
COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING 
Vol. 4, No. 2, 2014 

INDUCTION MOTOR MACROMODEL BASED  
ON EXPERIMENTAL DATA 

Yaroslav Matviychuk  
Lviv Polytechnic National University, Lviv, Ukraine 

matv@ua.fm 

© Matviychuk Y., 2014 

Abstract: The macromodel of transients of a three-
phase induction motor in the terms of stator current, 
rotation rate and loading on the axis is described.  

Experimantal data are averaged per an alternating 
current (AC) period. Regularization of the experimantal 
data differentiation is demonstrated using cubic 
smoothing splines. The number of coefficients of 
macromodel is minimized by reduction of the 
approximating polynomial. Due to the reduction of 
macromodel the identification became correct. Adequate 
behavior of the macromodel has been verified for input 
signals different from those for which the macromodel 
has been built. Experimental transients are reproduced 
by two continuous nonlinear maсromodels of the first 
order with a relative mean square error less than 1%.  

The received macromodel is notable for its low 
order and high-fidelity output signals. 
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1. Introduction 
Mathematical models of varying complexity 

describing the induction motor (IM) have been known 
for a long time [1]. They were created according to the 
description of the engine dynamics with the use of 
algebraic-differential equations of electromechanical 
processes.  

The macromodel approach (“black box’ approach) 
allows us to create a model that is much simpler than the 
traditional ones and is not inferior to them in point of 
accuracy of external variables, omitting complex internal 
processes of the object [2].  

The macromodel can be built in different 
mathematical forms: integral, differential, difference 
equations. The examples of an induction motor 
macromodel in difference equations are presented in [3]. 
A model in [3] is of the third order and reproduces 
transients with averaged relative square error of several 
percent. The proposed publication describes the 
macromodel of the induction motor by differential 
equations of a lower order and with less error 
reproduction of transients. 

According to experimental data shown below the 
induction motor transient processes may be discribed by 
differential equations of the first order. For first-order 
systems with scalar input and output the overall 
macromodel structure looks like 
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where u(t) is the input variable, y(t) is the output 
variable; and the function of the right side of the 
equation is approximated by a power polynomial.  

In the seventies such an equation was used to 
identify the dynamic macromodels of non-linear systems 
[4].  

The macromodel is expected to repeat output 
signals. Identification of the mathematical model (1) in 
the quadratic metric means the determination of the 
vector of coefficients C for given sets of values u(tk), 
y(tk), k=1,...,N with the least square error of the equation 
(1) 
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The problem (2) is reduced to solving a system of 
linear algebraic equations being always compatible and 
having a unique solution. But in general, the problem (2) 
is incorrect and needs regularization [2, 5]. 

2. Preparation of experimental data 
Experimental transient characteristics of the three-

phase IM A051-4А (wye-connection of stator windings, 
nominal power nP =4.5 kW, supply voltage 220 V, 
nominal rotation rate ωn=150.8 rad/sec) have been kindly 
provided by Professor Y. Paranchuk (Lviv Polytechnic, 
Ukraine, yparanchuk@yahoo.com). The induction motor 
is considered as a “black box”. As input signal the load 
current S of a direct-coupled DC generator, that 
simulates the mechanical load of the motor, has been 
chosen. Output signals are supply current I of one of the 
phases and voltage of a direct-coupled tacho-generator 
recalculated into rotation rate W of the rotor. The 
corresponding graphs are shown in Fig. 1. 
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Fig. 1. Graphs of IM transients. S - load current, A; 

W – rotatoin rate, Hz; I - supply current, A. 

The beginning of the graphs from 0 to 1.4 sec 
corresponds to the IM acceleration after switching on the 
power. Next, the generator load is switched on and off 
twice, first with current S equal to 3A, and then with 
current S equal to 8 A. 

The data in Fig. 1 contain more than 13,000 time 
points and, therefore, are unsuitable for building a 
macromodel.  

The macromodel is constructed for root-mean-
square (rms) alternating current Is and averaged on the 
period of AC power (0.02 sec) rotation rate Ws. The 
number of time points is reduced to 357. Graphs of these 
signals are shown in Fig. 2. 

 
Fig. 2. Graphs of rms AC Is and the averaged rotation 

frequency Ws. 

 

3. Macromodel development 
The graphs in Fig. 2 show that the dynamics of the 

IM can be described by two independent nonlinear 
systems of first order. So, the macromodel equations 
may take the form of two differential equations for the 
state variables Ws and Is: 
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The identification of the macromodel (3) can be 
performed traditionally (2), as the problem of 
minimizing mean square residuals of the equations (3) at 
all 357 time points tk where values S(tk), Is(tk), Ws(tk) are 
given: 
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To solve the problem (4), besides S(tk), Is(tk), Ws(tk), 

we must have 
( )ktdIs

dt
 and 

( )ktdWs
dt

. The derivative of 

the discrete functions can be calculated by many 
methods [6]. But, if the numerical calculation of 
derivatives is incorrect, it causes additional difficulties. 
A universal and regularized method is using smoothing 
splines [7]. Cubic smoothing splines are constructed for 
Is(tk) and Ws(tk) using 357 time points. The 
corresponding function csaps with smoothing parameter 
0.99999 is implemented in MATLAB software 

environment. The derivatives 
( )ktdIs

dt
 and 

( )ktdWs
dt

 are 

calculated by analytical differentiation of splines. The 
graphs of interpolating splines and their derivatives are 
shown in Fig. 3 and Fig. 4.  
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Fig. 3. Graphs of the spline interpolating Is(tk) and its 

derivative ( )ktdIs
dt

*0.1,  k=1,…,357. 
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Fig. 4. Graphs of the spline interpolating Ws(tk)  

and its derivative ( )ktdWs
dt

*0.5,  k=1,…,357. 

So, the identification of the systems (3) means 
determining the coefficients KIij and KWij in the 
problems (4). 

If r=5, the number of coefficients is 21 for every 
polynomial. So the problems (4) are incorrect and do not 
give the desired result.  

The method of aproximated polynom reduction [2] 
may regularize the problems (4). This method 
determines mathematically the required coefficients for a 
given task, while all others should be removed.  

The idea of the method consists in the twofold 
identification of the coefficients - for an initial problem 
and for a problem with small random deviations of 
experimental data. Coefficients with the greatest 
relative deviations should be remove. This method is 
justified in [2].  

As a result of the reduction of the polynomials in 
(4), only 8 coefficients in the first polynomial and 7 ones 
in the second polynomial have been kept. Then the 
macromodel (3) becomes much easier: 

1 2 3 4

2 3 4 5
5 6 7 8

1 2 3 4

2 3 5
5 6 7

;

;

= + ⋅ + ⋅ + ⋅ ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅

= + ⋅ + ⋅ + ⋅ ⋅ +

+ ⋅ + ⋅ + ⋅

dIs KI KI S KI Is KI S Is
dt

KI Is KI Is KI Is KI Is
dWs KW KW S KW Ws KW S Ws
dt

KW Ws KW Ws KW Ws

  (5) 

where the first three terms of the right parts of 
differential equations describe the linear parts of the 
macromodels, and the rest reproduce nonlinear 
effects. 

The corresponding identification problems (6) are 
formulated as follows: 
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Fifteen obtained coefficients (7) are substituted in 
macromodel differential equations (5). 
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The solutions of the equations (5) with the 
coefficients (7) and the experimental signals Is(tk), Ws(tk) 
are shown in Fig. 5.  

The averaged relative square error of the 
reconstruction is less than 1%. Thus, they are practically 
identical. 
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Fig. 5. Comparative graphs of IM experimental data and 
corresponding values calculated using the macromodel. 

4. Verification of the macromodel for different 
input signals 

Adequate behavior of the macromodel has been 
verifyed for input signals S(t) different from those for 
which the macromodel was built. Fig. 6 shows 
comparative graphs of solutions of the macromodel 
equations (5) for input signals multiplied by 0.6, within 
the same time as for signals S(t) 3A and 8A, which were 
the basis for building the macromodels. The same figure 
shows the macromodel transients with input signals S(t) 
multiplied by 1.3. The behavior of the macromodel is 
qualitatively satisfactory. 
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Fig. 6. The transients obtained by the means of the macromodel 

with input signals S(t) multiplied by 1.0, 0.6 and 1.3. 

5. Conclusion 
The developed IM macromodel is notable for its 

extremely low order and high-fidelity reproduction of 
the experimental transient response.  

The identification of the macromodel has become 
satisfactory only owing to the regularization of 
calculating derivatives and reduction of the macromodel. 

However, for macromodels with different input and 
output signals and/or different IM the whole identification 
procedure must be performed from its very beginning. 

All calculations have been carried out in the MATLAB 
R2012a. The corresponding program is available on request 
through the author’s e-mail box matv@ua.fm. 
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МАКРОМОДЕЛЬ  
АСИНХРОННОГО ДВИГУНА  
ЗА ЕКСПЕРИМЕНТАЛЬНИМИ 

ДАНИМИ 
Ярослав Матвійчук  

Описано макромодель трифазного асинхронного 
двигуна, отриману для таких параметрів, як навантаження 
на валу, струм живлення однієї з фаз та частота обертання 
ротора. Експериментальні дані усереднено за період 
змінного струму живлення. 

Продемонстровано регуляризацію обчислення похідних 
вихідних сигналів макромоделі за допомогою згладжуючих 
кубічних сплайнів. Кількість коефіцієнтів макромоделі 
мінімізовано за методом редукції апроксимуючого поліному. 
Завдяки редукції ідентифікація макромоделі стала коректною. 
Адекватну поведінку макромоделі перевірено на сигналах, 
відмінних від сигналів, за якими збудовано макромодель. 
Експериментальні перехідні процеси відтворено двома 
нелінійними макромоделями першого порядку зі се-
редньоквадратичною похибкою, меншою за 1 %. 

Отримана макромодель вирізняється гранично 
малим порядком і високою точністю відтворення ви-
хідних сигналів. 
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