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Conclusions 
The macro-parametric method for exchanging parametric information of a CAD model of MEMS 

sensors for integration of heterogeneous CAD systems is developed that allowed to increase design 
efficiency. The structure of the integrated design subsystem and client-side software for MEMS motion 
sensors are developed based on the proposed macro-parametric method.  
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The theory of scattering of the acoustic waves on the small bodies is applied to solution of 
problem related to the non-destructive testing of materials with defects. The change of the 
refraction coefficient of the acoustic wave passing through the steel pattern testifies to presence 
of microdefects in material. The numerical results are presented for several kinds of steel and 
they confirm the possibility to apply the asymptotic scattering theory to problems of the non-
destructive testing. 

Key words: scattering, small bodies, microdefects, non-destructive testing. 

Теорія розсіяння акустичних хвиль на малих тілах використовується для 
розв’язання задачі, пов’язаної з неруйнівним контролем матеріалів з дефектами. Зміна 
коефіцієнта заломлення акустичної хвилі, яка проходить крізь сталевий зразок, 
свідчить про наявність мікродефектів у ньому. Числові результати наведено для декіль-
кох видів сталі; вони свідчать про можливість застосовувати теорію асимптотичного 
розсіяння до задач неруйнівного контролю. 

Ключові слова: розсіяння, малі тіла, мікродефекти, неруйнівний контроль. 

Introduction 
The presence and evolution of micro-defects in materials and structures is prevailing cause of their 

destruction. Microdefects reduce the residual life of production and objects that cause a threat of accidents 
and failures. Therefore, early diagnostics and identification of degree of the material damage and the nature 
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of microdefects allow to prevent such situations in the future, to improve the technological safety, and 
assess their remaining life. Timely detection of microdamages is especially necessary while the non-
destructive testing of thermal power equipment such as steam pipes that is exposed to high temperatures 
and pressures during operation. 

To assess the state of changing the investigated material, the examination of structure of the acoustic 
field for waves passing through the sample, with varying degrees microdamages, is used. It is obvious that 
the structure of this field contains information about the microdefects in the material, and the goal of 
researchers is to develop methods for processing acoustic signals, what allows to allocate this information. 
Least frequently, the Doppler laser interferometer OFV5000 produced by GmbH "Polytec" [1] is applied 
for obtaining the dependencies of the normal component of particle velocity with time at various points in 
the surface of samples. 

An asymptotic approach to solving the problems of wave scattering on a set of small particles, 
elaborated by A. G. Ramm in [2]-[6], is the theoretical basis for the studying the characteristics of an 
acoustic wave passing through a medium containing microdefects. This approach allows to determine a 
refractive index of the acoustic wave passing through a medium containing microdefects. In turn, this 
allows to define a wavelength in the defective material, and hence the normal component of particle 
velocity can be calculated [7]. 

An asymptotically exact solution of the many-body wave scattering problem was developed in [4] 
under the assumptions 1ka << , 1/3( )d O a= , (1/ )M O a= , where a  is the size of the particles, 2 /k π λ=  
is the wave number, d  is the distance between neighboring particles, and M  is the total number of the 
particles contained in the bounded domain 3RD ⊂  (see Fig. 1). An impedance boundary condition on the 
boundary mS  of the m -th inclusion (particle) mD  was assumed. In [5], the above assumptions were 
generalized as: 

 ( )m
m

h x
aκζ = , (2 ) / 3( )d O a κ−= , 2

1( )M O
a κ−= , (0,1)κ ∈ , (1) 

where mζ  is the boundary impedance, 
( )m mh h x= , m mx D∈ , and ( ) ( )h x C D∈  is an arbitrary 

continuous in D  function, Im 0h ≤ . 
The initial field 0u  satisfies the Helmholtz 

equation in 3R  and the scattered field satisfies the 
radiation condition. Let the small particle mD  be a 
ball of radius a  centered at the point mx , 1 m M≤ ≤ . 

Solution of scattering problem 
The scattering problem consists in solution of 

the Helmholtz equation supplemented by the 
respective boundary conditions: 

 2 2 2
0[ ( )] 0Mk n x u∇ + =  in 3

1

R \
M

m
m

D
=
U ,        (2) 

 M
m M

u u
N

ζ
∂

=
∂

 on mS , 1 m M≤ ≤ , (3) 

where 
 0M Mu u v= + , (4) 

0u  is solution to (2), (3) with 0M = , (i.e. in the absence of embedded particles) and with the incident field 
ik xe α , and Mv  satisfies the radiation conditions. 

The unique solution to (2) – (4) is of the form 

 0
1

( ) ( ) ( , ) ( )
m

M

M m
m S

u x u x G x y y dyσ
=

= + ∑ ∫ , (5) 

 
 

Fig. 1. Geometry of problem 
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where ( , )G x y  is Green’s function of Helmholtz equation in the case when 0M = . 
Let us introduce the “effective field” eu , acting on the m -th particle: 

 ( )( ) : ( , ) : ( ) : ( ) ( , ) ( )
m

m
e e e M m

S

u x u x a u x u x G x y y dyσ= = = − ∫ ,  3Rx∈ . (6) 

Let p D∆ ⊂  be any subdomain of D , and ( )pΝ ∆  be the number of particles in p∆ . We assume that 

 2
1( ) ( ) [1 (1)], 0

p

p N x dx o a
a κ−

∆

Ν ∆ = + →∫ , (7) 

where ( ) 0N x ≥  is a given continuous function in D . It was proved in [5] that 
 ( )0

lim || ( ) ( ) || 0e C Da
u x u x

→
− = , (8) 

and ( )u x  solves the following equation: 

 0( ) ( ) 4 ( , ) ( ) ( ) ( )
D

u x u x G x y h y N y u y dyπ= − ∫ . (9) 

Formula (9) presents the equation for the limiting effective field in the medium, created by embedding 
many small particles with the distribution law (7). 

Approximate solution for effective field 
Let us derive an explicit formula for the effective field eu . Rewrite the exact formula (5) as: 

 0
1 1

( ) ( ) ( , ) [ ( , ) ( , ) ( )
m

M M

M m m m m
m m S

u x u x G x x Q G x y G x x y dyσ
= =

= + + −∑ ∑ ∫ , (10) 

where ( )m m mQ Q σ= . 
Using some estimates of ( , )G x y  [4] and the asymptotic formula for mQ  from [5], we can rewrite 

the exact formula (10) as follows: 

 0
1

( ) ( ) ( , ) (1)
M

M m m
m

u x u x G x x Q o
=

= + +∑ , 0a → , | |mx x a− ≥ . (11) 

The number ( )mQ x  is given by the asymptotic formula 
 24 ( ) ( ) [1 (1)], 0m m e mQ h x u x a o aκπ −= − + → , (12) 
and the asymptotic formula for mσ  is 

 ( ) ( ) [1 (1)], 0m e m
m

h x u x o a
aκσ = − + → . (13) 

Finally, formula for ( )eu x  is given by 

 ( ) 2
0

1,

( ) ( ) 4 ( , ) ( ) ( ) [1 (1)]
M

j
e m m e m

m m j
u x u x G x x h x u x a oκπ −

= ≠

= − +∑ . (14) 

Equation (9) for the limiting effective field ( )u x  is used in numerical calculations. 
The numerical calculation of the field eu  by formula (14) requires the knowledge of the numbers 

: ( )m e mu u x= . These numbers are obtained by solving a linear algebraic system (LAS). This system is 

 2
0

1,

4 ( , ) ( ) , 1,2,...,
M

j j j m m m
m m j

u u G x x h x u a j Mκπ −

= ≠

= − =∑ . (15) 

This LAS is convenient for numerical calculations, because its matrix is often diagonally dominant. 
On the other hand, for finding the solution to the limiting equation (9), we use the collocation 

method from [6], which yields the following LAS: 

 0
1,

4 ( , ) ( ) ( ) | |, 1,2,...,
P

j j j p p p p p
p m j

u u G x x h y N y u p Pπ
= ≠

= − ∆ =∑ , (16) 

where P  is number of small cubes p∆ , py  is center of p∆ , | |p∆  is volume of p∆ . We assume that the 

union of p∆  forms a partition of D , and the diameter of p∆  is 1/ 2( )O d . 
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From the computational point of view solving LAS (16) is much easier than LAS (15), because 
P M<< . 

We have two different LAS, corresponding to formula (14) and to equation (9). Solving these LAS, 
one can compare their solutions and evaluate the limits of applicability of the asymptotic approach from 
[5] to solving many-body wave scattering problem in the case of small particles. 

Numerical simulation 
The numerical approach to solve the wave scattering problem for small particles was developed in 

[8]. Some numerical results, which confirmed the applicability of the asymptotic approach to solution of 
many-body wave scattering problem, were received there. 

From the practical point of view, the following numerical experiments are important: 
a) to investigate the relative difference between solutions to the limiting equation (9) and the LAS 

(16); 
b) for large M , say, 510M = , 610M = , to investigate the relative difference between solutions to 

the limiting equation (9) and the LAS (15); 
c) to investigate of the relative difference between solutions to LAS (15) and LAS (16); 
d) using method [5] for creating materials with desired refraction coefficient to investigate the 

change of 2( )n x  and length of acoustic wave depending on the number of the small particles (defects) 
contained in a pattern. 

The calculation a)-c) allow to ascertain the limits of applicability of the asymptotic approach and 
determine the range of physical parameters of problem for which the proposed approach can simulate the 
propagation of acoustic waves in the patterns under investigation. The calculations related to item d) allow 
to assess the changing the refraction coefficient and length of the acoustic wave in the defect media and 
explain the non-linear character of wave’s length change while the increasing the number of defects (see 
[7]). 

The recipe to calculate the refraction coefficient 2( )n x  of media having the small inclusions was 
proposed in [5]. The computational formula was derived in [9]: 

 2 2
02

4 ( )( ) h x Nn x n
k

π
= − + , (17) 

where 2
0n  is refraction coefficient of initial media (without the defects), parameter N  is determined as 

 
2MaN

V

κ−

= , (18) 

M  is quantity of particles in the given domain D , V  is volume of D . Function )(xh  is given by 

 2( )h x a κζ −= , (19) 
where ζ  is the acoustic impedance.  

The calculations related to items a)-c) are presented in Figs. 2-9. 
Relative difference between solutions to the limiting equation (9) and the LAS (16). The 

numerical procedure for checking the accuracy of the solution to equation (9) uses the calculations with 
various values of the parameters k , a , Dl , and )(xh , where Dl  is diameter of D . The absolute and 
relative errors were calculated by increasing the number of collocation points. The dependence of the 
accuracy on the parameter, where 3 P=ρ , P  is the total number of small subdomains in D , is shown in 
Fig. 2 and Fig. 3 for 0.1=k , 5.0=Dl , 01.0=a  at the different values of )(xh . The solution 
corresponding to 20=ρ  is considered as “exact” solution (the number P  for this case is equal to 8000). 

The error of the solution to equation (9) is equal to 1.1 % and 0.02 % for real and imaginary part, 
respectively, at 5=ρ  (125 collocation points), it decreases to values of 0.7 % and 0.05 % if 6=ρ  (216 
collocation points), and it decreases to values 0.29 % and 0.02 % if 8=ρ  (512 collocation points), 

)40/()31()( 2 π−= ikxh . The relative error smaller than 0.01 % for the real part of solution is obtained at 
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12=ρ , this error tends to zero when ρ  increases. This error depends on the function )(xh  as well, it 
diminishes when the imaginary part of )(xh  decreases. The error for the real and imaginary parts of the 
solution at 19=ρ  does not exceed 0.006 %. 

  

Fig. 2. Relative error versus the parameter ρ , 
2( ) (1 7 ) /(40 )h x k i π= −  

Fig. 3. Relative error versus the parameter ρ , 
2( ) (1 3 ) /(40 )h x k i π= −  

The numerical calculations show that the error depends much on the value of k . In Fig. 4 and Fig. 5, 
the results are shown for 0.2=k  and 6.0=k , respectively ( )40/()31()( 2 π−= ikxh . It is seen that the 
error is nearly 10 times larger at 0.2=k . The maximal error (at 5=ρ ) for 6.0=k  is less than 30 % of the 
error for 0.1=k . This error tends to zero even faster for smaller k . 

 
 

Fig. 4. Relative error versus the parameter ρ , 2.0k =  Fig. 5. Relative error versus the parameter ρ , 0.6k =  

Relative difference between solutions to the limiting equation (9) and LAS (15). As before, we 
consider as the “exact” solution to (9) the approximate solution to LAS (17) with 20=ρ . The maximal 
relative error for such ρ  does not exceed 0.01 % in the range of problem parameters we have considered 
( 0.15.0 ÷=k , 0.15.0 ÷=Dl , 0.4)( ≥xN ). The numerical calculations are carried out for various sizes of 
the domain D  and various function )(xN . 

The results for big values of M  are presented in Table 1 for 0.1=k , 0.40)( =xN , and 0.1=Dl . 
The second line contains the values of esta , the estimated value of a , calculated by formula (7), with the 
number )(N p∆  replacing the number M . In this case the radius of a particle is calculated as 

 )2/(1))(/( κ−

∆
∫=

p

dxxNMaest . 
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The values of opta  in the third line correspond to optimal values of a , which yield minimal relative 

error of the modulus of the solutions to equation (9) and LAS (16). The fourth line contains the values of 
the distance d  between particles. The maximal value of the error is obtained when 7=µ , 3 M=µ  and it 
decreases slowly when µ  increases. The minimal error of the solutions is obtained at 60=µ  (total number 

of particles 51016.2 ×=M . 
Table 1 

Optimal parameters of D  for big µ , 0.40)( =xN  

µ  20 30 40 50 60 

esta  0.0081 0.0027 0.0012 41065.6 −×  41004.4 −×  

opta  0.0077 0.0025 0.0011 41061.6 −×  41004.4 −×  

d  0.0526 0.0345 0.0256 0.0204 0.0169 
Rel. Error 0.59 % 0.35 % 0.36 % 0.27 % 0.19 % 

 
The relative error of the solution to LAS (15) tends to the relative error of the solution to LAS (16) 

when the parameter µ  becomes greater than 80 ( 51012.5 ×=M ). The relative error of the solution to LAS 
(16) is calculated by taking the norm of the difference of the solutions to (16) with P  and P2  points, and 
dividing it by the norm of the solution to (16) calculated for P2  points. The relative error of the solution to 
LAS (16) is calculated by taking the norm of the difference between the solution to (15), calculated by an 
interpolation formula at the points py  from (16), and the solution of (16), and dividing the norm of this 
difference by the norm of the solution to (16). 

Relative difference between solutions to LAS (15) and LAS (16). The solution to LAS (16) is 
considered as benchmark solution; at 8000=P , the relative error of solution to LAS (16) does not exceed 

%01.0 . The number of defects M  is equal to 192. In Fig. 6, the dependence of the relative error on the 
distance d  between particles is shown; one can see that minimal error is attained at aad 54~ −  for real 
(solid line) and imaginary (dashed line) parts of solution (it is equal to %3.2  and %94.0  respectively), the 
minimal error for module (dot-dashed line) of solution is attained at ad 8~  and it is equal to %09.0 . The 
respective error for particles with radius 005.0=a  are equal to %7.1 , %59.0 , and %01.0 , respectively, 
(see Fig. 7). The values of optimal d  are shifted to the left in comparison with Fig. 6; the both parameters 
a  and d  are given in the relative units. 

 

  

Fig. 6. Relative error of solution to LAS (15) versus 
distance d  between defects, 0.01a = , 192M =  

Fig. 7. Relative error of solution to LAS (15) versus 
distance d  between defects, 0.005a = , 192M =  

The calculations with bigger number of defects are shown in Figs. 8-9. The relative error for this 
case growths slowly. The optimal values of d  are shifted to right in comparison with Figs. 6-7, and the 
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minimal values of error for 01.0=a  are equal to 2.7 %, 1.3 % and 0.2 % for the real part, imaginary part 
and module of solution. At 005.0=a , the minimal errors amount 1.9 %, 0.7 % and 0.1 %, respectively. 

Numerical calculations for wider range of the distance d  demonstrate that there is an optimal value 
of d , starting from which the deviation of solutions increases again. These optimal values of d  are shown 
in Table 2 for various )(xN . The calculations show that the optimal distance between particles increases 

when the number of particles grows. For the number of particles 315=M , i.e. 15=µ , this distance is 
about a10 . 

  
Fig. 8. Relative error of solution to LAS (15) versus 

distance d  between defects, 0.01a = , 480M =  
Fig. 9. Relative error of solution to LAS (15) versus 
distance d  between defects, 0.005a = , 480M =  

 
Table 2 

Optimal values of d  for various )(xN  

)(xN  10)( =xN  20)( =xN  30)( =xN  40)( =xN  50)( =xN  

001.0=a  0.08835 0.07678 0.06331 0.06317 0.05056 
005.0=a  0.07065 0.04724 0.04716 0.04709 0.04122 

 
Change of refraction coefficient depending on the number of defects contained in a pattern. 

The investigation of change of the refraction coefficient 2n  for the case of metal pattern is carried out by 
the example of steel plate containing the microdefects thick with air. The parameters of problems are the 
following: the speed of sound in air is equal to sm /340 , the speed of sound in steel is equal to sm /5130 , 

acoustic impedance ζ  of air is equal to msPa /420 ⋅ , the wave number 1410 −= mk , the refraction 

coefficient 2
0n  for steel is equal to 20882.15 . The radius of particles is given in mµ  (micrometers). 

In order to investigate the dependence of resulting refraction coefficient )(2 xn  on the parameters of 
pattern, it is more convenient to give formula (17) by 

 2 2
02 3

4n n
k s a

πζ
= − + , (20) 

where s  is the parameter determinative the distance d  between the particles (defects), sad = . It is 
assumed in the presented calculations that the defects are distributed uniformly in D , and the value of 2n  
does not depend on the coordinate ),,( 321 xxxx = . The results presented in Fig. 10 show that the refraction 

coefficient 2n  tends to the refraction coefficient 2
0n  of initial media (without defects) if the distance 

between the particles grows, the dependence of 2n  on the radius a  of particles is non-monotone (the 
values of n  are shown in Figs. 10, 11). Of course, the formulas (17) and (20) for the case of non-uniformly 
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distribution of particles, their different radius, and dependence of the acoustic impedance on the coordinate 
x  is more complicate. 
 The results explanatory the variation of refraction coefficient 2n  in the range 67 1010 −− −=a  for 
various s  are shown in Fig. 11. Similarly to Fig. 10, the refraction coefficient 2n  tends to the refraction 
coefficient 2

0n  of media without the defects, if the distance between defects grows. Similar properties of 
2n  are observed for others values of a . The difference between 2n  and 2

0n  grows if the radius a  of 
particle increases, the difference depends on a  non-monotonically. 

  

Fig. 10. The values of n  versus the parameter s  in 
formula (20) 

Fig. 11. The values of n  versus the radius a  of defect 

Conclusions 
The numerical results based on the asymptotical approach to solving the scattering problem in a 

material with many small particles embedded in it help to understand better the dependence of the effective 
field in the material on the basic parameters of the problem, namely, on a , M , d , mζ , )(xN , and )(xh . 

The accuracy of the solution to the limiting equation (9) depends on the values of k , a , and on the 
function )(xh . The accuracy of the solution improves as the number P  increases. The relative error of the 
solution to asymptotic LAS (15) depends essentially on the function )(xN  which is at our disposal. In our 
numerical experiments const)( =xN . The accuracy of the solution is improved if )(xN  decreases. The 
error of the solution decreases if M  grows. The relative difference between the solutions to LAS (15) and 
(16) can be improved by changing the distance d  between the particles, a  being fixed. The optimal 
values of d  change slowly in the considered range of function )(xN . The relative error is smaller for 
smaller a . 

The numerical results demonstrate a possibility to apply the proposed technique for investigation of 
the properties of materials with defects. The refraction coefficient 2n  of defect media depends on the 
radius a  of particle and distance d  between them. 
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The questions of optimization of the number and total length of trunk mail postal routes 
and grounded optimized schemes of trunk mail transportation have been considered.  
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Introduction 
The purpose of postal communications appears to dramatically reduce of costs on the postal network 

functioning, to enhance the quality of postal services, to improve the competitiveness of the national postal 
operator of Ukraine. 

One of the main directions of development of technical and technological post infrastructure is to 
reduce the costs of handling and transportation of mail by the creation one or more sorting postal 
establishments (PE) in which there are concentrated large postal flows and provided prerequisites of 
implementation of automatic mail processing and efficient use of vehicles for mail transportation [1]. 

The basis of postal network functioning is trunk transportations. Since the trunk mail transportation 
are carried out between sorting PE, optimization of the number and location of sorting PE is primary, and 
optimization of trunk mail transportation scheme is on secondary priority. It is necessary to determine the 
number and location of sorting PE in order to optimize trunk mail transportation. 

By resolving this logistics problem it should simultaneously take into account the number of 
handling mail locations, the number and length of routes. 

Trunk postal network is one of the main parts of a single postal network of Ukraine, which provides 
a steady and regular postal communications of main hub (Kyiv) with all regional centers and via regional 
centers. 

The main bulk of postal items is transported on trunk postal routes (almost all periodicals, most of 
the parcels, and also the bulk of international postal items). Therefore, the rational organization of the trunk 
postal communications affects on organization of postal communications in general, the quality and 
efficiency of its work. 

Today, letter post (LP) sorting holds in each region of Ukraine, objects for sorting are 25, that use 37 
postal routes (except routes for express mail, international routes) accordingly. 

To reduce the costs of mail processing, Science research centre "Index" of O. S. Popov ONAT was 
proposed to enhance regional sorting centers (RSC) with manual sorting of LP on the basis of existing PE 
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