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Abstract: The article deals with the application of
binomial and Butterworth standard fractional order
forms in the synthesis of control systems. This work
aims at improving the method for the synthesis of
fractional controllers for the systems of any structure, on
condition of applying desired standard fractional order
forms. Due to the usage of standard fractiona forms, a
range of possible settings for fractional order controllers
in the synthesis of control system loops has been
expanded and the better desired quality of transition
processes in comparison with the integer order
controllers has been provided. It has been proved that
given the obtained research results for establishing the
control system loops,, Butterworth standard fractional
forms with 4= 0,9 + 1,3, as well as the binomial ones
with d= 0,1 + 2 can be recommended to apply since
they meet the requirements of control objects. Some of
the obtained results that can be recommended for
practical use when configuring control systems are
presented below. In terms of the research conducted, a
maximum deviation between the simulation results and
the desired ones does not exceed 1%. Thus, due to the
proposed approach, the efficiency of the synthesized
systems has been increased.

Key words: synthess of a fractiond order contrdler,
fractiona order transfer function, sandard fractiona forms

1. Introduction

Synthesis of control systems (CS) using root
methods makes a wide use of standard forms of a pole
distribution in the complex plane. The dynamic charac-
terristics of any control system are determined by a
transfer function (TF) of the system. If a synthesized CS
has only poles, the form of the transition function of an
original coordinate will be determined by them, i.e. if
CS is presented by a transfer function without zeros, its
dynamic processes are completely defined by an
expression of the characteristic polynomial H(s). For
the systems described by integer characterigtic
polynomials, it is always possible to choose a desired

(standard) characteristic polynomial Hy(S) of the
integer order. The number of H4(s) is large [1], but

binominal standard forms ((H,,(S))), as wel as

Butterworth standard forms (Hpg,(S)) of the integer

order n [1] aremost often chosen for CS.

Among a variety of CS, there may be the systems
described by the characteristic polynomials of fractional
oder g [2,4,5,6,7, 9 11, 12, 13] (q is a fraction).
The synthesis of controllers for such systemsis based on
defined parameters of logarithmic amplitude-frequency
and phase-frequency characteristics, known as Bode
diagrams [5]. The research into the fractiona PID
controllersis considered in [8, 10].

An approach to the synthesis of fractional order CS
may have analogy with the root methods, provided that
the desred characteristic polynomid H(S) is
described by any expresson with known transtion
functions. This desired characterigic polynomia can be
called gandard on the anal ogy with theinteger order ones,
although it does not reflect the pole placement in the
complex plane. Thisis due to the fact that the value of the
poles for fractional order systems is not informative. For
example, from the expression below we see

H(s) = (s+w,)" (D

thet the pole § =-w,., i.e smilarto q =1, 2; 3... The
meatter is probably about the systems with different dynamic
properties, and the pole values in both cases are identical.
At the same time, the trangition functions for both sysems
will be different, aswell astheir Bode diagrams.

Apparently, the results of the controllers synthesis on
the basis of any standard form can be used to obtain
other controllersthan the PID ones.

The aim of thiswork isimproving the method for the
synthesis of fractional controllers for CS of any
structure, on condition of applying desired standard
fractional order forms[3].

2. Synthesis procedure

The approach to the synthess of CS contrallers, which
makes use of the so-caledgandard binomina and
Butterworth forms of fractional order [13] is proposed in
this article. This approach can be used when it is necessary
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to provide desired properties of the contral coordinate: d is
the overshoot value, t,q; represents the time of the firgt
achieving 95% of the invariable value of the coordinae.
The dgorithm of this approach isasfollows:

1. According to the given block diagram of the
closed loop, its TF W (S) is calcul ated;

2. Theexpression W (S) istransformed, dividing its
numerator and denominator by the expression
numerator. Thus, an expression with the numerator equal
to one is obtained, and the denominator corresponds to
the characterigtic polynomial, which includes unknown
parameters,

3. On choosing a hinomial or Butterworth standard
form as the desired one in terms of the desired
parameters of the transition process, i.e. the overshoot d

and the rise time t,,, we bring forward the

transformation of the expression found in 2 above into
the TF expression of a characteristic polynomial of the

selected standard form W, () ;
4. From the condition of identity of the denominator
of W, (s) with that of W,(S), a system of equations

will be obtained;

5. The system of eguations having been solved, the
expressions for finding of unknown parameters of the
characteristic polynomial are obtained, including a TF
W, (s) fractional controller.

This algorithm has the foll owing advantages:

- the possibility of obtaining the desired transition
characteristics matching the binomial, Butterworth and
other standard distribution forms of the characterigtic
equation roots for CSwith zerosin TF;

- the possibility of synthesizing an agtatic control
system, based on the dependent, modal and combined
control principles.

We have considered the possibility [13] of using the
fractional variations of a standard distribution form of
the characteristic equation roots. both binomia and
Butterworth as the standard ones for CS loops
optimization. Below, we give some of the results
obtained that can be recommended for practical use
when configuring CS.

3. Standard fractional forms
Let us consider a Butterworth standard fractional
order form represented by CS with a TF component:

W gy (8) = oo, @

ST +W,.

and a binomiad standard fractional order form

represented by TF

_ Woc 3)

Wt bin(s) = :
st bin(S) (S+Woc)q

where W, isthe desired value of the average geometric

root of an ACS component, which determines its
performance.

By using MATLAB environment, we have
obtained the transition functions and Bode diagrams
[13] that meet the Butterworth standard fractional

order form Hg,(s) =s +w,, for q=0.1+1.9, and
the binomial standard fractional
Hyin(S) = (s+w,)* for q=0,1+2 if wy=1; 10;
100 s*. Fig.1 a, b presents transition functions, and
Fig.2 a, b shows Bode diagrams of the research for

Wo= 10 s',  and parameters of the obtained

order form

transition functions are given in Table 1 and Table 2
respectively.

14

Fig. 1. Transition functions:
Hgyu(s) for g=0,9; 1,0, 1,1; 1,2; 1,3 (a) and

Hpin(s) for q=0,1; 0,4; 0,8; 1,2, 1,6; 2,0 (b), if woe =10s™
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s S - Table 2
2, Binomial standard fractional order form
g id Hbin(S)= (S+wo)?

:é‘ s : ° q We [S] toss [ toerting [S]
2o ; 1 | o1 1 0,3018 03018
= o 2 | 04 1 1,2033 1,2033
L 3 | 08 1 2,4095 2,4095
% : - 4 | 1.2 1 3,405 3,405

: 1 5 | 16 1 4117 4117

_ b - : 6 | 20 1 4,789 4,789
£ : f 7 | o1 10 0,319 0,319
2 ; 8 | 04 10 01219 01219
; : 9 | 08 10 0,2418 02418

: ; : J 0 | 11 10 0322 0322

i 1 | 12 10 0,341 0,341

) 2 | 16 10 0,4108 0,4108
b), : 13 | 20 10 0,478 0,478

14 | 01 100 0,00463 0,00463
& 15 | 04 100 0,01387 0,01387
7 16 | 08 100 0,02592 0,02592
£ 17 | 12 100 0,0358 0,0358

18 | 16 100 0,0432 0,0432

19 | 20 100 0,0507 0,0507

Phass (deq)

1385 -

-180

0?

10°
Frequency (radis)

Fig. 2. Bodediagrams: Hp,:(s) for g=0,9; 1,0; 1,1; 1,2;
1,3 (a) and Hyjn(s) for g=0,1; 0,4; 0,8; 1,2; 1,6; 2,0 (b),

if woe =10s™

Table 1

Butterworth standard fractional order form

Heuw(9)=s™wo

o q W [S] o[%] togs [9] tsatting [S]
1 0,9 1 - 4,75 4,75
2 1,0 1 0 3,014 3,014
3 1,1 1 2,7 2,272 2,272
4 1,2 1 73 1,9136 5,0925
5 1,3 1 13,4 1,72 5,53
6 0,9 10 - 0,365 0,365
7 1,0 10 0 0,3 0,3
8 11 10 2,7 0,28 0,28
9 1,2 10 73 0,28 0,75
10 1,3 10 13,3 0,29 0,94
11 0,9 100 - 0,02985 0,02985
12 1,0 100 0 0,0319 0,0319
13 11 100 2,7 0,0361 0,0361
14 1,2 100 73 0,0424 0,1106
15 1,3 100 11,36 0,0506 0,1628

Let us consider different synthesis options of a
fractional controller for CS in relation to the proposed
method reasoned by:

— the peculiarities of the object under control,

—the wish to obtain a desired transition process
(monatonous or with overshoot).

4. Synthesisexample 1
As one of the options of using the proposed gpproach to
optimization, we may consder CSwithaTF contrd object

1
0,852 +0,5879 +1°
Control object (4) is borrowed from [9] in order to
compare the effectiveness of the proposed synthesis

method with the swarm particle optimization method
considered there. Fig.3 demonstrates a block diagram of

CS with the control object W, (s), fractiona
controller W,(s) and coefficient K, feedback, and a

trangition function of the control object which
corresponds to the TF is shown in Fig. 4 (curve“1").

W (s) = 4

uj Uont
in W, (5) Wy (3) >

fo
Fig. 3. Block diagram of CS

In [9], the author &t the following parameers of the
trandtion process in CS with TF (4): a maximum 10 %
overshoot and 0.3 srisetime Asaresult of the synthess he
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obtained a TF of the controller and a trangtion process with
the following parameters. the 0.03 s rise timeand 0,5 %
overshoot, which differ dgnificantly from the set ones. It
should be noted tha the parametas of the syntheszed
controller aredifficult to beimplemented in practice.

W, (s) = 442,38+324,03s 1° +115, 275" . (5)
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Fig. 4. Transgition functions of: a control object —curve“ 1",
an"optimized loop using Batterworth form —curve “ 2" .

Let us synthetize the controller for CS by means of
the proposed method, for example, with the following
given in Table 1 parameters of the transition process:
d =7,3%, wy. =10 s"and tyg5=0,28 s.

According to the block diagram (see Fig 3), the TF of
the closed loop W (s) isasfollows:

1
W (s)
0,852 +0,5529 +1
W (s) = 1 . (6)
1+W;(s) fc

0,852 +0,5529 +1

Dividing the numerator and denominator of the
obtained TF, by the numerator, we will obtain

1

0,852 +0,58%° +1
W, (s)

W (s) = (7)

+Kfc

It is obvious that to provide the given parameters of the
trandtion process, we choose a Butterworth fractional order
fom Wgpgg(s), and st the reguirement for the

transformation of expression (7) into expression (2), withan
introduced parameter — the feedback coefficient K¢ , which
in expresson (2) isequa to L. If Wy (s) (7) and Wg (s) (2)
areidentica, we shdl obtain thefollowing:

1 _ WOC / KfC
0,852 +0,58>9 +1 s+w,,
K
W (s)

(8)

The desired parameters of the transition process with
a 7,3 % overshoot and tpg5=0,28 s are selected from
Table 1, which are possible due to the standard form
(line Ne9) with the parameters q=1,2; W,,=10 s* and
K¢ = 1. Thus

10
W, §)=———.
t.But () 32:10
Subgtituting (9) into (8) we shal obtain
1 _ 10
0852 +055”+1  s"?+10
We (9)

Equating the identical left and right components of
the characteristic polynomials, a TF of the fractional
order controller will be obtained:

W, (s) =850 +55 03 +10s5 12,

With the use of this controller, we obtain a transition
process with the following parameters. d =81 %,
to05=0,271 s. (Fig. 4, curve “2"), i.e. the deviation from
the given parametersisless than 1 %.

(9)

5. Synthesisexample 2
Let us consider another fractiona controller synthesis
with the given parameters of the trangition process, asin
the previous example: d =7,3 % i tgg5=0,28 s, but for
CSwith aTF control object:
1

0,550 +1
Fig. 5 (curve “1”) shows the trangtion function of the
control object that meetsthis TF.

In this case, the TF of the closed loop (W (S) ) takes
the following form:

W (s) = (10)

1

0,559 +1
1

0,559 +1

Having transformed as in the previous example, and
set standard form (9) for K, =1, we shall obtain

We(s)
W (s) =

1+ W, (s)

fc

1 10
0589 +1 _ §2+10
Rk i —

W;(s)

Hence, the TF of the controller is:

W, (s) =55 %3 +10 12 (11)

So, as a result of the synthesis, a fractional order
controller has been obtained without a proportional
component of the I type.

With the use of this controller, we obtain a transition
process with the following parameters. d =81 %,
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t0.05=0,271 s (Fig. 5, curve “2"), i.e. the deviation from
the given parametersisless than 1 %.

E 1-ts. 10

L |
15 2-ts.2

Fig. 5. Trangtion functions of a control object—curve“ 1",
an optimized loop —curve“ 2",

6. Synthesisexample 3

Let us consider another option of fractional controller
synthesis with the given trandtion function parameters
d =0% and tg95=0,32s for CS with TF control object
(4) (Fig. 6, curve "1"). It is obvious that in this case, on
condition that there is no overshoot present, a binomial
standard fractional form should be used. According to
Table 2, the given parameters of the transition process
are provided by a standard form with the parameters in
line 10 of the Table, if wy, =10s" and K ;. =1. Then

11
Woe /K fc

W, = .
= (S+Wqc )l'l

(12)

From the condition of identity, Wy (s) and Wg(s)
the following equation will be obtained:

1 _ Wocl'l/KfC 13
2.2 0,9 - 11" (13)
0,857 +0,55"7 +1 (s+w,.)
W (S) + Kfc
C

For Ki = 1 and wy=10s' , by dividingthe
numerator and denominator of the right expression part
by 10", we shall obtain:

1 1
0,8522+0,58° +1 . (0,1s+
Wi (9)

(14)
+1

In [13], the possibility of approximation of the
binomial fractional order form by an expression with the
integer order derivativeis proved:

(0,1s+1)* =1+0,11s+0,000555 .

Then expression (14) can be written as

1 1
0,85%2 +0,55%° 1, 0,00055s2 +0,11s+1
W, (s)

Thus, a TF of the controller will be as follows:

0,822 +0,55° +1
0,00055s° +0,11s

Subgtituting TF (15) into the initial CS, we shall
obtain a system with the transition process shown in
Fig.6, curve “3", possessing the following parameters:
d = 0% and tygs= 0,3195s. Thus, the deviation from

the given parameters does not exceed 0,2 %.

We(s) =

(15)

¥ - R - S R S — S R — —

i
23-ts.2
L I}
31 -t,5.40

Fig. 6. Trangtion functions of a control object —curve“1”, a
binomia form-—curve “2", anoptimzedloop —curve“3’.

7. Conclusions

1. The use of standard fractional forms extends the
range of possible fractiona controllers settings in the
synthesis of CS loops, provides better quality of
transition processes in comparison with the integer order
controllers and thereby encreases the effectiveness of the
synthesized systems.

2. On the basic of the results obtained, for the CS
loops to be edstablished, the Batterworth standard
fractional formswith ¢ =0,9 + 1,3 and the binomial ones

with q =0,1+ 2 can be recommended as those able to

meet the requirements of the control objects.

3. The proposed approach to the synthesis of CS
loops with fractional controllers can provide the desired
quality of the transition process. The maximum deviation
between the simulation results and the desired ones does
not exceed 1 %.
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CUHTE3 CUCTEM ABTOMATHUYHOI'O
KEPYBAHHS 3A BUKOPUCTAHHSA
BIHOMIAJIbHOI TA BATTEPBOPTA

CTAHIAPTHUX ®OPM JPOBOBOI'O
HOPAIKY

Spocnas Mapymak, bornan Komuak

Po3ristHyro  3acrocyBaHHS — CTaHAApTHUX  APOOOBHX
6iHomiHanbHUX (GopM Ta dopMm barrepsopra mix yac cUHTE3y
cHCTeM KepyBaHHA. Meroro i€l poOOTH € YyIOCKOHAJICHHS
METO/ly CHHTE3Y JpOOOBUX PEryisTOpiB JOBUIBHOI CTPYKTYPH,
3a yMOBM 3a0e3nedeHHs OakaHUX CTaHAAPTHUX (opM
JIpoOoBOro mopsiaky. Y 3B'A3Ky 3 BUKOPUCTaHHSM JPOOOBHX
CTaHJapTHUX  (GOpM  PO3LIMPEHO  TraMMy  MOXIIMBHX
HaJAIITyBaHb JPOOOBHX pErylsAToOpiB MiJ dYac CHHTE3Y
koHTypiB EMC Ta 3a0e3nedeHo Kpally sKiCTb NEpeXiJHUX
NPOLIECIB  TOPIBHAHO 3 PEryiasaTopaMd LUIOr0  IOPSAKY.
JloBezieHo, 1110 HA OCHOBI OTPUMaHMX PE3YJbTATIB JAOCIIVKCHBb
Uil HajarokeHHs: KoHTypiB EMC MoxkHa pekoMeHIyBaTh
npoboBi crangaptHi ¢opmu: bartepBopra 3a q = 0,9-1,3 i
OiHoMiaubHi 3a = 0,1-2, sk TaKi, 0 3a0BOJILHSIIOTH BUMOTH
00’ €KTIB  KepyBaHHSI. HaBeneHo nesiki 3 OTpUMaHHX
pe3ynbTaTiB, AKi MOXKHA DPEKOMEHIYBaTH IUIsl NPAKTUYHOIO
BUKOPHCTAaHHs IIiJ] 4ac HaJaIUTyBaHHA CHUCTEM KepyBaHH:. 3
OrJIsIy Ha IPOBEEHE JIOCHIPKEHHS, MAKCUMAJIbHE BiJXMICHHS
MDK pe3ynbTaTaMH, OTPUMAHUMU 4Yepe3 MOJAENIOBAaHHS 1
O6axxanumu He nepeBuinye 1 %. Omxe, 3aBIIKH 3aIPOIIOHO-
BaHOMY IMiJXOAYy MiJABHINEHO €()EeKTHBHICTh CHHTE30BaHHX
CHCTEM.
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