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Abstract. The paper considers differential equation of the vibro-impact resonance system with an 
asymmetric piecewise linear elastic characteristic. The time-instant of switching of elastic characteristic is 
determined on the basis of equality of oscillation period to average value of the corresponding 
eigenfrequencies. Then, expansion of the asymmetric piecewise linear elastic characteristic into Fourier 
series was made. The initial differential equation was reduced to a kind of parametric equations of Hill’s 
and Mathieu’s type with taking into account the time of elastic characteristic change. Stability analysis of 
parametric Mathieu equation is shown for the analysis of natural oscillations. For stability analysis of the 
synthesized by various stiffness coefficients of vibro-impact system, dependencies of Mathieu equations 
coefficients on the parameter of synthesis are used. The solution of the initial equation with forced 
oscillations in the form of asymmetric two-frequency vibrations has been obtained by means of Bubnov-
Galerkin and Levenberg-Marquardt methods for nonlinear algebraic systems of equations, also amplitude 
and phase frequency dependence was graphically drawn. The basic equation with an asymmetric elastic 
response characteristic feature is determined by the fixed natural frequency of oscillations independently 
of amplitude. Numerical solution of differential equations by means of Runge–Kutta method are 
presented for comparison. Comparison of the vibro-impact resonance system kinematics characteristics, 
synthesized by the elastic parameters and solved by the listed methods, is conducted. The feasibility of 
using nonlinear analysis presented in two harmonics in Fourier series asymmetric elastic characteristic is 
justified in the article. The suggested approach with Bubnov-Galerkin method for general Hill’s equation 
and correlation analysis of time kinematic characteristics was used. Acceleration frequency spectrum and 
harmonics are obtained on the basis of Runge–Kutta numerical method simulation of the initial nonlinear 
differential equation. 

 

Introduction 
 

The subject of nonlinear and vibro-impact systems currently is sufficiently popularized. Vibro-
impact systems are belong to the class of strongly nonlinear systems, subject to complex analysis and 
actually do not has an analytical solutions [1, 2]. Their particularity is determined that the practical 
realization of systems is performed by various, especially piecewise-linear and piecewise-nonlinear elastic 
characteristics. That gives them special parametric properties and problems of dynamics stability. 

 

Analysis of modern information sources on the subject of the article 
 

The basic share research of the vibro-impact systems is aimed at improving for the analytical solution 
methods of basic and subharmonic oscillations of parametrical Mathieu’s and Hill’s equation, stability research 
and analysis of bifurcations and chaos phenomena [3–7]. The practical value of the vibro-impact is justified by low 
technological efficiency in various complex physical materials and mechanical processes [8–11]. 

 

Problem statement 
 

Submitted article provides a review of the vibro-impact system’s equations based on asymmetric 
piecewise linear elastic characteristics with following transfer of the equation for the estimation of parametrical 
oscillation, stability analysis for free vibration. The possibility of solution forced oscillations of reduced 
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parametric equations as asymmetric two-frequency oscillations is regarded with an followed by a comparative 
evaluation the solutions of the initial equation of the vibro-impact system with its parametric representation. 

 

Statement of the main material 
 

The known differential equation of the vibratory system with an linear viscous friction is consider [8, 11]: 
( ) ( ) ( ) ( ) ( )M x t b x t c t x t F t⋅ + ⋅ + ⋅ =&& & , (1) 

where an elastic asymmetric dependence has the form: 

( )
( )
( )

1

2

, 0,

, 0.

c x t
c t

c x t

 ≥= 
<

 (2) 

Condition (2) can be written as follows [8]: 

( ) 1 1

2 1

, 0 ,
, 2 / ,

c t t
c t

c t t π ω
≤ ≤

=  < ≤
 (3) 

where 1t  – time when switch of elastic parameter is made (Fig. 1); ω  – the oscillation frequency of the 

system; 2 1c c> . Contact time during which the system works with an elastic parameter 2c  defined as 1
2 tπ
ω

− . 

It is assumed the coefficient 1c  is defined traditional way for the one-frequency resonant systems as 

( )2
1 /c M zω= . The coefficient 2c  can take values according to the setting Λ  of synthesis 

( )2
2 /c M zω= Λ ⋅ , where 0/z ω= Ω  is the proportion of resonance adjustment relative eigenfrequency 

0Ω . We will have, in this case a ratio of elasticity coefficients as 2
12 / Λ=cc . So, will evaluated the 

solutions of the vibro-impact system equation (1) through the synthesis by entering the Λ  parameter. 
 

 
Fig. 1. Stiffness coefficient time change at the period of oscillation 

 

The moment 1t  will be determine on the basis of equality oscillation period average values of the 

corresponding eigenfrequencies Mc /101 =ω  and Mc /202 =ω  with fixed oscillation eigenfrequency 

( )020102010 /2 ω+ωωω=Ω  [6, 7], which is typical for systems with an asymmetric elastic characteristic of 
type (2): 
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Expanding dependence (2) by Fourier series is received in a form: 

( ) ( )k
m

k
k tkc

a
tc γ+ω+= ∑

=
sin

2 1

0 , 

and the coefficients of the series are: 1
21

20 2 t
cc

ca ω
π
−

+= , 22
kkk bac += , 

( ) ( ) ktkccak πω−= /sin 121 , ( ) ( ) ktkccbk πω−= /2/sin2 2
121 , ( )kkk baa /tan+π=γ , 

( ) ( ) ktkccck πω−−= /2/sin2 2
121 . 

Stiffness coefficient change in expanded form: 
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Equation (1) can be written as: 
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where appropriate notation adopted Mbn /2 = , ωπ= /2T , ( ) ( ) MtFtf /= .  
Equation (5) is the Hill’s equation [2, 5, 12, 13] in the next form: 

( ) ( ) ( )[ ] ( ) ( )tftxttxntx =⋅εψ+δ+⋅+ &&& 2 , (6) 

where δ , ε  are constant system parameters; ( )tψ  is disturbance function: ( ) 0201
2

02
2

01
12

02 ωω=ω−ω+ω=δ
T
t

, 

( )2 2
02 012 /ε ω ω π= − , ( ) ( )

1
sin

m
k k

k
t k tψ ω γ

=
= Ψ +∑ , ( ) ( ) ( )( )2

1 1 1sin / 2 / sin / 2 sgn sin / 2 /k k t k k t c k t kω ω ωΨ = = ⋅ , 

( ) ( )Ttt +ψ=ψ , ( ) 0
0

=ψ∫
T

dtt , ( )






 =
=

otherwise. 1-
0), > ) Im(z and 0 = ) (Re(zor  0 > z) Re( if,1

,0i,0
sgn

zf
zc  

Then will coming to the equation in dimensionless form, taking tω=τ  and ( ) ( )tftf ω⋅= sin0 : 

( ) ( ) ( )[ ] ( ) τ=τ⋅τψε+δ+τ
τ

⋅+τ
τ

sin~~~~~2~
2

2
fxx

d
dhx

d
d , (7) 

where /h n ω= , 2
0201 /~

ωωω=δ , ( ) 22
01

2
02 /2~ πωω−ω=ε , 2

0 /~
ω= ff . 

After replacing ( ) ( )τ⋅=τ τ− zex h ~~  [3] the equation (7) is reduced to dimensionless form with the 
right side: 

( ) ( )[ ] ( ) τ=τ⋅τψε+δ+τ
τ

τ sin~~~~
12

2
nefzz

d
d , (8) 

where 2
1

~ h−δ=δ . 
Let’s consider the possibility of bringing equation of the form (6) to the Mathieu equation [2, 3, 11, 

14]. Number of harmonics for this is 1=m . Now, the disturbance function will have the form: 
( ) ( ) ( ) ( )1111 sin2/sinsin γ+ωω=γ+ωΨ=ψ tttt , 
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where ( ) ( )[ ]2
111 2/sin2/sintan tta ωω+π=γ , and equation (6) will be: 

( ) ( ) ( )[ ] ( ) ( )tftxttxntx =⋅γ+ω⋅ν+δ+⋅+ 1sin2 &&& , (9) 

where ( ) ( ) ( )2/sin
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2
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=ω⋅ε=ν . 

Natural oscillations and stability analysis. Equation (9) is written without regard of the right side: 
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equation (10) takes the form: 
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Denoting for ω−= /42 nh  and completing a procedure similar to (8) will have the Mathieu equation 
in dimensionless variables: 
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also the classical form: 
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Equation (12) is analyzed for parametric stability according to the diagram (Fig. 2), built by Mathieu 
functions and Maple software. The diagram was built we counted the symmetry a -axis. For the vibration 
system analysis was selected following parameters: [ ]kgM 435,41= ; [ ]srad /15,314=ω ; 94,0=z ; 

ωζ= Mb 2 ; 2,0=ζ ; [ ]kgNf /442,430 = . For stability analysis of the synthesized by Λ  vibro-impact system 
used dependency of Mathieu equations coefficients a  and q  with Λ . Parametric graph ( )qfa =  that has the 
form approximate to line is constructed. The point ( )aqA ;  can be located on the line, with the appropriate 
values Λ . The stability of the solution is determined by the point provision in relevant chart area. When the 
value of the synthesis parameter is 2=Λ  the point coordinates are ( )89,8;74,3A  and is located in a stable zone 
of stability diagrams. Stability and instability of the system proves a view at the Fig. 3 of special functions 
MathieuC, MathieuS – even and odd Mathieu functions. The graphics are periodic in stable zones (Fig. 3, a for 

2=Λ ) or those that grow to infinity for unstable (Fig. 3, b for 3=Λ ). 
Note, that the use of the Mathieu equation may be restricted due to precision of the result. 

Otherwise, to apply over number of harmonics and directly stability analysis spending by the Hill’s 
equation (7) [2, 5, 12, 13]. 

Forced oscillations. Solution of equation (9) is looking in the form: 
( ) ( ) ( )22110 2sinsin ϕ+ω+ϕ+ω+= tXtXXtx , (13) 

here is accounted dissymmetry 0X , amplitude values 1X  and 2X , harmonics ω  and ω2 , the initial 
phases 1ϕ  and 2ϕ . 
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Fig. 2. Stability chart for the linear Mathieu equation: S – stable zone, U – unstable zone 

 

  
a) 

  
b) 

Fig. 3. Stable (a) and unstable (b) solutions of Mathieu functions with the different settings Λ : a – 2=Λ  , b – 3=Λ  
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Substituting (13) in to (9), we get the following result with an parameters of the solution and 
oscillatory system as a function: 
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The Bubnov-Galerkin method is suited to the analysis of nonlinear systems with soft elastic 
characteristic and analysis of subharmonic oscillations [16, 17]. Used the following procedure and 
orthogonalization of the result of substitutions L  relative to the desired solution (13): 

∫
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that allowed to receive the following system of nonlinear equations: 
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 (14) 

The system’s result is solved numerically by known methods for nonlinear equations (Levenberg-
Marquardt Method). The equations (14) solutions are included in (13) and allow to construct of the 
kinematics parameters time dependence. Vector of the calculated parameters at the fixed disturbance 
frequency [ ]srad /15,314=ω  synthesized by the value parameter 2=Λ  is next: 
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. 

The proposed approach is somewhat simplified, as seen equation (9), which was received by 
consideration one harmonic in disorder of elastic characteristics in Fourier series, and imposes find the 
result as a two-frequency function (13). Accordingly the tolerance of the solutions can be limited.  

Another way to obtain the basic time characteristics is possible by numerical solution of the initial 
equation (1) by known methods for differential equations (such as Rkadapt).  

Pearson correlation coefficient was used for the convergence comparison of the received 
dependences by methods Levenberg-Marquardt and Rkadapt. The table lists the value of the Pearson’s 
criterion for synthesized vibro-mpact systems. 
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The proposed approach with Bubnov-Galerkin method for general Hill’s equation (6) and correlation 
analysis of time characteristics for more harmonics ( 2=m , 3=m ) was used. This greatly improves the 
convergence of kinematic characteristics for the harmonic’s number of 2=m . 

 

   
a) b) c) 

Fig. 4. Time dependencies of kinematics parameters of the vibro-impact system with ratio 4/ 12 =cc  
 

The proposed approach with Bubnov-Galerkin method for general Hill’s equation (6) and correlation 
analysis of time characteristics for more harmonics ( 2=m , 3=m ) was used. This greatly improves the 
convergence of kinematic characteristics for the harmonic’s number of 2=m .  

Note, that such procedures can be conducted to analyze the subharmonic 2/ω  oscillations and 
increasing the number of harmonics in the solution (13). 

 

Table 
Pearson correlation coefficients basic kinematic parameters of the vibro-impact systems 

Kinematics characteristics 
The parameter of synthesis Λ  The m  number of harmonics in the equation (5) 

x(t) v(t) a(t) 
1=m  0,964 0,921 0,856 

2=Λ  
2=m  0,994 0,981 0,916 
1=m  0,66 0,615 0,531 

3=Λ  
2=m  0,964 0,898 0,728 
1=m  0,436 0,469 0,381 
2=m  0,953 0,855 0,618 4=Λ  
3=m  0,785 0,752 0,572 

 

The system (14) was used to construct the amplitude-frequency and phase-frequency characteristics 
of the solution (13). Fig. 5 shows the dependence of these parameters for the solution of two-frequency 
vibrations (13). The initial phases 1ϕ  and 2ϕ  leap is observed at the resonant frequencies. The equation 
(1) with an elastic response (2) characteristic feature is fixed natural frequency of oscillations with 
independent of amplitude. Linear frequency response for the amplitudes (Fig. 5, a) this shows. 

Vibro-impact system, although linear frequency response is endowed with a lot of frequency 
spectrum, which is particularly manifests itself on the acceleration characteristic. Acceleration frequency 
spectrum and harmonics (Fig. 6) obtained by Runge–Kutta numerical method simulation of the differential 
equation (1).  

Equation (13) considers only the two multiples harmonics [ ]srad /15,3141 =ω  and [ ]srad /3,6282 1 =ω  
unlike to the direct solution of equation (1) by integrated numerical method.  
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Therefore, for a complete range of acceleration’s amplitude values and for more adequate analysis of 
the vibro-impact processes worth in solution (13) to increase the number of unknown parameters with an 

13ω  and 14ω  harmonics. 
 

 
a) b) 

Fig. 5. Amplitude-frequency (a) and phase-frequency (b) descriptions of the vibro-impact system  
with stiffness coefficients ratio 4/ 12 =cc  

 

 
Fig. 6. Spectral analysis of the vibro-impact system’s acceleration 

 

Conclusions 
 

We can affirm the following as a result of nonlinear analysis:  
– the time-instant of contact in vibro-impact system with an asymmetric elastic characteristic is defined, and 

then the initial piecewise linear equation is presented as a general parametric Mathieu-Hill equations;  
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– the Bubnov-Galerkin’s method was used for the solving parametric equations as a system of nonlinear 
algebraic equations, asymmetric two-frequency oscillation, amplitude and phase-frequency characteristics of 
synthesized presented vibro-impact system were obtained by means of numerical solution; 

– the correlation convergence is evaluate for the solutions of initial piecewise linear differential 
equations and reduced Hill-Mathieu equations conducted by the Pearson correlation coefficient.  

Established, that the incorporation of two multiple harmonic in the disturbance function of the Hill’s 
equation provides a highly accurate results. 

Nonlinear analysis was conducted during the synthesis of vibro-impact systems creates conditions 
for its use for other asymmetric piecewise linear and nonlinear resonant vibratory systems. 
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