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Отримано явну форму розв’язку задачі амплітудно-фазового синтезу лінійної антени 

за заданою амплітудною діаграмою спрямованості. Наведено числові результати, які 
демонструють залежність точності одержаного розв’язку від вхідних параметрів задачі. 

Ключові слова: амплітудно-фазовий синтез антен, амплітудна діаграма, явна 
форма розв’язку. 

 
Closed form of solution to the problem of linear antenna amplitude-phase synthesis 

according to the given amplitude pattern is obtained. The computational results, related to 
dependence of the exactness of solution on the problem’s input parameters, are discussed. 
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Introduction 
The big number of papers (e.g. [1, 2, 4–8, 13]) is devoted to finding the current ( )j x  if the radiation 

pattern (RP) 
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l

f k e j x dx Aj k k k
−

= = − ≤ ≤  (1) 

is given. Here 0 0k >  and 0l >  are fixed numbers. The RP ( )f k  is an entire function of k , | || ( ) | l kf k ce≤ , 

Ck∈ . By 0c >  we denote various estimation constants. Equation (1) for j  is an integral equation with 

compact operator 2 2
0 0: ( , ) ( , )A L l l L k k− → − . The operator A  is injective, its range 
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In this paper the following problem is discussed: 

Given ( ) 0h k ≥ , 2
0 0( ) ( , )h k L k k∈ − , and 0δ > , find 2 ( , )j L l l∈ −  such that  

 2
0 0( , )

|| ( ) | ( ) |||
L k k

h k f kδ −
− < δ , (2) 

where  

 ( ) ( )
l

ikx

l

f k e j x dxδ δ
−

=  . (3) 

This is a nonlinear problem. There was no closed form solution to this problem. The problem has 
been discussed in [1], where the approach was based on a numerical solution of a corresponding nonlinear 
minimization problem. Some theoretical aspects of antenna synthesis problem were discussed in [4–11], 
[13]. During the last decade, the approach, based on the polynomials representation of solution to the non-
linear antenna synthesis problem according to the prescribed amplitude and power radiation patterns, was 
developed too (see, e. g., [14, 15]). 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 43 

Closed form solution 
The approach proposed is quite different from the one in [1]. It reduces problem (2)–(3) to a linear 

problem which is solved in closed form. Main theoretical result was formulated in [16] as respective 
theorem. 

Denote 
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A solution to problem (2)-(3) is  

 1 1( ) 2 ( ( ) ( )nj x F G F hδ π δ− −= ⋅ , (6) 

where  
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1 02k k> , 
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2
p >  is fixed, and ( )n n δ=  is chosen so that  
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The formulas (6), (7) give the explicit form of solution to problem (2), (3). The proposed method is 
valid if the linear segment ( , )l l−  is replaced by a multidimensional bounded domain D . In this case the 

origin has to be chosen at the gravity center of D , that is, at the point such that 0
D

xdx = . In this case the 

function ( )nG k  is 
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where  k k⋅  is the dot product of vectors, | |D  is measure (volume) of D , N  is the dimension of the 

space, and ,n Nc  is the normalizing constant: 
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If D  is smooth and strictly convex then the Fourier transform of the characteristic function of D   

is ( )1O
k . Therefore 21( ) (R )N

n p
G k O L

k
 = ∈ 
 

 if 
2
Np > . The information related to the rate of decay  

of the Fourier transform of the characteristic function of a bounded domain D  in R N  is given, for 
example, in [3, 11]. 

 
Numerical modeling 

The numerical results related to investigation of the role of the number n  on the quality of 
approximation of the given RP ( )h k  are shown in Table 1. The parameters of the problem are the 

following: 2.0l = , 0 3.0k = , 1 02 1.5k k= + , 1.0p = . The errors of the estimate (8) are given in the second 

column of Table 1. The mean-square deviation (MSD) || ( ) | ( ) |||h k f k− , obtained in the process of solving 

the nonlinear synthesis problem by approach in [1], is presented in the third column, and the square of the 
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norm 2|| ||j  is given in the last column. One can see that the value of n  influences strongly the accuracy of 

the approximation of the desired diagram. In order to get the error δ  of the approximation which is less 

than 310−  it is sufficient to chose n  around  4000 . 
The quality of the approximation of the given RP ( )h k  by | ( ) |f k  for small n  is shown in Fig. 1. 

The given RP ( )h k  is plotted by thick solid line. The moduli | ( ) |f k  for 10,20,50,100n =  are shown with 

the thin lines, the respective currents ( )j x  are shown in Fig. 2. So, the error of estimate (8) for 100n =  is 

equal to 0.0295 . The error of the approximation decreases if n  increases, and its minimal value in our 

computations is equal to 40.7146 10−×  and is attained at 4000n = . 
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Fig. 1. The given 0( ) cos( / 2 )h k k kπ=  and the obtained ( )f k  RPs 

 
The values of the MSD, presented in the third column, are of the same order as the errors of estimate 

(8). For the given RP ( )h k , the increase of the accuracy of the approximation does not force the growth of 

the norm || ||j  of the current which would cause practical difficulties (column 4 in Table 1). 

 
Table 1 

The quality of approximation for 0( ) cos( / 2 )h x k kπ=  at various n  

n  Est. (8) MSD 2|| ( ) ||j x  

10 0.2784 0.2951 0.5060 

20 0.1463 0.1495 0.5858 

50 0.0591 0.0587 0.6432 

100 0.0295 0.0287 0.6653 

200 0.0147 0.0135 0.6772 

500 0.0059 0.0044 0.6847 

1000 0.0029 0.0014 0.6873 

4000 40.7146 10−×  40.8135 10−×  0.6892 
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Fig. 2. The currents ( )j x  for various n , 0( ) cos( / 2 )h k k kπ=  

 
The quality of approximation to the given RP ( ) 1h k =  is shown in Table 2. For this ( )h k  the error of 

the approximation is larger than the error for 0( ) cos( / 2 )h k k k= π  at the same values of n . The value of δ  

in estimate (8) at 4000n =  is two orders greater than that for the RP 0( ) cos( / 2 )h k k k= π . Although the 

error of estimate (8) and the MSD is small, but the difference of the shapes of ( )h k  and ( )f k  is visible. In the 

four last rows of Table 2 the results are presented for  0 6.0k =  and 0 9.0k = . The error of estimate (8) is 

almost the same as for 0 3.0k = , but the value of the MSD is lower. This means an improvement of the 

approximation to the given RP by the shape (compare the dash dot and dot curves in Fig. 3). The mean-square 

deviation at 1000n =  and 4000n =  for 0 9.0k =  is almost two times less than for 0 3.0k = . 
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Fig. 3. The given ( ) 1h k =  and the obtained | ( ) |f k  RPs 
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The corresponding distributions of the current ( )j x  are shown in Fig. 4. For larger 0k  the norm of 

the current grows. This agrees with the numerical results in [1], namely the better approximation of the 
given RP leads to the larger norm of the current. 
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Fig. 4. The currents ( )j x  for several parameters 0k , ( ) 1h k =  

 
The number of n , which is sufficient for obtaining the desired error δ , is shown in Table 3 for 2.0l = , 

0 6.0k = , 1 02 1.5k k= + , and 1.0p = . The results are presented for the given RPs 2
0( ) (cos( / 2 ) qh k k kπ= , 

with 1,4,8,16,32q = . To obtain a higher accuracy of approximation of h  it is necessary to increase the number 

n  for all q . The quantity n  for the prescribed δ  varies for different q . 

 
Table 2 

The quality of approximation for ( ) 1h x =  at various n  

k n  Est, (8) MSD 2|| ( ) ||j x  

0 3,0k =     

10 0,5592 0,5885 0,7287 
20 0,3654 0,3712 0,8314 
50 0,2161 0,2219 0,8967 

100 0,1487 0,1650 0,9218 
200 0,1034 0,1338 0,9361 
500 0,0645 0,1141 0,9456 

1000 0,0433 0,1073 0,9458 

 

4000 0,0225 0,1021 0,9515 

0 6,0k =     

500 0,0584 0,0715 1,3506  
4000 0,0203 0,0537 1,3624 

0 9,0k =     

500 0,0565 0,0607 1,6575  
4000 0,0195 0,0380 1,6749 
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The power q  in the function 2
0(cos( / 2 ) qk kπ  corresponds to the RPs with different widths at the 

level ( ) 0.5h k = . The value of ( ) 0.5| ( ) | ( ) ||h kh k f k =−  is minimal at 16q = . Also, this ( )f k  has the 

smallest side lobes outside of the interval 0| |k k≤  in comparison with the values of the side lobes at other 

values of q . Such RP is called as optimal [2], and it can be created easier in comparison with other RPs. 

This leads to the minimal value of n  which is necessary to obtain the desired error δ . 
Table 3 

Number of n  necessary to attain the given value of δ  for various ( )h k  

( )h k  0,1δ =  0,01δ =  0,001δ =  
2

0( ) (cos( / 2 )h k k kπ=  24n =  86n =  320n =  
8

0( ) (cos( / 2 ))h k k kπ=  15n =  50n =  240n =  
16

0( ) (cos( / 2 ))h k k kπ=  12n =  44n =  165n =  
32

0( ) (cos( / 2 ))h k k kπ=  9n =  46n =  150n =  
64

0( ) (cos( / 2 ))h k k kπ=  13n =  55n =  182n =  

 
Conclusion 

The closed form of solution of the linear antenna synthesis problem by the amplitude RP is given. 
The initial nonlinear problem is reduced to a linear one. The solution of this linear problem is presented in 
closed form, see formula (2). The numerical results demonstrate the high accuracy of the proposed method. 
The approach can be used also for solving the multidimensial antenna synthesis problems. 
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