## УДК.550.341.4

# ПРОЦЕССЫ РАЗРЫВООБРАЗОВАНИЯ В ОЧАГАХ ОЩУТИМЫХ ЗЕМЛЕТРЯСЕНИЙ ПРЕДКАРПАТЬЯ И ЗАКАРПАТЬЯ

Приведены результаты восстановления параметров разрывов в очагах ощутимых землетрясений: Микулинецкого (2002 г.), Кольчинского (2006 г.) и Береговского (2006 г.). В очаговых зонах исследованных землетрясений процессы разрывообразования развивались вдоль активных глубинных разломов диагональной ориентации. Линейные размеры L и время "жизни" очагов T в пределах погрешностей определения величин соответствовали таковым для данного энергетического уровня по средним долговременным зависимостям L(Kp) и T(L).

Ключевые слова: землетрясение, очаг, разрыв, азимутальный годограф, скорость вспарывания.

#### Введение

В последние 10 лет на территории Предкарпатья и западной части Закарпатья произошли ощутимые землетрясения: Микулинецкое, Кольчинское и Береговское-IV (табл. 1), представляющие интерес для исследования очаговых процессов. Тектоническая позиция этих землетрясений и их макросейсмический эффект подробно описаны в работах [Пронишин и др., 2008, 2012a, 6].

Для изучения процессов разрывообразования использована методика, в основе которой лежат представления об очаге, как о движущемся, протяженном источнике [Горбунова и др., 1992, Горбунова, Пустовитенко, 1997]. Предложенный азимутальный годограф  $\tau(Az)$  характеризует зависимость времени пробега очаговых волн  $P_i$  от длины разрыва, скорости его вспарывания, направления распространения разрыва по отношению к станциям регистрации.

#### Предыдущие исследования

В работе [Пустовитенко, Капитанова, 1996] были изучены процессы разрывообразования для 17 землетрясений энергетических классов *К*р=9-12 юговосточной части Закарпатья за период 1979-1993г. и установлено, что линейные размеры разрывов в исследуемом диапазоне энергетических классов достаточно тесно коррелируют между собой:

 $lg(L_{\text{max}}) = 0.11(\pm 0.02)$ Кр-(0.07 $\pm 0.18$ ),  $\rho$ =0.92 (1) Скорости вспарывания разрывов оказались независимыми от энергетического уровня землетрясения. Их незначительные вариации связаны, в основном, со свойствами разрушаемой среды.

Продолжительность процесса вспарывания (время ,,жизни" очага) варьировала в пределах T=1.5; и была связана с длиной разрыва соотношением:

 $T = (0.14 \pm 0.02)L + (0.71 \pm 0.15), \quad \rho = 0.82$  (2)

Естественно, что различная степень подвижности среды в различных тектонических структурах оказывает влияние на продолжительность процесса вспарывания.

### Анализ ощутимых землетрясений последних лет в Карпатском регионе

В настоящей работе в качестве исходных материалов использованы записи продольных волн, полученные на сейсмических станциях Украины, Молдовы, Беларуси, а также данные из международного бюллетеня [*ISC*].

По наблюдениям на сейсмических станциях, окружающих эпицентры рассматриваемых землетрясений (табл. 1) в широком диапазоне азимутов от 10° до 360° построены азимутальные годографы  $\tau$  (*Az*), представленные на рис. 1.

По экстремальным значениям  $\tau_{\text{max}}$  и  $\tau_{\text{min}}$  с использованием формул из [Горбунова и др., 1992] рассчитаны параметры разрывов в очаговых зонах: длина разрыва (*L*), скорость его вспарывания (*C*), и время существования процесса разрыва (*T*), (табл.2). Скорость продольной волны  $V_P$ в верхнем слое земной коры была выбрана по данным профилей ГСЗ [Строение..., 1977].

Таблица 1

Основные параметры изученных землетрясений по данным [Пронишин и др., 2008; 2012 а, б]

| N⁰  | Дата |               |    | Время в очаге, $t_0$ |     |      | Коорди           | наты               | h m   | I∕.n | $I_{max}$ | Doğou     |
|-----|------|---------------|----|----------------------|-----|------|------------------|--------------------|-------|------|-----------|-----------|
| п\п | год  | $\mathcal{M}$ | 9  | Ч                    | мин | С    | $\phi^{\circ} N$ | $\lambda^{\circ}E$ | п, км | кр   | балл      | Раион     |
| 1   | 2002 | 1             | 3  | 17                   | 43  | 17   | 49.38            | 25.58              | 6     | 10.8 | 6         | Микулинцы |
| 2   | 2006 | 2             | 6  | 03                   | 31  | 09.7 | 48.45            | 22.72              | 5.5   | 6.9  | 4-5       | Кольчино  |
| 3   | 2006 | 11            | 23 | 07                   | 15  | 20.3 | 48.23            | 22.62              | 9     | 12.1 | 6         | Берегово  |

Таблица 2

Параметры разрывообразования в очаговых зонах землетрясений

| N⁰ | Дата |    |    | A 7.0 | A 7.0° | L1,  | L2, | <i>C</i> 1, | C2   | $T_1$ , | <i>T</i> <sub>2</sub> , | Район     |
|----|------|----|----|-------|--------|------|-----|-------------|------|---------|-------------------------|-----------|
|    | год  | м  | 9  | 112   | 11.2   | КМ   | КМ  | км/с        | км/с | с       | с                       | 1 anon    |
| 1  | 2002 | 1  | 3  | 330   |        | 6.8  |     | 3.6         |      | 1.9     |                         | Микулинцы |
| 2  | 2006 | 2  | 6  | 65    |        | 7.4  |     | 3.24        |      | 2.3     |                         | Кольчино  |
| 3  | 2006 | 11 | 23 | 280   | 110    | 22.3 | 5.6 | 4.96        | 3.1  | 4.5     | 1.8                     | Берегово  |

## © Б.Г. Пустовитенко, С.А. Капитанова, А.А. Пустовитенко, 2013

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



**Рис. 1.** Азимутальные годографы времен запаздывания максимальных фаз продольных волн для землетрясений:

а – Микулинецкого; б – Кольчинского; в – Береговского.
Вверху над годографом – схема направлений разрыва в проекции на земную поверхность.

Минулинецкое землетрясение произошло в верхней части земной коры (h=6км) в районе Предкарпатья и его эпицентр приурочен к Теребовлянскому глубинному разлому северо-западного простирания [Пронишин и др., 2008]. На азимутальном годографе (рис. 1,а) отчетливо выделен только один максимум, что соответствует однонаправленному разрыву. Процесс разрывообразования длился 1.9с. со скоростью 3.6 км/с в Az=330°. Полученное направление разрыва совпадает с ориентацией Теребовлянского разлома и вытянутости поля изосейт (рис. 2). Длина разрыва L составила около 7 км, что почти в 2 раза меньше ожидаемой по средней зависимости (1). Соответственно, меньше в 1.3 раза по сравнению с расчетами по формуле (2) получилось время длительности процесса.

Кольчинское землетрясение произошло в северо-Западном районе Закарпатья (вблизи г.Мукачево) в зоне пересечения Латорицкого, Мукачевского, Кольчинского и Визницкого разломов [Пронишин и др., 2012,а]. Азимутальный годограф  $\tau(Az)$  имел также один максимум (рис. 1,б), что говорит об однонаправленности процесса вспарывания среды. Длина зоны разрушения составила около 7 км, что меньше расчетного значения по формуле (1). Процесс разрывообразования развивался со скоростью 3.2 км/с в азимуте  $Az=65^{\circ}$ , что близко к простиранию Латорицкого разлома северо-восточной ориентации, но не совпадает с зоной максимальных интенсивностей на поверхности (рис. 3). Время "жизни" очага T превысило ожидаемое по (2) в 1.4 раза. Береговское землетрясение – наиболее сильное и хорошо изученное землетрясение [Пронишин и др. 2012,6]. Оно произошло в зоне Припаннонского разлома под действием горизонтальных сил сжатия и имело взбросо-сдвиговый тип подвижки. Одна из нодальных плоскостей в Az=122°, ориентированная по простиранию Припаннонского разлома и вытянутости первой изосейты, принята за наиболее вероятную плоскость разрыва [Пустовитенко, Пронишин, 2011].



**Рис. 2.** Фрагмент карты изосейст Микулинецкого землетрясения [Пронишин и др. ,2008]:

1, 2 – эпицентр соответственно инструментальный и макросейсмический; 3 – ориентация восстановленного разрыва; 4 – разрывные нарушения с невыясненной морфологией; 5 – глубинные разломы.



Рис. 3. Фрагмент карты изосейст Кольчинского землетрясения [Пронишин и др., 2012 а]. Стрелка – ориентация разрыва.

Азимутальный годограф Береговского землетрясения (рис. 1,в) имеет 2 максимума, т.е. согласно теоретическим представлениям процесс в очаге был сложным, развивающимся в двух противоположных от начальной точки разрыва направлениях: в  $Az_1=290^\circ$  и в  $Az_2=110^\circ$ .

Наибольшие длина, скорость вспарывания и время существования разрыва получились в северо-западном направлении (290°):  $L_1$ =22.3км;  $C \sim 5$  км/с и T= 4.5с.

Полученные направления разрыва в очаговой зоне в пределах погрешностей определения ( $\pm 10^{\circ}$ ) согласуются с ориентацией главной плоскости подвижки ( $Az=122^{\circ}$ ), восстановленной из решения механизма очага. Это подтверждает тектоническую позицию изученного землетрясения [Пустовитенко, Пронишин, 2011; Пронишин и др., 2012 б].

#### Выводы

Новые полученные данные о трех изученных землетрясениях дополняют имеющуюся статистику по очаговым параметрам района Закарпатья и расширяют энергетический диапазон как в сторону малых (Кольчинское), так и в сторону более сильных (Береговское) сейсмических событий. Восстановленные параметры разрывов: *L* и *T*, не смотря на отличия их от средних по формулам 1 и 2, находятся в пределах разброса данных с учетом дисперсии в регрессионных соотношениях, а ориентация разрывов согласуется с диагональной системой активных геологических структур.

#### Литература

Горбунова И.В., Бойчук А.Н., Доцев Н.И., Кальметьева З.А., Капитанова С.А., Кучай О.А., Михайлова Н.Н., Пустовитенко Б.Г., Симбирева И.Г., Товмасян А.К. Интерпретация очаговых волн на записях землетрясений. – М.: Наука. – 1992. – 130 с.

- Горбунова И.В., Пустовитенко Б.Г. Новая методология изучения сложного сейсмического разрывообразования // Геофиз. журн. – 1997. – 19. № 3. – С. 42-47.
- Пронишин Р.С., Вербицкий С.Т., Стасюк А.Ф. Микулинецкое землетрясение 3 января 2002 года с МLH=3.7, Кр=10.8, I<sub>0</sub>=6 (Украина) // Землетрясения Северной Евразии в 2002 году. Обнинск: ГС РАН, 2008. С. 300-315.
- Пронишин Р.С., Вербицкий С.Т., Стасюк А.Ф., Вербицкий Ю.Т., Корниенко Е.Е. Рой Кольчинских землетрясений 2006 г. (Украина, Закарпатье) // Землетрясения Северной Евразии в 2006 году. – Обнинск: ГС РАН, 2012а – С. 301-307.
- Пронишин Р.С., Стасюк А.Ф., Вербицкий Ю.Т., Пустовитенко А.А., Корниенко Е.Е., Ярема И.И., Наривна М.М. Береговское-III землетрясение 15 ноября Кр=8.8, I<sub>0</sub>=4–5; Береговское-IV землетрясение 23 ноября 2006 г. с Кр=12.1, I<sub>0</sub>=6 (Украина, Закарпатье) // Землетрясения Северной Евразии в 2006 году. – Обнинск: ГС РАН, 20126. – С. 412-427.
- Пустовитенко Б.Г., Капитанова С.А. Новые характеристики очаговых параметров землетрясений Закарпатья // Сейсмологический бюллетень Украины за 1994 г.– Симферополь: ИГ НАНУ, КЭС, – 1996 г.– С. 62-67.
- Пустовитенко А.А., Пронишин Р.С. Механизм очага Береговского землетрясения 23 ноября 2006 г. // Геодинаміка. – 2011. – № 2(11). – С. 260-262.
- Строение земной коры и верхней мантии по данным сейсмических исследований / Отв. ред. Соллогуб В.Б. – Киев: Наук. думка, 1977 – 310 с.

## ПРОЦЕСИ РОЗРИВОУТВОРЕННЯ В ВОГНИЩАХ ВІДЧУТНИХ ЗЕМЛЕТРУСІВ ПЕРЕДКАРПАТТЯ І ЗАКАРПАТТЯ

## Б.Г. Пустовітенко, С.А. Капітанова, А.А. Пустовітенко

Наведено результати відновлення параметрів розривів у вогнищах відчутних землетрусів: Микулинецького (2002 р.), Кольчинського (2006 р.) та Берегівського (2006 р.). У вогнищевих зонах досліджених землетрусів процеси розривоутворення розвивалися вздовж активних глибинних розломів діагональної оріснтації. Лінійні розміри L і час "життя" вогнищ T в межах похибок визначення величин відповідали таким для даного енергетичного рівня за середніми довготривалим залежностям L(Кр) та T(L).

Ключові слова: землетрус, вогнище, розрив, азимутний годограф, швидкість вспаривання.

## PROCESSES OF FAULTING IN THE SOURCES OF PERCEPTIBLE EARTHQUAKES IN THE PRECARPATHIANS AND TRANSCARPATHIANS

#### B.G. Pustovitenko, S.A. Capitanova, A.A. Pustovitenko

The results of reconstruction of fault parameters in sources of perceptible earthquakes: Mikulinetsky (2002), Kolchinsky (2006) and Beregovsky (2006) are represented. The processes of faulting, in the earthquake source areas under study, were formed along active deep faults with a diagonal orientation. The linear dimensions L and the "lifetime" of the sources T within the determined errors matched up with same values for equivalent energy level by the average long-term dependences L(Kp) and T(L).

Keywords: earthquake, source, fault, azimuthal hodograph, speed of rupture.

<sup>1</sup>Отдел сейсмологии Института геофизики им. С.И. Субботина НАН Украины, г.Симферополь <sup>2</sup>Крымский экспертный совет по оценке сейсмической опасности и прогнозу землетрясений, г. Симферополь Надійшла 30.07.2013