xc§+\&/)cosq,0,0H . (4)

In this paper, we assume that flexible link shown in Fig 1 is a uniform beam of length |, and mass

per unit length, r . The mass moment of the rectangular cross section |, isgivenby I, =r k?, where k

isthe radius of gyration of the link section, givenby k = d? /12, and d is the thickness of thelink. E and |
are Young's modulus and the moment of inertia of the cross-section, respectively; C :[K G ><A] is the
shear tiffness, where G is the modulus of dasticity in shear, A is the cross-sectional area and K is a
numerical factor that depends on the share of the cross-section. Here the internal viscous damping of
Kelvin-Voigt type is considered in the modelling. Let h >0 be a small damping constant of the link
material.

According to Timoshenko’s theory [5] the bending moment M and shear force V can be represented
as M=ElI 1$+hEI ‘E]i) V=-C(®- wy)- hC(&)- \&/X). The dynamic model of the non-slender

X

flexible link is derived using Hamilton’s principle as the following procedure. In fact, the kinetic energy is
given by

1 ! 1 ., 2 1 1 T 1 2
KezzrodlﬁT I&)dx+5r kzod(iwcf‘) dx+EIhcf‘+E(mI&(l) I&(I))+Emk2(&>(l,t)+(f‘) : (5)
where |}, isthe moment of inertia of the hub. The potential energy due to elastic deformation is given by

Pe:%§E|q>§+C(q>-wx)2]dx. (6)
Hamilton's principle can be expressed as
t81(}<e- P, +W)dt=0, @)
t
where W is the work done by the non-éonservativeforca expressed as

| |
dW =t ¢dq + §C(b- vy )d (wy - ©)dx- HEI by dd,dx, ©)
0 0
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and t ¢+ istorque applied to thelink. Substituting (5), (6) and (8) into (7) gives

I, §=El @, (0)+hEI &, (0)+t ¢, )
and
Ir+C(D, - WXX)+hC(&>X - \&/XX):- rx§
% (10)
§rkZ+C(@- wy) +hC(d- Wy )- Elby - hEIdy, =-1 k4,
with the boundary conditions
tw(0)=0, F (0)=0,
i m(1§+w(1))=c(@- w)(1)+hc(d- w)(1); (12)
ik (d+8(1)) =- El, (1)- NEI, (1)

The mathematical aspects of the above dynamic equations are studied in the next section. With
negligible armature inductance, the dc-motor is modelled by

I mf+t g =t (12)
where |, isthe moment of inertia of the motor, m is the viscous friction coefficient and t is the torque
supplied by the motor.

Evolution equation

The hybrid system (9), (10) with the boundary conditions (11) represents the results of the physically
reasoned derivation of the basic dynamic model utilized below. In this section, we treat the boundary value
problem governed by (10), (11) as a distributed parameter system that is in the form of an abstract second
order evolution equation in Hilbert space H defined by

H=L2(0)x2(0])xR?, (13)

with the inner product
[

([upsugsusiug] [vivaivaiva )., = dr vy +T szsz) o<+ Mugv + kU, (14)
where we take i
U =w(t,9,uy =D (t,,uz =w(t, %),uy =d(t,1).
Let V be a subspace of H, defined by
w (3T HE(01), u, (T HE(O
s =01 (1).us =0 (1), 1 (0) =0, up (0) =0 =

N
o antd

Vv =}[U1;U2;U3;U4]T H
t
with the inner product

I roor , ,
([vwsuzivgia] i vaivaival)y, = efunvs + v o+ v + v, (19
0

where the symbol (*) indicates the partial derivative with respect to x and & 10,1 genotes a Sobolev space.
Define the operator A by

an=E (- )= (i - ) - EL i g - 5)EL g
- 2" T \Y2 7 A N by SR CH KRN 3
gl r k2 rk? ©m mk? 9] (17)

"l D(A)=[uTV‘ui(>)T HE(01),uy (31 H2(o,|)],

where D(A) denotes the domain of A.
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Let Q beavector defined by
a=-[xu1". (18)
Thus the partial differential equations (10) with the boundary condition (11) can be rewritten in the
following abstract form
G(t) +h Ad(t) + Au(t) =d(t) , (19)
where u(t)T D(A)I VI H .
For the elastic operator A, we obtain the following properties:
1. The operator A defined by (17) is a densdly defined, sdlf-ad-joint positive operator, and has a compact
inverse operator A L

¥

2. Ais closed operator with countable many eigenvalues {1}

and corresponding generalized
mj’ ¥
i=1, j=1
a) O<li<Ar<...<...,limA, =¥,

) 1 2 n® ¥ :

i =1,2,J/4,mj ,mj <¥,j :11211/4 1¥ 1

eigenvectors { Y} that satisfy the following conditions:

b) AY” :)\’iYiji

) the set { ¥;; of the eigenvectors forms a complete orthonormal systemin H, and
ij

u(%=§1,gl<u1 Yig>n Y (3" ul H. (20)
i=1j=
The eigenvalue problem of Ais jsolved in the next section.
Eigenvalue problem
From the property (b) of the second property for the elastic operator A, we see that
AY =1V, (21)
where | is an eigenvalue of the operator A and Y 1 D(A) is the corresponding eigenvector. With the
definition of A, can be rewritten in the following form:
c

S (F - o) =l w, (223)
%(Fx'wxx)'%':xx:”:’ (22b)
C [
—(F - w) (1) =1 w(l), (220)
B
WFx(I)ZIF(W (22d)
w(0)=0, ®(0)=0, (22¢)

where B=El. It is convenient to write (22) in dimensionless form. Therefore we define
X =x/1,W(x)=w(x)/I,F (x)=F (x), and introduce a new function v defined by

v=F - W (X). (23)
Itis easily verified that v satisfies the following ordinary differential equation:
v w2 (a + b)v(z) - w2 (1- Wzab)v=0, (24)

where v(”) indicates the nth partial derivative with respect to x, and w,a,b are defined by

4 2
W2=r||,a=B, b=k—. (25)
B Cl? 12
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The parameters w,a and b have the following important practical meanings: w is the natural
frequency of vibration; a is proportional to flexibility; b isproportional to rotatory inertia.

In the remainder of this section we still write X as x for simplicity. The general solution of (24) is
given by:

Slan+ COoS pX + S|nqx+c cosqxwab>l
( ) Cl %) C3 4

v(x (26)
Tclsm px+czcospx+<.‘35|nhrx+c4coshrxw ab <1,
where ¢,i =1,%,4 are constants determined by (22c) — (22e) and
p 1/2
b o2p?=w w?(a +b)+§t(a- b)*+aw?d
T
I 2 _ 2 A 4 2 22
i 29° = (a+b)-§N (a-b) +4w H ; (27)
T
:r2 -2
)
Using (23) and the boundary condition (22€), we have the following relationship:
101p+03q 0, cpp? +cy6° =0, w?ab >1; 29
Tclp+03r—0 ozp +Cy 4% =0, w?ab <1,
where p? and 62 are defined by
i p 1/2
i;zfﬂ:WZ(a-b)-gN4(a-b)2+4w25 ,
[ (29)

- . 1/2
1207 =w?(a - b)+ &' (a - b)*+aw?}

It's not difficult to verify the following relationship using (22c, d) and (28)

€y (W) 32 (W) u e01 u =0,
~ 7 = 30
3321 (W) ax (W)l‘J &2 H (30)

where
} snp- Bsinq+:o—m(cosp- cosq),wzab >1;
. q .
ay (W) =1 . om (31)
;Slnp-—smhr+ I (cosp- coshq),w?ab <1.
r r
[ A2 ®
I cosp- I?Zcoq-—épsmp p q +
_1 q r g 2
2 (W) =1 ) R s (32)
:cosp- ?2 coshr - m§p5|np+lo—2rs|nhr Wab<1
T q q 2}
i 2 & A2 5]
T p(p cosp- cosq) méf)zsin p- p%sinqi,wzabﬂ;
a
ag; (W ):} 2 - 5 (33)
: IO(I@2 COSIO)' CAIZ coshr - Wl—bméﬁzsin p+q—sinhr%,W2ab <1.
r r -
T 4]
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w?b
Ir

f)z(— psin p+qsing) - mﬁz(cosp— cosq),wzab>];

i
_I
ag, (w) = : )
1 p? (- psinp- rsinhr)- wl_rbm p? (cosp- coshr),w?ab <1,
Consequently, the characteristic equation is given by
231 (W) @ (W) - a1 (W) &y, (W) =0.

In the case where w2ab >1 can be expressed in the following explicit form:

. ) )
g1 WBmM2 Hw bm-wz(a - b)- chospcosq+wz(a +b)+
Ir 5 Ir p
io2 m’ & 6 2 Hs nq
+i W (a+b)—b—zgw (a-b)%a +w*(3a- b)HA"P,SNT
T r h P q
V2§
+ ZPWZ( -b)? +4d- & (a - b)° + 4w gs‘ xc0s() +
T

Let wﬁ,l) and W&Z) be the solution of (35) such that

m_ @102 _ () (3

0<m§1) <w(1) <...<®

2 N 8%; ©1 2 oY
Thenfor every n3 1, theeigenvalue A, of Aisgiven by
b 2
Ay =——=op,
T2 "
where o, isdefined by
o nen,
=1
}co(,\?n,n>N.

. 2
+m}ngwz(a—b) +4H++ew4(a b)? +4W25 gcost% 0.

.<lim w,(f) =-¥.

17

(34)

(35)

(36)

(37)

(38)

The corresponding eigenvector Y , =(w, (3,F o (3. wq (1), F (I)) can be easily determined by

i &® 2
||T C Py cos&x+c2pnsm&x Pn cosq—”x c2 > smq—”x mnab >1,
W (X) 1(’3na ! ! ! gn ! Q
n =i
& a2
:IT C1 Pn cospl—x+c2pnsmﬁ X- Pn coshl—x Co pAZ
f O g°n &

> f)aeclsn&xH;Zcos&x +
29 & | | 5

1 &py.2 .0 a2 g

|

:

:

: ;

T+ ¢~ —Gh ey sin=x+ Pficy cos-* X+ w2ab >1;

i mﬁae On | I g
Fn(x)=i

i 1 o2 Pn + Pn o,

-I-Tpngclsn | X OchSI—X

i ona o

i

}}%29 Pn g clsmh X+ pnozcosh X2 oanab <1

! opae qn | g

gy . . Iy ©
N smhl—n x+,02ab <1.

(39)

(40)
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It ¢ and c,, satisfy the refations in (28), are chosen so that Y (>§||H =1, then we obtain a set of
orthonormalized eigenvectors.
From (36) it's easily seen that, when n® ¥ ,m% , tends to satisfy
sinp,>sing, =0, (41)
which is abtained by dividing both side of (36) by mﬂ' and by letting n® ¥ . Thus for large values of n,
we see that

2 ~O(n2). 42)

2

The case where ® :ib is specially treated as follows. In this case, the general solution of (24) is
a

v(x) =¢ +cyx+cysin px+c, cospx where p2 =w? (a + b)), and then the eigenvector corresponding to

w2 -1 is given by
ab
W(x)=%:’|_oo3a?l+cos£x_- pc4sm£x :
wea i & %
b P.O0 @& . b. p.o (43)
F(x)=—c a?[ COS— X_-- +—sn—X-,
() =2cag X5 CagP :

where ¢,c,c3 and ¢, satisfy the following relations: clzgc4, Cy = pc3, bycg+bcy =0 and

blz(- |T)+sin|T))+—I (-1- cosr))r), b, :é—s ++COS[_39- ™ psinp and c3 and ¢, are chosen so that
r a g Ir
Y has unit norm.

Control system

In this section, we consider the tracking control problem of the end-point position of the non-slender
flexible link discussed in the previous sections. We assume that the output of the control system of the
flexible link is obtained by a strain gauge attached at the link at x=0, which can be expressed as
y(t) =F qt, 0) i.e thebending moment at x=0 is measured.

Formulation and well-posedness

Firstly, we recall two types of definitions of the formulation of linear infinite-dimensional systems
state-space description (Pritchard-Salamon class) and frequency domain description (Callier-Desoer class),
which have been developed for the control theory of infinite-dimensional systems, and which are relevant
to our present study.

Pritchard-Salamon class (Pritchard and Salamon [ 10]).

We suppose that state-space is Hilbert space X, and input and output spaceare U = R™ and Y =RP,
respectively, and that

— There exist two separable Hilbert space V and W with continuous, denseinjection W1 X1 V and
that A generates a Co-semigroup S(t) on V. It is consistent in the sense that restrictions of t) to X and W

define Co-semigroups, respectively, which are still written by S(t). We further assume that D, (A)T W,

D, (A* ) 1 V" where D, (A) denotes the domain of A considered as an operator on V.
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.
- Bi L(Rm,v) and for ul L, (O,T,Rm) we have (T - s)Bu(s)dsy £bu,
0

—El L(W,Rp) and for all x7 W we have ES(%XLZ(O’ r.R?) £9gx; .

(OTR”‘)'

—There exist generalized transfer function G(s) for si s (A) which satisfied the compatibility
relationship for m, si s (A).
G(s)- G(m)=(m- s)E(m- A) *(s- A)'B where s (A). denotes the spectrum of the operator
A G(s) isanalytic and bounded in Res>a , where a isthe exponential growth rate of t).
Definition 1
a) We say that (E, A, B) isin aPritchard-Salamon classiif (s0) — (s2) hold.
b) We say that (E, A, B) is well-posedness in time and frequency domain on [0, T] if (s0) — (s3)
hold.
Callier-Desoer class (Callier and Desoer [11]).
Definition 2
a) For mi R, wesaythat f1 A(m) if
| 0, t<0
|
f(t)=1 ¥
(1) : fo (t)+ & fid(t-t), otherwise, (“44)
T i=0
where fy (t)exp(-mt)T Ly (0, %), and f; are real number, 0=ty <t;<..,d, represent the delta
¥
distribution, and § |f;|exp(- nt)<q.
i=0
b) Wesay that f1 A (m) if thereexista m <m for which fT A(m).

¢) A(m) and A (m) denotethe classes of Laplace transformof A(m) and A (m), respectively.

d Af (m):{fi A (m)andf isbounded away from zero a ¥ in C,;} where Cp,={s,Res? n},
and f isbounded away from zeroat ¥ in Cp, if thereexist h >0 and r >0 such that |1‘A(s)|3 h for all
sl Cpysuchthat |s- mj3r .

e B(m)=¢A (m){" EAY (m )g'l is Callier-Desoer class,

f) G(s) =& (s )up i é(m)(A (m)) if g; (s) arein é(m)(A (m))for ali,j.

In the following procedure, we give the state-space and frequency domain descriptions of the non-
slender flexible link, respectively. We choose X =D(Ay,)A H as the state-space and the inner product
of X isdefined by

eX]_U eylu A:UZ

weé gH =X, in +A 2,

YiH X2, Y2 H (45)
eX2 0 Y20

where H is defined by (13) and AY? s the square root operator of A given by (17). Since A is positive
salf-adjoint operator with the compact inverse on H, AY2 makes slues, and D (A”Z) I D(A).
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Under the transformation x' =u, x' =d, the dynamic system (19) with the output equation (43) is
formally equivalent to

%= Ax+Bf,y = EX, (46)
, T
where gx1x23 ,and A, B, E are defined by
¢0 | u_ é0n
=z “B=a 1, (47)
& nal” ol
E=¢gr90) og, f =4t). (48)

Itis easy to seethat A has eégenvalue m,, m,n=12,%, givenby
rm,mn=-h§lnig(ln), (49)
where | ,, n=12% aregivenby (37), andisdefined by g(I )
>

i . )
]:ghzl 219 ,8thl 2.1 250
(%) (%)
9(1)=1 " (50)
L% L Ih2200 otherwise
P& 4 )

The normalized eigenvectors corresponding to nm}, and m , are

e Y, u e Yo u
Yn=rpé G Y.n=r_ne O (51)
nNE Yni " éMn Yno
where Y ,, n=12% aregiven by (39), (40) and
2]JZ
rin:(l+|n+|m_+n|) : (52)
The eigenvectors of the adjoint operator A of Aare
¢ Yy y ¢ Yq y
_ & a _ & a
Yn=Tneg &+1,0 aY-n» Y.n=l.pg &+1,0 a (53)
& ¢ M™Yng & MY
ee'n g u ee 'n @ u
where ., istakenas
-1
_ & 2ad+|,00
tn:gl+|n'|m_i-n| ¢ Tt rih, (54)
& ln gy
suchthat {Y ,, Y ,} formsabiorthogonal sequencein X, i.e.
YooYy =d =i E (55)
n» ' mx = mn—%o’ml n
Let c",b" bedefined by
c"=EY,, b"=BY,, (56)
where B isthe adjoint operator of B given by
L &du , T elu_
B é U=X,QH,"§2@I X. (57)
&x°H ex°H
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For large values of n, using (42), we have the following useful estimations:
0(1), n positive;

i
" =F(0)r, =1
‘ ‘ |n|() : -Ifo(n'l), n negative. (58)
aa+||n| 0 r .\;.O(n'z), N positive;
bn = - —I :nh r_nYlnl, QH :.|. 1 ' (59)
&' 3 %O(H ) N negative.
} 0(1), npositive;
Rem,| = 60
| rr}1| -Ifo(nz), N negative. (60)
Using the estimations (58) — (60), it is easy to verify that
w |c"|p"
4 ———<¥,0fafl (61)
n=-¥ |Rerr}1|a

One may to provethat the state-space description (46) belongs to Pritchard-Salamon class, and has a
well-defined transfer function G(s) given by
¥ Can
G(s)= & : (62)
n=-¥ S~ Mh

with the impulse response h(t)
¥
h(t)= & exp(m,t)c"b".
n=-¥

The frequency domain description G(s) defined by (62) isin Callier-Desoer class b (o) .

(E, A, B) subject to (46) iswell posed.

Modal Control

As mentioned above, we see that the solution of the evolution equation (19) can be expressed as

: i1
u(t,x)=&u, You Yn(t) =& = uy(t)Yn(t). (63)
n=1 n=1I n
where uy, (t) = Au, Y 4 isthe solution of
B, (t) +hl n8, (t) + 1 qun (1) =1 (WY )y (64)

with theinitial values uy, (0) = Aug, Y n - and 6, (0) =1 (o, Y ) H -
where Uy, Uy, aretheinitial values of the system (19).

Using the coordinate system based on an orthonormal basis {‘Pn}il,

y =[U17U21/4Un1/4]T A=diagl 1,1 %] . Let x, =g><% X%HT =[un @] - Werearrange the state gﬂ a7 3T

we may represent

‘T T o
as gxl x%%H , Where x,, satisfies

A T SR (©5)
g"n 'hInH gnVVvYnHH -
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Then above transformation carries (65) into

_ _¢ 0u- élu
Zn ng‘ m, 02 * 8 10l ng L)Wy )., f )

Since g2 (I ) isstrictly increased with respect to | , there exist a ny such that

19n, N>ng;
W)= e (67)
O:IJZ o 61/2
where g,, =¢f'py - —h2I 2 and g, h Ir%- = arereal numbers.
8 &4 o
As nf£ngy, Zt, and an are complex conjugates. Thus taking
Il( 51 2) :
Zn+Z5,nEng;
zy=i2\" " (69
Lo Z nsng.
L Z2 zi ,NENy;
72 =1 ( J (69)
fZ2, n>ny,i2=-1,
o S VR ——
thenZ:gzl Z 1/4H satisfies
2=AZ +Bf, y=CxZ, (70)

] T
where A, B, C are defined by A=blog diag[ A, Ay %4], B:gBlT,B; vl C=[Cy,C, %] and for every
n(n=1,2,.)

@ > > D} (D~
N
=
>
1
e}
>

o]
>
1
N
=
>

,NEng. (72)

(72)

(73)

. T
Taking 2= g] cf ZTH , the modal state-space equation of the flexible link is expressed by
S;:2=A2+Bf y=Gx2, (74)
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) N
where § =g cfyH and

© 1 0y oy & 0 Oy

- Up_6.0 4 _ a

)i_go 0 o@,@_élq,&_go 1 0g

€0 0 A4y EBH & 0 CH

We introduce the following notation:

2 1oog., 8%, &0 0
A= 0 0B"=¢13¢"=0 1 o0y,
0 AG B o g

where A",B",C" are defined by

: A" =blogdiag[ A, Ao Y2, Ay
. L, \T
}B”:@B{,B{%BIH ; (75)
:
[ch=[C,C Gy
Then using this notation, in view of (74), we obtain the (2n+2) — dimensional approximation system
of §;.
Syt 2N = ANZN + BN §N =@N 2" (76)
In what follows, the feedback controller is designed based on n-modal state-space equation S, in
the customary way.
In practice, b isusually small compared with a , thus we have good reason to assume
alb, (77)
where a , b aredefined by (25).
The conditions for controllability and observability of the system S, are presented next; these are
required for the design of compensator.
One may to proof that ( A",B",C") is controllable and observable if
Fi(0) 0,i=12%n. (78)

A" 8" &" is controllable and observableif the conditionsin (78) hold.

Using (40) and the assumption (77), we see that it is easy to verify that the conditions in (78) hold
for al i.

The design of the compensator isin two parts:
a) Constructing the estimator of modal state Z" . We take the Luenberger observer [12] of Z" as
20 =€ - GNCMUAN + 8Ny + S (79)

where G" is the estimator gain selected in such way that the spectrum of matrix A" - G"C" lies to the
left of a vertical line Res=-s , and s >0 can prescribed by the investigator because (C", A") is
observable and &" =go 0 G”g. Using the information of output ¥, the estimator (79) produces the
estimate 2" of Z".
b) Designed the feedback control law. Theform of the feedback control scheme is taken as
f(t) =k +kod + ksZ". (80)
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Let K =[kyky k3]T denote the feedback gain that can be determined by the pole allocation method

or the steady-state optimal regulator method.
(i) Pole alocation method [12]. In this case, the feedback control gain can be chosen in such way

that the eigenvalues of A" +B"K lie to the left of a vertical line Res=-s because ( A",B") is
controllable.

(if) Optimal regulator method [13]. In order to suppress the tip vibrations, the form of the
performance index is taken as

1 + +0OaF 2 + qud? + 002 + ged? +i
I(f):*é!qlwz(t,l) W (t,1) +agF 2 (1,1) + aud? (t.1) + o + gef yexp(Zst)dt, &
of+r f2(t) b

¥
Using the expression (63), (64), I(f) can berewrittenas | () = c‘){ﬁ”TQ 2N+ f2 (t)} exp(2st)dt.
0

Then the feedback gain K is determined by solving the Ricatti equation.

In summary, the finite dimensional feedback controller can be formally formulated by
120 =€an - GNCNUZN + @y + BN

83 . |l € u

fof(t)=ksZ" + Ky, K =[ky,k2,0].

(82)

Let qgq(t) and dy(t) be given desred rotation angle and angular velocity of the motor,
respectively.
Then the closed-loop configuration of the control system can be illustrated by Fig. 2, in which
Vg =kag + kdy and vg is observation noise.
If the rotation motor is an armature-controlled dc-motor with negligible armature inductance, then
Val(t)= Ryia (t) +1p, t (t) =kaia (t), (83)
where k, is known as the motor torque proportional constant, i5,Ry,V, are armature current, resistance
and voltage, respectively (see Fig. 3, a). |, is the back electromotive force which is proportional to the
angular velocity of the motor, i.e.:
I =kod (84)
where ki, isaproportional constant.
Combination of (9), (12), (80), (83) and (84) gives the following feedback control law
V=i (1) g+ (0) - b+ (0] )
a a @
where f = f - vy, and d- vy, and ¢ andy are known.
The structure of the overall control systemisshow in Fig. 3, b.

Vd f

Y
3l
-

Fig. 2. Closed-loop configuration of a control system
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Stabilization

Firstly, werecall the definition of stabilization for the Pritchard-Salamon system [14].

Definition 3.

We assumethat (E, A, B) isa Pritchard-Salamon system, which satisfies (S0) — (s3) in Definition 5.1,
and s(t) isa Cy-semigroup generated by A, G(s) is the well-defined transfer function of (E, A, B). Then

a) (E, A, B) is said to be s -exponentially stable if S(t) is exponentially stable with decay rate
exceeding s .

b) (A, B) is said to be s -exponentially stahilizable on W if there exist an operator K1 L(W,Rm)
such that the perturbed [ A+ BK] -semigroup Sy (t) is s -exponentially stable on W.
0) (E, A) is said to be s -exponentially detectable on V if there exists an operator L1 L(Rp,v)

such that the perturbed [ A+ LK ] -semigroup S (t) is s -exponentially stable on V.

d) (E, A B) issaid to be s -input-output stable if the system transfer function G(s) G s
R, .
| I > la
—1+
T
a
I crrnder |
| _encoder |«

~Qrar RS

strain gange

flexible link

I

Fig. 3. Equivalent circuit of a dc-motor (a); the overall system block diagram (b)

Consider the n-modal control system S, controlled by the controlled by the controller S3; the
closed-loop structureis shown in the Fig. 4, a.

T N
We introduce the new state X{ = eﬁ“T H where €" =Z7" - Z": then the closed-loop state

N
equation can be rewritten as A0 = AXD +B.v., Yo =C.XQ +v, where v ::@\/T V°u’

&y, =6y i

e+ w 80

|
i
X a : -G Cn

! g) H (86)
¥ e@n 0 U éd/ﬁn 0 U

1 Be = 0.Cc=é G-

i 80 &g &R ks

)(‘D)



26 Yuri Chovnyuk, Yuri Gumeniuk, Mykhailo Dikterjuk

From the expression of A. in (86), we seethat the eigenvalues of the operator A. are

s (A)=s (A" +B"K)Es (A"- G"C").
It may be proved that the closed-loop system (S,,S3) shown in the Fig. 4, a s -exponentially

stableaswell as s -input-output stable.

\ 7 f . 5,
+
f .
a
26)
@)L G
+
! Ko
b

Fig. 4. Closed-loop configuration of a finite dimensional approximation control sysem (a);

theillustration of a perturbation feedback (b)

(87)

One may be to imply that the compensator S; can stabilize the n-modal control system S, in the
duse of s -exponentially stable. For application, we hope that the controller S3 can also stabilize the
original control system S; in the same sense. In what follows, we focus on the non-slender flexible link

system S;?

From the above discussion, we see that (é, A, I%) is aso a Pritchard-Salamon system and has

transfer function G(s) whichisin Callier-Desoer class, expressed as

élu
o &
=% (95,
Es

o
ol

(88)

(89)

(90)
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Thetransfer function of S, K" (s), can be expressed as

] ) -1 1 .
K" (5)=gl - ksst - A" +G"C") tgn da(sl - AT +GCM) B + Ky, (91)
e u e u
Let D" (s) denotetheresidual term defined by
é 0 u
D" (s)=¢ | (92)

In Fig. 4, b, we view the system S, as the result from system S, perturbed by the term D" (s). In
the following discussion, we assume that

h h 1
st —|.,,n=12%,—1;<s <=,
SInn=12%, 21y <s < (93)
One may to prove that the closed-loop system shown in Fig.4(b) s -input-output stableif and only if
-1
. -1 ©
‘D”(S)H¥<§K”(s)gl-d@(s)K”(s)H S, (94)
¥ 0

where

y - Isthe Ly -norm, defined by

[Gly -=supa [ (i), (95)
and M|, isthelargest singular value of M.

The closed-loop system shown in Fig. 2 is s -exponentially stable if and only if condition (94)
holds, as well.

Computer simulation
Here the non-dender flexible link is assumed to be made of aluminium. The experimental
parameters used in our simulation are:

L=127m, A=(32" 4,0)" 10 °m?, | =1,002" 10 1%m*,
C=21067" 10°N, E=7,11" 10"°N/m?, r =3,475" 10 kg / m,
M =62,0" 10 kg, Iy, =0,03 kg xm?, |, =0,005 kg xm?, m=h =0,002.

By solving the characteristic equations (35), we obtain the eigenvalues. Consequently, eigenvectors
can be calculated by the formulae (39), (40). In our simulation, the flexible link is approximated by the first

five modes, and the controller is designed based on the first three modes. 1, my;, and F; (0)(i =1,2,%5)
arelisted in the Table.

Table
Modal parametersfor first five flexible modes

n n Reu, Imu, =9, of

1 6,77-10" -6,77-107 8,77-10° -3,0510°
2 3,0310° -3,03-10° 5,50-10" -2,54-10"
3 2,5510" -2,5510" 1,58-10° -8,24-10
4 1,0310° -1,03-10° 3,04-10° -1,76:10°
5 2,9010° -2,90-10° 4,4510° -3,09-10°

That a =2,2856" 10°° and b =5,2907" 10"/ impliesthat F; (0)* O for any i, which guarantees
the controllability and the observability of the system (G, A, B) for any i. In our simulation, the

feedback gain K is determined by the L Q R method, and the weighting parameters are
h =02 =03=04 =130, 05=0g =100, 1rp =1, s =3. Observing the Table and the experimental



28 Yuri Chovnyuk, Yuri Gumeniuk, Mykhailo Dikterjuk

parameters, we see that assumption (93) holds, and condition (94) can be easily verified by the following

-1
=6,0362" 104 and ‘D” =4,7509° 10°5. These imply that
¥

the controller can stabilize the non-slender flexible link.
The initial values are assumed to be ug = =0, and the desired rotation angle qq (t) =60 and
cfd =0. The transient responses of the tip displacement w(t, 1), tip slop arising from bending F (t,I), the

motor rotation angle q , the angular velocity cf‘ and the corresponding torque supplied by the motor are
shown in Fig. 5, a—e, while the same transient responses and the torque are shown in Fig. 6 in the case
where kg =0. The simulation results give good proof of the validity of our results.

simply calculations: HK”(I - &”K”)

¥

il

<3
S
T

N
=
T

HUB ANGLE [degree]
IN] w
S S
T
HUB ANGULAR VELOSITY [rad/s]

=)
T

o

TIME [s]

TIME [s)

a b

0,03 p 0040

0,025 |
0,03
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0,015 0,02
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0,005 0,01

TIP DEFLECTION

-0,005 |

-001p
-0,01p
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0,02 2 2 N 2 2 2 2 2 ; 002 N N N N N N N 2 2 ;
’ 2 3 4 5 6 7 8 9 10
TIME [s] TIME [s]

c d
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-01fF

02k

-03
-04H

05 N N N N N N N N N N
0 1 2 3 4 5 6 7 8 9 10
TIME [s]

CONTROL TORQUE [N m]

e
Fig. 5. (&) Hub angle with flexibility feedback; (b) hub angular vel ocity with flexibility feedback;
(c) tip deflection with flexibility feedback; (d) slope due to bending deflection at tip deflection with flexibility
feedback; (e) control torque applied to link with flexibility feedback
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Conclusions

In this paper we have given an analytical study on the modelling and control of single non-slender
flexible links. Our results are as follows:

a) By Hamilton's principle, it was shown that the elastic motion of the non-slender flexible link
governed by a pair of coupled partial differential equations with coupled boundary conditions.

b) Using spectral analysis, we showed that the dynamic control system has a well-posed state-space
description (Salamon class) as well as well-defined transfer function belonging to Callier-Desoer class.

¢) The feedback modal control scheme was presented. An easily checkable condition that is
sufficient and the necessary for the stabilization of the closed-loop control system was given. The results of
a computer simulation study were presented to illustrate our results.

Although in our present study, the dynamic equation is necessary for modelling and control of single
non-slender flexible links, it is more complex than that of slender flexible links, and its computational cost
is so high that it is not necessary for the slender case. Thus, it is of interest to note how to identify whether
aflexible linksis slender. Thiswill be presented elsewhere.
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Fig. 6. Hub angle without flexihility feedback (a); hub angular velocity without flexibility feedback (b);
tip deflection without flexibility feedback (c); slope due to bending deflection at tip deflection without flexibility
feedback (d); control torque applied to link without flexibility feedback (€)
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