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Abstract. The paper considers differential equation of the vibro-impact resonance system with an
asymmetric piecewise linear dastic characteristic. Thetime-instant of switching of dastic characteristic is
determined on the basis of equality of oscillation period to average value of the corresponding
eigenfrequencies. Then, expansion of the asymmetric piecewise linear dastic characteristic into Fourier
series was made Theinitial differential equation was reduced to a kind of parametric equations of Hill’s
and Mathieu’ s type with taking into account the time of elastic characteristic change. Stability analysis of
parametric Mathieu equation is shown for the analysis of natural oscillations. For stability analysis of the
synthesized by various stiffness coefficients of vibro-impact system, dependencies of Mathieu equations
coefficients on the parameter of synthesis are used. The solution of the initial equation with forced
oscillations in the form of asymmetric two-frequency vibrations has been obtained by means of Bubnov-
Gaerkin and Levenberg-Marquardt methods for nonlinear algebraic systems of equations, also amplitude
and phase frequency dependence was graphically drawn. The basic equation with an asymmetric eastic
response characteristic festure is determined by the fixed natural frequency of oscillations independently
of amplitude Numerical solution of differential equations by means of Runge-Kutta method are
presented for comparison. Comparison of the vibro-impact resonance system kinematics characterigtics,
synthesized by the dastic parameters and solved by the listed methods, is conducted. The feasibility of
using nonlinear analysis presented in two harmonics in Fourier series asymmetric elagtic characterigtic is
judtified in the article. The suggested approach with Bubnov-Galerkin method for general Hill’s equation
and correation analysis of time kinemeatic characteristics was used. Acceleration frequency spectrum and
harmonics are obtained on the basis of Runge—-Kutta numerical method simulation of theinitial nonlinear
differential equation.

Introduction

The subject of nonlinear and vibro-impact systems currently is sufficiently popularized. Vibro-
impact systems are belong to the class of strongly nonlinear systems, subject to complex analysis and
actually do not has an analytical solutions [1, 2]. Their particularity is determined that the practical
realization of systems is performed by various, especially piecewise-linear and piecewise-nonlinear elastic
characteristics. That gives them special parametric properties and prablems of dynamics stahility.

Analysis of moder n infor mation sour ces on the subject of the article

The basic share research of the vibro-impact systems is aimed at improving for the analytical solution
methods of basic and subharmonic oscillations of parametrical Mathieu's and Hill’'s equation, stability research
and analysis of bifurcations and chaos phenomena [3—7]. The practical value of the vibro-impact is justified by low
technological eficiency in various complex physical materials and mechanical processes [8-11].

Problem statement

Submitted article provides a review of the vibro-impact system’'s equations based on asymmetric
piecewise linear elagtic characteristics with following transfer of the equation for the estimation of parametrical
oscillation, stability analysis for free vibration. The possibility of solution forced oscillations of reduced
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parametric equations as asymmetric two-frequency oscillations is regarded with an followed by a comparative

evaluation the solutions of theinitial equation of the vibro-impact system with its parametric representation.
Statement of the main material

The known differential equation of the vibratory system with an linear viscous friction is consider [8, 11]:
M g&(t) +bxk(t) +c(t)x(t) =F (t), )
where an elastic asymmetric dependence has the form:
_ta x(t)* 0
Ve x(t)<0.
Condition (2) can be written as follows [8]:
c(t)=i'cl’ O£t£Ly,

}02, t, <t£2p/w,
where t; — time when switch of eastic parameter is made (Fig. 1); w — the oscillation frequency of the

o

2
3

system; ¢, > ¢, . Contact time during which the system works with an dastic parameter ¢, defined as ZWp -t

It is assumed the coefficient ¢, is defined traditional way for the one-frequency resonant systems as
=M (W/Z)Z. The coefficient ¢, can take values according to the setting L of synthesis
=M (L W/ 2)2, where z=w/W, is the proportion of resonance adjustment relative eigenfrequency

W,. We will have, in this case a ratio of easticity coefficients as ¢, /¢, = L2. So, will evaluated the
solutions of the vibro-impact system equation (1) through the synthesis by entering the L parameter.
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Fig. 1. Siffness coefficient time change at the period of oscillation
The moment t; will be determine on the basis of equality oscillation period average values of the
corresponding eigenfrequencies wp; = \/W and wg, = \/W with fixed oscillation eigenfrequency
Wg = 2WoWop /(Wop +Wop) [6, 71, which is typical for systems with an asymmetric dastic characteristic of
type (2):

2 2p 0
1 Ct, w -
= CGvordt + wopdt 7O Wy, (4)
ONo ONo 0
T 90 ¢ -
1 -
§ p

. 2 W
isfrom where, t; =P Woo .
W Wop1 +Wp2
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Expanding dependence (2) by Fourier seriesisreceived in aform:

ao m
c(t) =2 + & cx sin(kwt + gy ),
2

and the coefficients of the series aree ag=2c, + Cl_pcz Wy,  Ck =\/ak2 +bk2 ,
a =(cy - cp)sin(lnty )/ pk, by = 2(c; - cp)sin(lwty / 2)% 7 pk, ok =p +atan(a /by ),

cx =-2(cy - cp Wsin(kwty /2)? /pk.
Stiffness coefficient change in expanded form:

. adwty O
i Aey-c) M\ 2 o
oft)=cy + 221, + 2p = " sin(kwt + gy ).
k=1
Equation (1) can be written as:
. ¢ .
2 Wop Jf?l(Wm2 - W022)+ 3
é a
)+ 2n5a(t) + § 40 ¢ dt)= £ (1), ©

P 2 " ,
6 b v 2 VTS 20
8 P k=1 k g

where appropriate notation adopted 2n=b/M , T=2p/w, f(t)=F(t)/M .
Equation (5) isthe Hill’s equation [2, 5, 12, 13] in the next form:
&(t)+2n>k(t) +[d +ey () x(t) = £ t). (6)

. . t
where d, e are constant system parameters; y (t) is disturbance function: d=wp,? +?1(w012 - w022):w01w02,

e=2w?-w?)/p, y (1)=& Y, sin(knt+g,), Y =y/sin(kwt;/2)* /k =sin(kwt; / 2) eesgn (sin(kwty/2)) /k
k=1

10, if z=0,
y(t)=y(t+T), ¢y (t)dt=0, csyn(z) =11, if Re(2)>00r (Re(z )= 0and Im(z) > 0),
1,.-1 otherwise.

OQ—i

Then will coming to the equation in dimensionless form, taking t =wt and f (t) = fy>sin(wt):

RY:

dt

where h=n/w, d=wgWg, /W2, §=2(W022 - WOlz)/pWZ, f=fo/wP.

z(t)+2hx§_tz(t)+[a+ay(t)]xz(t): fsint, @)

After replacing X(t)=e ™ xZ(t) [3] the equation (7) is reduced to dimensionless form with the
right side:
d? - ~
—5 Z(t) +[dy + &y (t)]2(t) = fe™ sint, ®)
dt
where d; =d- h?.
Let’'s consider the possibility of bringing equation of the form (6) to the Mathieu equation [2, 3, 11,
14]. Number of harmonics for thisis m=1. Now, the disturbance function will have the form:
y (t)= Y, sin(wt+g;)=sin(wt; / 2)sin(wt +g;),
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where g; = p+atansin(wt1)/25in(wt1/2)zl, and equation (6) will be:
&(t) + 2n>4(t) +[d +nosinwt + g )ox(t) = (1), )

oo - 2
where n = exsin(wt; / 2) :(WOZ—WOl)@n(thlz).
p
Natural oscillations and stability analyss Equation (9) is written without regard of theright side:
K(t) + 2n xk(t) + éd+n><COS(;—-Wt gl% =0. (10)

P % 2-9 2 2_ 4 .2
Dencting for —- wt- g=2t, we obtain t=%-———, dt=-—dt and dt“=——dt“, then
2 w w w2

equation (10) takes the form:

d? .y & 4n6_ d .\ €4d  de . awh § 0
——Xx|t)+¢- —=x—x(t)+a — n——cosZt XX(t)=0. 11
&2 (t) ¢ W (t) gw—z 2 e ( )H (t) (11)

Denoting for 2h =-4n/w and completing a procedure similar to (8) will have the Mathieu equation
in dimensionless variables:

2 4 ..
d—z(t)+ 2 hzg-
dt 2 &w? @

also theclassical form:

Zée 2 sn?ﬂﬂ@cos(Zt)ﬂxz(t) 0,
- a

d2

—Zz(t)+[a- 2q cos(2t )] xz(t):O, (12
dt
2
where a—4—g- h? —4—3- 48%—0— 4 (w01w02 n2)
W w2 &w? g
q=- z—isin(vvt1/2)=wsin(wt1/2).
w pw

Equation (12) is analyzed for parametric stability according to the diagram (Fig. 2), built by Mathieu
functions and Maple software. The diagram was built we counted the symmetry 2 -axis. For the vibration
system analysis was sdected following parameters. M = 4L435[kg] ;W= 314,15[rad / s]; 2=0,94;
b=2Mwz; z=02; fg= 43,442[N/kg]. For gtability analysis of the synthesized by L vibro-impact system
used dependency of Mathieu equations coefficients a and q with L . Parametric graph a = f(q) that hasthe
form approximate to line is constructed. The point A(q; a) can be located on the line with the appropriate
values L . The gtability of the solution is determined by the point provision in relevant chart area. When the
value of the synthesis parameter is L = 2 the point coordinates are A(3,74;8,89) and is located in a stable zone
of stability diagrams. Stability and instability of the system proves a view at the Fig. 3 of special functions
MathieuC, MathieuS — even and odd Mathieu functions. The graphics are periodic in stable zones (Fig. 3, afor
L =2) or thosethat grow toinfinity for unstable (Fig. 3, bfor L =3).

Note, that the use of the Mathieu eguation may be restricted due to precision of the result.
Otherwise, to apply over number of harmonics and directly stability analysis spending by the Hill's
equation (7) [2, 5, 12, 13].

Forced oscillations. Solution of equation (9) islooking in the form:

X(t) = Xo + Xq sin(wt +] 1)+ X sin(2wt +j 5), (13)
here is accounted dissymmetry X, amplitude values X; and X,, harmonics w and 2w, the initial
phases j; and j 5.
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Fig. 2. Sability chart for the linear Mathieu equation: S— stable zone, U — unstable zone

a)

b)
Fig. 3. Sable (a) and ungtable (b) solutions of Mathieu functionswith the different settings L :a— L =2 ,b—L =3
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Substituting (13) in to (9), we get the following result with an parameters of the solution and
oscillatory system as a function:

e u
¢ - fosinfon) + Xo e+ nosinfut + )+
é < C . N a
L=6&+X; xgd- wz)sin(wt +j 1)+ 2wn >cos(wt +j 1) + nxcos(j 1 - ¢r)  n>cos(awt + 1+91)H+ a.
e 8 2 2 i
é . . - N7
§+X2 xgd- 4W2)sin(2wt +j o)+ 4wnxcos(2wt +j ,)+ n><cos(121 %). n><cos(2vvt2+1 1"‘91)33
€ u

The Bubnov-Galerkin method is suited to the analysis of nonlinear systems with soft eastic
characteristic and analysis of subharmonic oscillations [16, 17]. Used the following procedure and
orthogonalization of the result of substitutions L relative to the desired solution (13):

2p/w 2p/w 2p/w
oLdt=0, oLsin(wt+j)dt=0, @Looswt+j)dt=0,
0 0 0
2p/w 2p/w
oLsin(awt +j ,)dt=0, @Lcos(2wt+j ,)dt=0,
0 0
that allowed to receive the following system of nonlinear equations:
X od+ X1“’00520 1- 91):01 !
. - - .I.
Xl(d- WZ)- fooos(j 1)+ Xan>sinj ;'J 2+g1)+Xo n>cos(j ; - gl)zo,.:.
. . I
L Xonxcos|j q - + . [}
fosinf )+ X2 112 *G1) iy, - )0 y (14)
|
Xz(d- 4w2)+ Xynosin(j ;'J 2+91):01 |
o |
-4szn+X1n>COS(J;_J 2+gl)zo. iD

The system’s result is solved numerically by known methods for nonlinear equations (L evenberg-
Marquardt Method). The equations (14) solutions are included in (13) and allow to construct of the
kinematics parameters time dependence. Vector of the calculated parameters at the fixed disturbance
frequency w = 314,15[rad / s] synthesized by the value parameter L =2 is next:

. AT

ot 870340 [m]@

&y U 1240 *[m| U

&1y e G

X ,U=&2,0240 *[m| .

a é a

L8 o,seis[reidl ;
U éo21ifrad] U
20 -
& H

QM @D

The proposed approach is somewhat simplified, as seen equation (9), which was received by
consideration one harmonic in disorder of dastic characteristics in Fourier series, and imposes find the
result as atwo-frequency function (13). Accordingly the tolerance of the solutions can be limited.

Another way to obtain the basic time characteristics is possible by numerical solution of the initial
equation (1) by known methods for differential equations (such as Rkadapt).

Pearson corrdation coefficient was used for the convergence comparison of the received
dependences by methods Levenberg-Marquardt and Rkadapt. The table lists the value of the Pearson's
criterion for synthesized vibro-mpact systems.
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The proposed approach with Bubnov-Galerkin method for general Hill’s equation (6) and corrdation
analysis of time characteristics for more harmonics (m=2, m=3) was used. This greatly improves the
convergence of kinematic characteristics for the harmonic’ s number of m=2.

a) b) €)
Fig. 4. Time dependencies of kinematics parameters of the vibro-impact systemwith ratio ¢, /¢, =4

The proposed approach with Bubnov-Galerkin method for general Hill’s equation (6) and corrdation
analysis of time characteristics for more harmonics (m=2, m=3) was used. This greatly improves the
convergence of kinematic characteristics for the harmonic's number of m=2.

Note, that such procedures can be conducted to analyze the subharmonic w/2 oscillations and
increasing the number of harmonicsin the solution (13).

Table
Pear son correlation coefficients basic kinematic par ameters of the vibro-impact systems

The parameter of synthesis L The m number of harmonicsin the equation (5) Kinematics characteristics
X(t) v(t) a(t)

_ m=1 0,964 | 0921 | 0,856

L=2 m=2 0994 | 0981 | 0916

L =3 m=1 0,66 0,615 | 0,531

m=2 0,964 | 0,898 | 0,728

m=1 0,436 | 0,469 | 0,381

L=4 m=2 0,953 | 0,855 | 0,618

m=3 0,785 | 0,752 | 0,572

The system (14) was used to construct the amplitude-frequency and phase-frequency characteristics
of the solution (13). Fig. 5 shows the dependence of these parameters for the solution of two-frequency
vibrations (13). The initial phases j 1 and j , leap is observed at the resonant frequencies. The equation

(1) with an elastic response (2) characteristic feature is fixed natural frequency of oscillations with
independent of amplitude. Linear frequency response for the amplitudes (Fig. 5, a) this shows.

Vibro-impact system, although linear frequency response is endowed with a lot of frequency
spectrum, which is particularly manifests itself on the acceleration characteristic. Acceleration frequency
spectrum and harmonics (Fig. 6) obtained by Runge—-K utta numerical method simulation of the differential
equation (1).

Equation (13) considers only the two multiples harmonics wy = 314,15[rad / s] and 2w, = 6283[rad/ s]
unlike to the direct solution of equation (1) by integrated numerical method.
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Therefore, for a complete range of acceeration’s amplitude values and for more adequate analysis of
the vibro-impact processes worth in solution (13) to increase the number of unknown parameters with an
3w, and 4w, harmonics.

a) b)

Fig. 5. Amplitude-frequency (a) and phase-frequency (b) descriptions of the vibro-impact system
with stiffness coefficientsratio ¢, /¢y =4

Fig. 6. Spectral analysis of the vibro-impact system’'s acceleration
Conclusions

We can affirm the following as aresult of nonlinear analysis:
—thetime-instant of contact in vibro-impact system with an asymmetric elagtic characterigtic is defined, and
then theinitial piecewiselinear equation is presented asa generd parametric Mathieu-Hill equations;
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— the Bubnov-Galerkin's method was used for the solving parametric equations as a system of nonlinear
algebraic equations, asymmetric two-frequency oscillation, amplitude and phasefrequency characterigtics of
synthesized presented vibro-impact system were obtained by means of numerical solution;

— the correlation convergence is evaluate for the solutions of initial piecewise linear differential
equations and reduced Hill-Mathieu equations conducted by the Pearson correlation coefficient.

Established, that the incorporation of two multiple harmonic in the disturbance function of the Hill’s
equation provides a highly accurate results.

Nonlinear analysis was conducted during the synthesis of vibro-impact systems creates conditions
for its use for other asymmetric piecewise linear and nonlinear resonant vibratory systems.
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