Conclusions
The macro-parametric method for exchanging parametric information of a CAD model of MEMS
sensors for integration of heterogeneous CAD systems is developed that alowed to increase design
efficiency. The structure of the integrated design subsystem and client-side software for MEMS moation
sensors are devel oped based on the proposed macro-parametric method.

1. Konuun A. @. Ynpasnenue scusnernnvim yuxiom npooykyuu | A. @. Konuun, M. B. Oscannuxos,
A. @. Cmpexanos, C. B. Cymaporos. — M.. Anaxapcuc, 2002. 2. Jlobyp M. B. /locnioscenns napamempie
cmpamezii asmomamuunozo mpacysanns ¢ CAIIP PCAD | M. B. Jlo6yp, P. T. Ilanuak, 3. FO. I'ompa,
B. B. I'pueop’ ¢s Il Bicnux Jlepocasnozo ynisepcumemy "Jlvsiscoka nonimexuika" . Komn' omepni cucmemu
npoexmysanns. Teopia i npakxmuxa. — Jlbeie, 2000. 3. Reddy Y.V., Ramana. Sinivas, Kanakanahalli,
Jagannathan, V. Karinthi, Raghu. Computer support for concurrent engineering, Computer,V26. — P12(4).
— Jan, 1993. 4. Three Dimensional CAD Interface Specification for Electro-Mechanical Collaborative
Design Using SO 10303-210, ME009.01.00, 27 February 2001, PDES, Inc: http://pdesinc.aticorp.org. 5.
CIMS-ERC.CE Project Final Report, China CIMSERC Technical Report. 1997-12. 6. CE'96/ISPE. The
Proceedings of the Concurrent Engineering Research and Application. — Toronto University, Canada,
1996-08. 7. Dwivedi. Concurrent Engineering — An Introduction / Dwivedi, Suren N. and Sobolewski
Michael // Proc. of the Vth Intern. Conf. on CAD/CAM Robotics and Factories of the Future '90. — Vol. 1.
Concurrent Engineering. — New York: Springer-Verlag, 1991. — P. 3-16. 8. Nevins J.L., Whithey D.E.
Concurrent Design of Products and Processes. — McGraw-Hill, New York, 1989. — 268 p.

UDK 519.6:621.396

M. I. Andriychuk

Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, NASU,
Lviv Polytechnic National University

CAD Department

NON-DESTRUCTIVE TESTING OF MATERIALSBASED ON THE WAVE
SCATTERING BY THE SMALL PARTICLES
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The theory of scattering of the acoustic waves on the small bodiesis applied to solution of
problem related to the non-destructive testing of materials with defects. The change of the
refraction coefficient of the acoustic wave passing through the steel pattern testifies to presence
of microdefects in material. The numerical results are presented for several kinds of sted and
they confirm the possibility to apply the asymptotic scattering theory to problems of the non-
destructive testing.

Key words: scattering, small bodies, microdefects, non-destr uctive testing.

Teopisi po3ciAHHA aKyCTHYHHX XBMJIb HAa MAaJHMX TiIaX BHKOPHCTOBYETbCH /sl
PO3B’ A3aHHA 3a/a4i, OB’ A3aHOI 3 HepyliHIBHUM KOHTpoJeM MaTepianiB 3 nedexramu. 3mina
KoepilicHTa 3aJ0MJIEHHSI AKYCTHYHOI XBMJ, sIka NPOXOAUTH Kpi3b CTaleBHil 3pa3ok,
CBiTYMTH NPO HaABHiCTH MikpoaedeKTiB y HboMy. UHC/I0BI pe3y/ibTaTH HABEAEHO JJIf JeKiIb-
KOX BMIIB CTadi, BOHM CBiI4aTbh MPO MOKJIMBICTH 3aCTOCOBYBATH TEOPil0 aCHMITOTHYHOIO
PO3CisiHHSA 10 3a1a4 HePYHHIBHOT0 KOHTPOJIIO.

Kuarouogi ciioBa: po3cisinns, Madi Tina, MikpoaedexkT, HepyiiHIBHMIT KOHTPOJIb.

I ntroduction
The presence and evolution of micro-defects in materials and structures is prevailing cause of their
destruction. Microdefects reduce the residual life of production and objects that cause a threat of accidents
and failures. Therefore, early diagnostics and identification of degree of the material damage and the nature
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of microdefects allow to prevent such situations in the future, to improve the technological safety, and
assess their remaining life. Timely detection of microdamages is especially necessary while the non-
destructive testing of thermal power equipment such as steam pipes that is exposed to high temperatures
and pressures during operation.

To assess the state of changing the investigated material, the examination of structure of the acoustic
field for waves passing through the sample, with varying degrees microdamages, is used. It is obvious that
the structure of this field contains information about the microdefects in the material, and the goal of
researchers is to develop methods for processing acoustic signals, what allows to allocate this information.
Least frequently, the Doppler laser interferometer OFV5000 produced by GmbH "Polytec" [1] is applied
for obtaining the dependencies of the normal component of particle velocity with time at various pointsin
the surface of samples.

An asymptotic approach to solving the problems of wave scattering on a set of small particles,
elaborated by A. G. Ramm in [2]-[6], is the theoretical basis for the studying the characteristics of an
acoustic wave passing through a medium containing microdefects. This approach allows to determine a
refractive index of the acoustic wave passing through a medium containing microdefects. In turn, this
allows to define a wavelength in the defective material, and hence the normal component of particle
velocity can be calculated [7].

An asymptotically exact solution of the many-body wave scattering problem was developed in [4]
under the assumptions ka<<1, d =0(a”®), M =0O(1/a) , where a is the size of the particles, k=2p /I
is the wave number, d is the distance between neighboring particles, and M is the total number of the
particles contained in the bounded domain DI R® (see Fig. 1). An impedance boundary condition on the
boundary S, of the m-th inclusion (particle) D,, was assumed. In [5], the above assumptions were

generalized as:

_ h()(,n)1 d =0z ), M :O(az_J-k)’ k1 (0,2, 1)

mT T
where z_ is the boundary impedance,
h,=h(x.), x. T D_,and h(x)T C(D) isan arbitrary
continuousin D function, Imh£0.
The initial field u, satisfies the Helmholtz
equation in R® and the scattered field satisfies the
radiation condition. Let the small particle D,, be a
ball of radius a centered at thepoint x,, 1LEMEM .

Solution of scattering problem
The scattering problem consists in solution of
the Helmholtz equation supplemented by the
respective boundary conditions:

Fig. 1. Geometry of problem

M
N2 +K2R2(0)]u, =0 in R*\UD,,, (2

m=1
Tu,,
N

=z, u, onS ,1£EmEM, 3

where

U, =Uy+V,,, 4
u, issolutionto (2), (3) with M =0, (i.e. in the absence of embedded particles) and with the incident field
ika x

€9, and v,, satisfiestheradiation conditions.

Theunique solution to (2) — (4) is of theform

Uy (0 =U(X) + A B0 Y8 (Y)Y, )

m=1 S
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where G(X,y) is Green's function of Hemholtz equation in the casewhen M =0.
Let us introduce the “effective field” u,, acting on the m-th particle:

U3 = U, () =u™ () = Uy (- B YIS (W, xT R?. 6)
S
Let Dpi D beany subdomainof D, and N(D,) bethe number of particlesin D,,. We assume that
1
N(D,) =F ON(X)dx1+0o(D)], a® 0, (7)
DD
where N(x) 2 0 isagiven continuous functionin D . It was proved in [5] that
lim U, (9 - U0 e, =0, ®
and u(x) solves thefollowing equation:
u(x) =y (x) - 4p &3(x, Y)h(y)N(y)u(y)dy. 9)
D

Formula (9) presents the equation for the limiting effective field in the medium, created by embedding
many small particles with the distribution law (7).

Approximate solution for effective field
Let us derive an explicit formula for the effectivefield u, . Rewrite the exact formula (5) as:

Uy (X) = Ug(X) +gl G(X, %) Qp +éM. AG(xY) - G(Xx,)s (Y)dy, (10)

m=1 m=1 S

where Q. =Q.(S,,) -
Using some estimates of G(x,y) [4] and the asymptotic formula for Q. from [5], we can rewrite
the exact formula (10) as follows:

Uy (0 =U,(X) + & G(x x,)Q, +00) , a® 0, |x- X, F a. (11)

The number Q. (X) isgiven by the asymptotic formula

Qn =-4ph(x,)u.(x,)a*“[1+0(D)], a® O, (12)
and the asymptotic formulafor s is

= —h(xm;‘ie(m[u o(1)], a® 0. (13)
Finally, formulafor u,(x) isgiven by
ul” (%) = uy(x) - 4p _él G0 %)%, )u (%, )a™ “ [1+0()] - (14)

Equation (9) for the limiting effectivefield u(x) isused in numerical calculations.
The numerical calculation of the field u, by formula (14) requires the knowledge of the numbers
U, = U,(X,,) . These numbers are obtained by solving alinear algebraic system (LAS). This systemis
M
U =u, -4 a G(x.x,)h(x)u,a*", j=12.,M. (15)

m=1,m? j
This LAS is convenient for numerical calculations, because its matrix is often diagonally dominant.
On the other hand, for finding the solution to the limiting equation (9), we use the collocation
method from [6], which yields thefollowing LAS:

P
UJ =u0j - 4p a G(XJ7X )h(yp)N(yp)up |Dp |7 p=l,2,...,P, (16)

p=Lm* j

where P is number of small cubes D, vy, iscenter of D, |D, | isvolume of D, . We assume that the

union of D, formsa partition of D, and the diameter of D, is O(d"?).
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From the computational point of view solving LAS (16) is much easier than LAS (15), because
P<<M.

We have two different LAS, corresponding to formula (14) and to equation (9). Solving these LAS,
one can compare their solutions and evaluate the limits of applicability of the asymptotic approach from
[5] to solving many-body wave scattering problem in the case of small particles.

Numerical simulation

The numerical approach to solve the wave scattering problem for small particles was developed in
[8]. Some numerical results, which confirmed the applicability of the asymptotic approach to solution of
many-body wave scattering problem, were received there.

From the practical point of view, the following numerical experiments are important:

a) to investigate the relative difference between solutions to the limiting equation (9) and the LAS
(16);

b) for large M , say, M =10°, M =10°, to investigate the relative difference between solutions to
the limiting equation (9) and the LAS (15);

C) to investigate of the relative difference between solutionsto LAS (15) and LAS (16);

d) using method [5] for creating materials with desired refraction coefficient to investigate the

change of n?(x) and length of acoustic wave depending on the number of the small particles (defects)

contained in a pattern.

The calculation a)-c) allow to ascertain the limits of applicability of the asymptotic approach and
determine the range of physical parameters of problem for which the proposed approach can simulate the
propagation of acoustic waves in the patterns under investigation. The calculations related to item d) allow
to assess the changing the refraction coefficient and length of the acoustic wave in the defect media and
explain the non-linear character of wave's length change while the increasing the number of defects (see

[7D.

The recipe to calculate the refraction coefficient n?(x) of media having the small inclusions was
proposed in [5]. The computational formula was derived in [9]:

nZ(X)=-—4pr;((ZX)N+n§, (17)
where ng is refraction coefficient of initial media (without the defects), parameter N is determined as
Ma**
N = , 18
v (18)
M isquantity of particlesin the given domain D, V isvolumeof D. Function h(x) isgiven by
h(x) =z a**, (19)

where z isthe acoustic impedance.

The calculations related to items a)-c) are presented in Figs. 2-9.

Relative difference between solutions to the limiting equation (9) and the LAS (16). The
numerical procedure for checking the accuracy of the solution to equation (9) uses the calculations with
various values of the parameters k, a, I, and h(x), where |, is diameter of D. The absolute and
relative errors were calculated by increasing the number of collocation points. The dependence of the
accuracy on the parameter, where r =3/P, P isthetotal number of small subdomainsin D, is shown in
Fig. 2 and Fig. 3 for k=1.0, I, =05, a=0.01 at the different values of h(x). The solution
corresponding to r =20 is considered as“ exact” solution (the number P for this caseis equal to 8000).

The error of the solution to equation (9) is equal to 1.1 % and 0.02 % for real and imaginary part,
respectively, at r =5 (125 collocation points), it decreases to values of 0.7 % and 0.05% if r =6 (216

collocation points), and it decreases to values 0.29 % and 0.02 % if r =8 (512 collocation points),
h(x) =k?(1- 3i)/(40p). The relative error smaller than 0.01 % for the real part of solution is obtained at
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r =12, this error tends to zero when r increases. This error depends on the function h(x) as well, it
diminishes when the imaginary part of h(x) decreases. The error for the real and imaginary parts of the
solution at r =19 does not exceed 0.006 %.
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Fig. 2. Relative error versusthe parameter r , Fig. 3. Relative error versusthe parameter r ,
h(x) =k?*(L- 7i)/(40p) h(x) =k*(1- 3)/(40p)

The numerical calculations show that the error depends much on the value of k. InFig. 4 and Fig. 5,
the results are shown for k=2.0 and k=0.6, respectively (h(x) =k?(1- 3i)/(40p). It is seen that the
error is nearly 10 times larger at k =2.0. The maximal error (at r =5) for k =0.6 isless than 30 % of the
error for k=1.0. This error tends to zero even faster for smaller k .
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Fig. 4. Relative error versusthe parameter r , k=2.0 Fig. 5. Relative error versusthe parameter r , k =0.6

Relative differ ence between solutions to the limiting equation (9) and LAS (15). As before, we
consider as the “exact” solution to (9) the approximate solution to LAS (17) with r =20. The maximal
relative error for such r does not exceed 0.01 % in the range of problem parameters we have considered
(k=05, 10, 1,=05, 1.0, N(x)® 4.0). The numerical calculations are carried out for various sizes of
thedomain D and various function N(X).

The results for big values of M are presented in Table 1 for k=1.0, N(x)=40.0, and I, =1.0.
The second line contains the values of a. , the estimated value of a, calculated by formula (7), with the
number N(D ) replacing the number M . Inthis case the radius of aparticleis calculated as

8 = (M7 (X)),
D

P
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The values of a,, inthe third line correspond to optimal values of a, whichyield minimal relative
error of the modulus of the solutions to equation (9) and LAS (16). The fourth line contains the values of
the distance d between particles. The maximal value of the error is obtained when n=7, m= YM and it
decreases slowly when i increases. The minimal error of the solutions is obtained at m =60 (total number
of particles M =2.16" 10°.

Table 1
Optimal parametersof D for big n, N(x) =40.0
n 20 30 40 50 60
A 0.0081 0.0027 0.0012 6.65 10 404° 10°*
8o 0.0077 0.0025 0.0011 661 10 404° 10°*
d 0.0526 0.0345 0.0256 0.0204 0.0169
Rel. Error 0.59 % 0.35% 0.36 % 0.27 % 0.19%

The reative error of the solution to LAS (15) tends to the relative error of the solution to LAS (16)
when the parameter m becomes greater than 80 (M =5.12" 10°). Therelative error of the solutionto LAS
(16) is calculated by taking the norm of the difference of the solutions to (16) with P and 2P points, and
dividing it by the norm of the solution to (16) calculated for 2P points. Therelative error of the solution to
LAS (16) is calculated by taking the norm of the difference between the solution to (15), calculated by an
interpolation formula at the points y, from (16), and the solution of (16), and dividing the norm of this

difference by the norm of the solution to (16).

Relative difference between solutions to LAS (15) and LAS (16). The solution to LAS (16) is
considered as benchmark solution; at P =8000, the relative error of solution to LAS (16) does not exceed
0.01%. The number of defects M is equal to 192. In Fig. 6, the dependence of the relative error on the
distance d between particles is shown; one can see that minimal error is attained at d ~4a- 5a for real
(solid line) and imaginary (dashed line) parts of solution (it is equal to 2.3% and 0.94% respectively), the
minimal error for module (dot-dashed line) of solution is attained at d ~8a and it is equal to 0.09%. The
respective error for particles with radius a=0.005 are equal to 1.7%, 0.59%, and 0.01%, respectively,
(see Fig. 7). The values of optimal d are shifted to the left in comparison with Fig. 6; the both parameters
a and d aregiven inthereative units.

Fig. 6. Relative error of solution to LAS (15) versus Fig. 7. Relative error of solution to LAS (15) versus
distance d between defects, a=0.01, M =192 distance d between defects, a=0.005, M =192

The calculations with bigger number of defects are shown in Figs. 8-9. The relative error for this
case growths slowly. The optimal values of d are shifted to right in comparison with Figs. 6-7, and the
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minimal values of error for a=0.01 are equal to 2.7 %, 1.3 % and 0.2 % for the real part, imaginary part
and module of solution. At a =0.005, the minimal errors amount 1.9 %, 0.7 % and 0.1 %, respectively.
Numerical calculations for wider range of the distance d demonstrate that there is an optimal value
of d, starting from which the deviation of solutions increases again. These optimal values of d are shown
in Table 2 for various N(x). The calculations show that the optimal distance between particles increases

when the number of particles grows. For the number of particles M =15°, i.e. m =15, this distance is
about 10a .

Fig. 8. Relative error of solution to LAS (15) versus
distance d between defects, a=0.01, M =480

Fig. 9. Relative error of solution to LAS (15) versus
distance d between defects, a=0.005, M =480

Table 2
Optimal valuesof d for various N(X)
N(X) N(x) =10 N(x) =20 N(x) =30 N(x) =40 N(x) =50
a=0.001 0.08835 0.07678 0.06331 0.06317 0.05056
a=0.005 0.07065 0.04724 0.04716 0.04709 0.04122

Change of refraction coefficient depending on the number of defects contained in a pattern.

The investigation of change of the refraction coefficient n? for the case of metal pattern is carried out by
the example of steel plate containing the microdefects thick with air. The parameters of problems are the
following: the speed of sound in air is equal to 340m/s, the speed of sound in sted is equal to 5130m/ s,

acoustic impedance z of air is equal to 420Pa>s/m, the wave number k =10*m?, the refraction
coefficient n® for stedl is equal to 15.0882%. Theradius of particles is givenin nm (micrometers).

In order to investigate the dependence of resulting refraction coefficient n?(x) on the parameters of
pattern, it is more convenient to give formula (17) by

y4
P 0

where s is the parameter determinative the distance d between the particles (defects), d =sa. It is
assumed in the presented calculations that the defects are distributed uniformly in D, and the value of n?
does not depend on the coordinate X = (X, X,, X;) . Theresults presented in Fig. 10 show that the refraction

coefficient n® tends to the refraction coefficient nZ of initial media (without defects) if the distance

between the particles grows, the dependence of n? on the radius a of particles is non-monotone (the
values of n areshown in Figs. 10, 11). Of course, the formulas (17) and (20) for the case of non-uniformly
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distribution of particles, their different radius, and dependence of the acoustic impedance on the coordinate
X is more complicate.

The results explanatory the variation of refraction coefficient n? in the range a=10"- 10°° for
various s are shown in Fig. 11. Similarly to Fig. 10, the refraction coefficient n? tends to the refraction
coefficient nZ of media without the defects, if the distance between defects grows. Similar properties of

n® are observed for others values of a. The difference between n® and nZ grows if the radius a of
particle increases, the difference depends on a non-monotonically.

Fig. 10. Thevalues of N versusthe parameter s in Fig. 11. Thevalues of n versustheradius a of defect
formula (20)

Conclusions

The numerical results based on the asymptotical approach to solving the scattering problem in a
material with many small particles embedded in it help to understand better the dependence of the effective
field in the material on the basic parameters of the problem, namely,on a, M, d, z,,, N(x), and h(x) .

The accuracy of the solution to the limiting equation (9) depends on the values of k, a, and on the
function h(x) . The accuracy of the solution improves as the number P increases. The relative error of the
solution to asymptotic LAS (15) depends essentially on the function N(x) which is at our disposal. In our
numerical experiments N(x) =const. The accuracy of the solution is improved if N(x) decreases. The
error of the solution decreases if M grows. The relative difference between the solutions to LAS (15) and
(16) can be improved by changing the distance d between the particles, a being fixed. The optimal
values of d change slowly in the considered range of function N(x). The relative error is smaller for

smaller a.
The numerical results demonstrate a possibility to apply the proposed technique for investigation of

the properties of materials with defects. The refraction coefficient n? of defect media depends on the
radius a of particle and distance d between them.
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The questions of optimization of the number and total length of trunk mail postal routes
and grounded optimized schemes of trunk mail transportation have been consider ed.

Key words: postal communications, trunk mail transportation, postal establishments,
letter-post.

Po3risiHyTo mUTaHHSI onTUMi3amii KIIBKOCTI Ta 3arajibHOi JOBKMHHM MAaricTpPaJbHHX
MOLITOBUX MAPLIPYTIB i HA3eMHUX ONTUMI30BAHUX CXeM MaricTpajieil MOIITOBUX MepeBe3eHb.

KuarouoBi cioBa: momToBHil 3B'fI30K, MAaricTpajbHe IepeBe3eHHs] MOIITH, NMOUITOBI
oprami3anii, IMCbMOBa KOPEeCIOHAEHILisl.

I ntroduction

The purpose of postal communications appears to dramatically reduce of costs on the postal network
functioning, to enhance the quality of postal services, to improve the competitiveness of the national postal
operator of Ukraine.

One of the main directions of development of technical and technological post infrastructure is to
reduce the costs of handling and transportation of mail by the creation one or more sorting postal
establishments (PE) in which there are concentrated large postal flows and provided prerequisites of
implementation of automatic mail processing and efficient use of vehicles for mail transportation [1].

The basis of postal network functioning is trunk transportations. Since the trunk mail transportation
are carried out between sorting PE, optimization of the number and location of sorting PE is primary, and
optimization of trunk mail transportation scheme is on secondary priority. It is hecessary to determine the
number and location of sorting PE in order to optimize trunk mail transportation.

By resolving this logistics problem it should simultaneously take into account the number of
handling mail locations, the number and length of routes.

Trunk postal network is one of the main parts of a single postal network of Ukraine, which provides
a steady and regular postal communications of main hub (Kyiv) with all regional centers and via regional
centers.

The main bulk of postal items is transported on trunk postal routes (almost all periodicals, most of
the parcels, and also the bulk of international postal items). Therefore, the rational organization of the trunk
postal communications affects on organization of postal communications in general, the quality and
efficiency of its work.

Today, letter post (LP) sorting holds in each region of Ukraine, objects for sorting are 25, that use 37
postal routes (except routes for express mail, international routes) accordingly.

To reduce the costs of mail processing, Science research centre "Index" of O. S. Popov ONAT was
proposed to enhance regional sorting centers (RSC) with manual sorting of LP on the basis of existing PE
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