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PozrasinyTo 3ana4i BU3Ha4YeHHs] TeOMeTPUYHUX NapaMeTpPiB NOPOKHUHHU Y TBEpIOMY Titi 3a
3aJJaHMM MOBEPXHEBMM TeMIePATYPHHMM I0JieM, 3yMOBJIEHUM CTAI[iOHAPHUM HArpiBaHHSIM Tila
30cepe’KeHMMHU TeIUVIOBMMHU MOTOKAMH B YMOBaX KOHBEKTHMBHOIO TelJIOOOMiHY i3 30BHilIHIM
cepenoBuIeM. 3 BUKOPUCTAHHAM TPAHMYHUX iHTerpaAIbHMX PiBHAHb MOOYA0BaHA JBOBHUMipHA
MaTeMaTH4YHA MoOJeJb TeNJI0BOro 30HAYBaHHA TiIa, B MeXaxX AKoi cGopMy/Ib0BaHO NMpAMY Ta
o0epHeHi 3a1a4i ineHTHdikanii reoMeTpUYHUX NMapaMeTPiB MOPOKHMHU. MeToI0M TpaHHMYHHUX
eJIeMEHTIB 3/iliCHeHO YMCJI0Be JOCTIIKEeHHs] TTOBEPXHEBOI0 TeMIIEPATYPHOIO MOJA Ta BHSIBJIEHI
iioro ingopmatuBHi nmapamerpu. Lli mapameTrpn Mo:kHa BHKOPHCTOBYBATH AIK BXiIHi JaHi 1jis
o0epHeHoi 3a1a4i inenTudikanii. Po3B’ss3yBannsa o0epHeHol 3a1a4i 3Be1eHO 10 3a1a4i MiHimMizanii
(pyHknionany TemmeparypHoro mnoJsi mnoBepxHi. Po3po0seHo npamuii BapiauiiiHuii MeTox
PO3B’A3yBaHHSI 00epHEHOI 3aJadi, B OCHOBY fIKOr0 MOKJIAeHO T'PAHUYHO-eJIeMEHTHHII MeTOA,
SIKHI IPYHTYETHCA HA KBA3iHBIOTOHIBCHOMY MeTOi. 3 BUKOPHCTAHHAM YHCI0BOr0 eKCIePUMEHTY
AOCTiTKeHO e(eKTMBHICTL pPo3po0JeHOoro MeToay. 3amponoOHOBAHMIA MiAXil MOKHA BHKOPHCTO-
BYBAaTH [JIfl PO3P00JieHHS HepyHHIBHMX 0€3KOHTAKTHHUX MeTOAIB BHSIBJEHHSl TOPOKHUH Y
TBepAuX Ti1ax HAa ocHOBI nanux IY-Tepmorpadii.

Kuio4oBi ciioBa: BUsIBJIEHHS TA ileHTH]iKaLiA MOPOKHUH, TENJ0BEe 30HAYBAHHS, METO/
rpaHMYHUX eJ1eMeHTIB, 00epHeHi 3aaayi, Bapiauiiini meToam.

The problem for identification of the geometrical parameters of the tunnel cavity in a long
cylindrical body is considered in this paper. Temperature field of body’s external surface, caused
by concentrated stationary heat fluxes under conductive heat exchange with an enviroment is used
as input data for the identification problem. With the use of boundary integral equations 2-d
mathematical model has been built. Within this model direct and inverse problems have been
formulated. Boundary-element method has been used to solve and investigate the direct problem.
On the base of direct problem’s solution the infor mative parameters of surface temperature field
have been chosen. These parameters can be used as an input data for the inverse problem. The
inverse problem has been reduced to minimization of some functional depending on the cavity's
geometrical parameters and measur ed surface temper ature field. Direct variational method, based
on combination of boundary-element method and Quasi-Newton method has been built for solving
the inverse problem. With the use of numerical experiment the efficiency of developed method has
been studied. The method can be used for development of nondestr uctive contactless methods for
cavities identification in solidswith the use of technique of | R-ther mogr aphy.

Key words: cavity detection and identification, thermal sounding, boundary-element
method, inverse problems, variational methods.

Introduction
Many scientists and engineers study a possibility for application of infra-red (IR) thermography for
identification of discontinuities (cavities, inclusions, structural defects etc.) in solids [1]. The idea consists
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in exciting a thermal process in the object’s volume, affecting on it by an external heat flow, and in
synchronous measuring temperature field on its surface. Internal structural or/and material heterogeneity of
the body impacts on the thermal process. So, the data of such measurements contain some information
about the object’s structure. A problem is how to use these data to obtain quantitative information about
defects’ geometries. There are different approaches to this problem solving. One consists in formulation of
inverse problems using these data mutually with a mathematical model describing the thermal process in
the object. Various approaches were used to solve numerically the inverse problems. Among them are
methods based on finite Fourier transform [2], finite differences [1] and finite ement [3, 4].

Direct and inverse problems for thermal identification a cylindrical tunnel cavity in a long
cylindrical body considered in publications [5—7]. A feature of the approach applied there is that the input
data for the inverse problems were formed with the use of several different soundings of the object by
different heat flows. On this basis the inverse problems were reduced to systems of implicit equations, to
solve which the boundary-€ ement method was used.

In this paper the inverse problem is reduce to a variational problem which is solved with the use of a
direct quasi-Newton method.

Formulation of the problem

An infinite heat-conductive body B bounded by a cylindrical surface S is considered. Let the axis
of the cylinder Sy be parallel to the axis X3 of Cartesian coordinate system K =(%, X»,X3). The cross-
section of S lying in the plane xOx, is a sufficiently smooth contour Gy. The body B contains a
cylindrical tunnel cavity with a boundary S;. The cross-section of Sq, laying in the plane xOx,, is a

sufficiently smooth contour G;. We can define the contours Gy and G, in Cartesian coordinate systems
K and K¢={xf;x¢ x} correspondingly as Gy :{xl =g (taparsK.ag), % =09, (t,al,az,K,an)} ,
Gy ={ %= f1(t,01,0p. K, Oy ), X§ = F5(t,05,0.K, 0 )} . Here K ¢ is local Cartesian coordinate system to
which werefer contour G, g;, f;, i =1,2 are sufficiently smooth functions of parameter t1 L, defined on
an interval L1 R, aj,a,K,a, and ¢,0,K,qy, are parameters, which determine geometry of
cylindrical surfaces S and Sq, n,mi N. The cross-section S of the body B is a plane domain bounded
by two contours — external G, and G; ones.

Radius-vector on the plane xOx, can be defined as x = xe; + X6, = xfef+ xged, where e, e, and
ef, e§ arethe orts of coordinate systems K and K ¢ correspondingly.

Assume geometry of external surface is known i.e. functions g; is defined. Instead the geometry of
internal surface S; is unknown and functions f; should to be determined. To do that one can approximate
f; by some specific functions of variable t which depend on unknown parameters ¢, d,,K,q,,. Then the

problem of determination of contour G; will be reduced to determination of a vector g = (ql,qz,K,qm)T ,

g1 Q,where Q1 R™ —theranges of possible values of geometrical parameters ¢p,q,K, .
To formulate inverse problems a posteriori information is needed. One can obtain it with the use the
known method of thermal sounding of the body by external concentrated heat flows [5-7],

To do that the body B is heated by the external stationary heat flow J=JpJ(x)j, xI Gy that
incident on the surface Sq. Here j isagiven unit vector laying on the plane x0x,, Jgy >0 is a constant,
which defines the maximum of the probing flux, J(x) is a function, such that J(x)* O when
xT Gy 1 Gy andJ(x)=0 when xi G, and max(J(x))=1, where G, is an arc that defines a heating
spot on the body’s surface Sy. External S and internal S; surfaces are in convective heat exchanging
with their environments which temperatures are T,y and T,,» respectively.
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Under these conditions 2-D temperature field T(x),x] S arises in the body B. Since the cavity

affects on heat flow in the body, temperature field T®(x), xI Gy, measured on the surface S, provides
information about cavity’s geometry. By changing the direction j of sounding flow, its intensity Jy and

function of the intensity distribution J(r) on G,, one can get each time different temperature
distributions on external surface. By measuring the surface temperature T,y (x), xT Gy for each sounding

parameter J, =(j,Jo,J(x),Sy ), one gets a set T°© :{T\,S(x),w :wl,wz,...,wN} of empirical functions

corresponding to the set J ={J, (x),w=12K,wy }: J® T®. Hee N is number of independent
soundings.

The set T ¢ and relations J,, (x) @ T, (x) contain posterior information about cavity's geometry.
We can use them for variational formulation of inverse problem of determination of vector q of cavity's

geometrical parameters.
To do that consider the functional:

N 2
Wa)=a OfT, (a)- Ty, (x))"ax, a
k=1(30
where T, (x;q) —solution of boundary value problem

DTy, (x0)=0, xI S )
no >4\’.‘IX-I_Wk (X’q) :%(Tmo - TWk (X"q)) - nO ><]Wk 1 XT qu )
Mo >NycTw (X;q)z%(TmO' T (x:0)). X1 Go\Gy,, )
N N Ty (x:0) =%(Tml' Ty (x:0)), X1 G,

for given g1 Q=Q," Q" K" Qy,. Here hy and hy — convective heat transfer coefficients on surfaces S

and Sq, Ty and T,y — temperatures of environment near these surfaces, k — coefficient of thermal
conductivity.
The function T, (x;q) is depend on undefined variables q, so functional (1) is a function of m

real variables definesin Q. Although explicit analytical representation of function W(q) is unknown, its
values can be calculated for any q and for any given set of probing parameters J, T € with relation

J® T®. That'swhy W(q) can be considered asimplicit function, definesin Q.
* * * * T
Let g :(ql,qz,K,qm) be real-life values of geometrical parameters of the cavity. Then the value

of functional (1), calculated for q* will be minimal: V\/(q*)<W(q), " g1 Q. Thisfeature can be used for

inverse problem formulation.
Direct problem formulation. Let the values of parameters aq,a,,K,a,, and q,0,K, 0y, which

define geometry of surfaces Sy and Sy aregiven. It is necessary for each member J,, (x)T J of given set

of sounding parameters to find the temperature field T, (x),xI Gy on the external body’s surface Sg:
Jw (%) ® Ty ().
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So, the solution of the direct problem gives the set T ={T,, (x),.w =wy,w,,...wy} of surface’s
temperature fields corresponding to the given set J ={JW (x),w =W1,W2,K,WN} of sounding heat flows:
J® T . Tosolvethedirect problem it is sufficiently to solve the boundary-value problem (2), (3) for each
Jw (X)T J and given

Inverse problem formulation. Let Q 1 R* are given ranges of values of geometrical parameters

g1 Q; J and T® are given set of sounding parameters J,, (x) and set of empirical functions

~ * * * * T
Tw (X), xT Gy of surface temperature distributions. It necessary to find a vector q :(ql,qz,K,qm) of

real-life values of geometrical parameters of cavity that minimizes functional (1).
Quasi-Newton algorithm for minimization

The solution of formulated inverse problem can be written in form

q* =argminW. 4
aQ
Using direct variational methods one can obtain an approximate solution by repeating numerical
solving of direct problem (2) (3) for properly chosen sequence of vectors G :[q(o) ,q(l) ,K} which
converges to solution (4): G® q .
To construct minimizing sequences G one can use Newton method for unconstrained optimization
which based on information about curvature of the objective function W(q) . According to this approach
values of unknown parameters on the next iteration are calculated by formula [8]

g " =q(") + (1), (5)

where ') is areal scalar (c(I )1 (0,4]) and b(') is a vector which determines a step and direction for
next iteration respectively, | =0,1,K.

Vector b(I ) is calculated by formula

b(l)z_(H(l))'l{G(l))T, (©)

where H(I ) :[Hl(dI )} is Hessian matrix, which d ements H|(<|| ) are calculated as

2
(H__1Tw 1 ™
10T o, =61) =) 1< 0=l
and G(I ) :[Gl((I )} isagradient of objective function W(q) , Which elements are calculated as
o) =W . ®)
Wl o= ), o=l ) < =il

In classic Newton method scalar c( ):1, but in Quasi-Newton methods scalarc(') can be
determined with the use of known 1-d optimi zation methods,

=argmi nW(q +epl! ) ©)

c>0
for instance, golden section search [9].
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As an analytical representation of the objective function W(q) is unknown, to calculate partial
derivatives of it on each iteration one can use the finite diff erence anal ogues of these derivatives. So for the
calculation of components of the gradient of function W(q) we usetheformula

W(ay, G2, %4 . G + DY, Om) - W(0L, G2, %, G - Dic. ¥, Gm)
2Dy
where Dy, stands for asmall as compared to g, positive constant.
To «caculate a component G, it is necessay to determine the functions

T (X: 0, 02K, 0 + Dy K, 6y and Ty, (X0, 0.K, G - DK, G), T Gp, " i1 LN by solving the

sz

: (10)

direct problem. In general, calculations of G(I ) require solving of direct problem at least 2Nm times on
each iteration.
To calculate components of Hessian matrix one can use next formula

W( o, 02, K, g + Dy K, g + Dy, K, qpy)

o = Dy Dy
Wl % K G + DK, 0K Gn) - W(a, G K 6K g +D K ) | (11)
Dy Dy Dy Dy
+ Wl % K, 0K, 4, K O )
Dy Dy

These calculations require solving direct problems at least 4ANm * times at each iterations.

Thus, using of Newton method for solving inverse problem by variational method requires at least
2Nm(1+2m) solutions of direct problem and calculations of functional (1) at each iteration.

Due to Quasi-Newton methods in formula (6) instead of Hessian matrix H one uses close to H
some matrix M , which is calculated iteratively on basis of components G, of gradient G at thisiteration.

Herewith, inverse matrix M~ can be calculated si multaneously. This can significantly reduce the amount
of computation. We used the algorithm BFGS [8] which realized the iterative process

(I-%I('))-1:§-Mg>{l-%l("1))_lg_ u(')(:(l))Tg Y(I)(z(l))T .
g (a(')) () ¢ (a(l)) o0 (a(l)) (1)

where y(l ) :q(I ). q(I '1), u(l ) :G(I ). G(I '1), | —identity matrix, | =1,2K.
As an initial approximation q(o) for vector g we choose any vector q(O)T Q. As an initia
approximation #(%) for matrix # , used in (6), we used Hessian matrix calculated for vector g(®) dueto

formula (11) at g :qi(o), "i=1,m. As the stopping criteria for iterative process the conditions

Hq(' ) q(I )Hﬁeq and ‘\/\/(q(I +1))- \l\/(q(I ))‘Eew, were used, where eq.ew >0 are small enough real

number.
Due to this we need to use an effective algorithm for solving the direct problem. In publications
[5—7] boundary € ement method has been used for this. Here we also apply this method.
Boundary-element method for direct and inver se problems solving

Solving of the inverse problem due to proposed algorithm reduces to multiple solving of
corresponding direct problem (2), (3). Since the analytical solution of this problem is unknown, it is
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necessary to apply numerical methods. In publications [5-7] with the use of numerical experiments
computational efficiency of direct boundary-element method for such class of problems has been shown.
Also, it has been shown that the direct and inverse problems of identification advisable to formulate
regarding to the perturbation of surface temperature field caused by presence of cavities

T (%.0) - Ty (%)

Ow (x.0) = T : (13)

where T, (x) —temperaturefield inthebody B, which differs frombody B in that cavity is absent there;
To ° RyJg/k —typical temperature; Ry —typical body sizeof B (e.g., it's diameter).

Function T, () is the solution of boundary value problem

DT, (x:9)=0, xI V (14)

No >‘Nx-rwk (X;CI) :%(Tmo - TWk (X;CI)) -Ng X]Wk, x1 SWk’

(15)
No Ny Ty, (X?Q):%(TmO' Tw, (60)). xT Sg\Sy, .
A perturbation g, (x,q) satisfies boundary integral equation
(1) + O(F () + mQ(ng) by, (€)1 (2) + OfF (n&9 + mQ(n (9l (29 =
€3 G (16)
= O(F (&9 +mQ(n.&d)y, (69dI(&9- R(n.&Ymany (E9dl (&9,
G G

Here n=x/Ry, £=%/Ry, £6=x¢R,, Q(n§)° i(ln(1/|n- g)- InRy) and F (n,8)° Q(n.&)/Mn(2) -
2

potentials of simple and double layers, n — exterior unit normal to the surface S U S, my =Ryhy/k and
m =Ry hy/k — reduced coefficients of heat transfer on surfaces S and S;, Qpg © Ty /To — reduced
temperature of environment neer surface Sy, y, (n)=T,, (n) /TO — dimensionless temperature on the
surface of body B, which satisfies boundary integral equation

1- N — N .

>, (n) + O(F (&) + mQ(n&)fu, (&)d ()= 0R(nE)(3 (8)i n + myama )l (5). (17)

Go G
Boundary integral equations (14) — (15) determine a mathematical model of probing body B by

concentrated hesat fluxes.

Using the boundary element method, we reduce the boundary integral equation (17), (16) to the
matrix equations [7]

M (1) =By 18

Man®a) +Maz)82) =0,

_ (19)
M 29 *M 2282 =B(2)

Here 6(y and 0,y arevectors of nodal values of perturbation of temperature Oy, (x,q) on surfaces
Sp and Sy of body B, 6(1) — vectors of nodal values dimensionless temperature g, (x) on the surface

of body B . Elements of matrices M1, M@z, M2 and M,y are determined by values of integrals
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of potentials of simple and double layers over boundary elements []. Elements of vector E(l) are

determined by values of integrals over boundary elements of intensity function of probing flux. Elements
of vector B(z) are determined by €ements of vector E(l) [6-7].

By successively solving of linear systems (18) and (19) we find the nodal temperature on the
external and internal surfaces of body B

O :(B(l)'\"zz' B(z)M21)>(M11M 2- MaaM1p)

. (20)
92 = (5(1)'\/' 127+ B(2)M11) (MM 2o - MxMpp) ™

Solving of the direct problems

We conducted numerical investigation of direct problem for body B that has a form of round
cylinder of radius Ry. We examined the case of radial directed heat flux with d - shaped intensity

distribution
3(hw)=exp(- sin?(n - w)/1 2), (18)

where wi [0,2p) — polar angle that corresponds to maximum value of probing heat flux, hT [0,2p) —

polar angle, that corresponds to arbitrary point on the contour Gy, | — parameter that determines the width
of probing flux. Herewith, the probing flux is defined by two parameters—w Ta | .
In this paper we considered two cases of cavity’'s geometry: problem 1, when G is a circle and

problem 2 when G, is aradially oriented ellipse. In the first case the cavity’s geometry is determined by
three parameters — polar angle j g, radius r o of the centre of cavity and radius ry. In the second case the
cavity’s geometry is determined by polar angle j ¢, radius r o of the centre of cavity and two semi-axes of
the ellipse ag and by .

Fig. 1 and Fig. 2 shows the dependencies of the perturbation of temperature field g, (h) on the

surface of body B for cases of circular and liptical cavities. These dependencies have been defined for
each w and fixed values of parameter | and parametersj o, I g, Iy, @y, by respectively.

0,015 - 0,010
0,010 0,005 |
0,005 -
0,000 -
0,000
0,005 - 100057
' h
T
0 0 w=j,+p 2p

Fig. 1. Perturbations of body’ s surface temperature field with circular cavity obtained

for different probing directions w, : a) w, :%k, k=01K,6,b) w, =p +%k, k=01K,6

331



ow=j,+p 2

Fig. 2. Perturbations of body’ s surface temperature field with eliptical cavity obtained

for different probing directions w, : a) w, :%k, k=01K,6,b) w, =p +%k, k=01K,6

In the case of circular cavity caused by reasons of symmetry next properties of temperature field
aw (h) arefollowed

®e @& . 00 _. & _ x®. . 00 .
argemax cmax (qy (0 o))<=} o =W, agcmax cin(ay (0] o)) ++=j o +p =W +p,
ew & h 20 Ew &hn 20 (19)

argaeminaemin(qW (hijo +p))92=j 0+p =W+p,argaeminaemax(q (hijo +p))22=w.

gW 8 h 20 gW 8 ot 20

These properties have been proved by numerical experiment.

In the case of dliptical cavity temperature filed g, (h) depends on: 1) the angle j o of elipse's

orientation; 2) the ratio by/ag, which defines the distance from cavity to surface Sg; 3) the width of
probing flux. Thus, temperaturefiled q,, (h) can satisfy properties (19) or next properties

® . ® . 00 _. ® e . 00 _.
arggmin max (dy, (hj o)) ++=] 0 =W, argcmax min(ay (h.j 0))=+=] o +P =W +p,
gw &h %0 §w &h 20 (20)
& . : 00 . & . & : 60
h, — = , h, =W,
arggmvgxgrr;m(qw( Jo+p))% jo*tp=w+p arggrglvngrqan(qw( Jo+p))% w

As we can see the polar angle j o can be determined directly from measurements of surface

temperature fields according to properties (19), (20). It enables to reduce a number the unknown
parameters to two parameters (r g, Ip ) in thefirst case and to three (r o, ag, by ) in the second case.

Solving of the inverse problem

Quantitative study the developed variational algorithm for solving the inverse problems in cases of
circular and elliptical cavities has been conducted by using numerical experiment [6]. For that the results of
direct problems solving (Fig. 1, Fig. 2) have been used as an input data for the inverse problems.

We studied the convergence of the iterative process depending on initial approximation and the
number of unknown parameters. To do that we have solved problems 1 and 2 for full set of unknown
parameters (three unknown parameters for problem 1 and four unknown parameters for problem 2). Then
we solved these problems for reduced sets of unknown parameters (two unknown parameters for problem 1
and three unknown parameters for problem 2). The results of numerical experiments are presented in
Tables 1, 3 (problem 1) and 2, 4 (problem 2). In the tables: t., Stands for problems’ solving time, N
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is the needed number of calculations of functional (1) and N;

ter

is the needed number of iteration. The

“empirical” datafor inverse problems were taken from the solution of the direct problem which was solved
the next values of geometrical parameters: j o =p/4, ro=0.02 and ry=0.03 (for problem 1) and
jo=p/4, rg=0.02 and ag =0.03, by =0.01 (for problem 2)

The problems were solved on a computer with processor Intel (R) Core (TM) i5 — 3470 CPU
3.2GHz, 8 GB DDR Il RAM and Windows 8.1 operating system.

Table 1
Initial approximation Numerical results
ro(o) rc()o) j ((JO) tcalc: S Nealc Niter
0.015 0.02 p/4 2437.16 92 17
0.025 0.03 p/2 2851.3 104 22
0.03 0.04 5p/12 2669.86 104 25
0.035 0.035 5p/21 2414.89 100 23
0.05 0.045 0 3534.96 148 33
Table 2
Initial approximation Numerical results
a(()0) b(()O) " (()0) J— (()0) ts Nearc Niter
0.015 0.008 0.02 p/4 2503.35 90 15
0.025 0.01 0.03 p/2 3603.65 150 27
0.03 0.015 0.04 5p/12 3497.9 145 28
0.035 0.02 0.035 5p/21 3937.03 160 31
0.05 0.025 0.045 0 4550.2 195 33
Table 3
Initial approximation Numerical results
réo) r c()o) Ncalc Niter
0.015 0.02 216.99 42 10
0.025 0.03 203.04 39 11
0.03 0.04 173.81 36 11
0.035 0.035 189.73 36 11
0.05 0.045 302.77 60 10
Table 4
Initial approximation Numerical results
a(()0) b(()O) " (()0) ts Neac Niter
0.015 0.008 0.02 553.84 104 23
0.025 0.01 0.03 542.05 96 21
0.03 0.015 0.04 523.87 100 21
0.035 0.02 0.035 694.65 124 29
0.05 0.025 0.045 677.75 136 33
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Conducted numerical experiments enabled to estimate a computational capability needed for solving
the inverse problems with the use of the quasi-Newton direct variational method depending of number of
unknown geometrical parameters.

Conclusions

In this paper the problem for identification of geometry of tunnel cavities in along cylindrical body
is considered. The approach is based on exciting of athermal processin the object’ s volume, affecting on it
by concentrated heat flow, and synchronous measuring temperature field on its surface. A variational
formulation of inverse identification problem was done with the use of objective function depending of
unknown geometrical parameters and data obtained by thermal sounding of the object. To solve the
variational problem the algorithm based on a quasi-Newton method and boundary element method is
developed. Numerical experiments performed with the use of the developed algorithm shown its high
convergence and accuracy.

Obtained results can be used to create contactless methods for identification of internal structure of
solids with the use of |R-thermography.
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