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The Goldbach’s conjecture is worded this way: every even number, ≥ 6, can be expanded into the 

sum of two odd prime numbers [1].  
Definition 1. If two prime numbers p and q are the ‘twin’-numbers, (the equality p − q = 2 is 

executable) [2], so we’ll call p the greater and q – the smaller prime. We’ll mark set of all ‘twin’-numbers 
as В2. 

Definition 2. If the equality r − s = 4 is executable for two prime numbers r and s, we’ll call r the 
greater and s – the smaller prime. We’ll mark set of those prime numbers as B4. 

Definition 3. If the equality u – v = 6 is executable for two prime numbers u and v, we’ll call u the 
greater and v – the smaller prime. We’ll mark set of those prime numbers as B6. 

Definition 4. If the equality s – t = 8 is executable for two prime numbers s and t, we’ll call s the 
greater and t – the smaller prime. We’ll mark set of those prime numbers as B8. 

Theorem 1. Every even natural number, beginning with 6, can be represented by the sum of two odd 
primes, one of which belongs to set B4 and another one – to set В2. 

Proof. Let’s mark the n-th even number as аn, an = 2n, n ≥ 3. We’ll prove this theorem by using the 
method of mathematical induction by the number n ≥ 3, beginning with a3 = 3 + 3. Let’s suppose, that all 
even numbers that are less than or equal to an, can be represented by the sum of qn + pn , where qn∈B4 , 
pn∈B2. Then an +1 will look like 

an+1 = an + 2 = pn + qn +2.       (1) 
If in (1) pn∈B2 is the smaller prime, then the proof is concluded, as then for p’n+1∈ B2, p’n+1 = pn + 2 

is the greater prime, an+1 = qn + p’n+1. 
But let’s suppose, that, pn∈B2 is the greater prime in В2. Let’s present an+1 in form of 

 an+1 = an -1 + 4 = pn-1 + qn-1 + 4,      (2) 
where qn-1∈B4  and pn-1∈B2 . 

For the primes in (2) the following opportunities are possible: 
 1) pn-1 is smaller in В2 , qn-1 is smaller in В4 , (qn-1 + 2)∈B4 ; 
 2) qn-1 is smaller in В4 , pn-1∈B2; 
 3) pn-1 is greater in В2 , qn-1 is greater in В4 ; 
 4) qn-1 is greater in В4 , pn-1 is smaller in В2 . 
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If condition (1) is executable, then theorem 1 is proved, as  
an+1 = q’n+1 + p’n+1,  p’n+1∈B2 , q’n+1∈B4, p’n+1 = pn-1 + 2, q’n+1 = qn-1 + 2. 

If condition (2) is executable, then theorem 1 is also proved, as an+1= q’n+1 +pn-1, q’n+1∈B4,         
q’n+1 = qn-1 + 4. 

By carrying out condition 3) from (1) and (2) we’ll get pn + qn + 2 = pn-1 + qn-1 + 4 as a result, or 
 an-1 = pn-1 + qn-1 = p’n + qn ,       (3) 

where  p’n = pn − 2 is the smaller prime in В2 , p’n∈B2 . 
If 4) is executable, then it follows from (1) and (2) that: 

 an = pn + qn = p’n-1 + qn-1 ,       (4) 
where p’n-1 = pn + 2 is the greater prime in В2 , p’n-1∈B2 . 

 It now follows from (3) and (4) that each even number can be represented by the sum of two prime 
numbers, one of which belongs to В4, and another one-- to В2. But this statement is incorrect, because for 
the numbers 6 = 3 + 3, 8 = 5 + 3, 12 = 5 + 7, 94 = 71 + 23 these expansions are the only ones possible.  

This contradiction proves, that the assumption, that pn∈B2 is the greater prime in В2 is incorrect. To 
end the proof, let’s show, that in  (3)  and  (4)  qn ≠ qn-1.  But let’s  suppose  that  in  (3)   qn  = qn-1. Then  
pn − pn-1 =2, that contradicts the assumption 3). If qn = qn-1 in (4), than according to the assumption 4) qn is 
the greater prime in B4. That is, each even number an can be represented by the sum of two greater primes, 
one of which is in B2 and another one − in B4, not less than twice, that contradicts, for example, such 
expancions as  14 = 11 + 3, 16 = 13 + 3 = 5 + 11, where at least one of the primes is the smaller one. We 
got the contradictions, which prove that in (3) and (4) qn ≠ qn-1. Theorem 1 is proved. 

Even numbers, that are less than or equal to 120 and that can be represented by the sum     q + p, 
p∈B2, q∈B4, are presented in Table 1.               

                       Table 1 

              

p \ q 3 7 11 13 17 19 23 37 41 43 47 67
3 6 10 14 16 20 22 26 40 44 46 50 70
5 8 12 16 18 22 24 28 32 46 48 52 72
7 10 14 18 20 24 26 30 44 48 50 54 74

11 14 18 22 24 28 30 34 48 52 54 58 78
13 16 20 24 26 30 32 36 50 54 56 60 80
17 20 24 28 30 34 36 40 54 58 60 64 84
19 22 26 30 32 36 38 42 56 60 62 66 86
29 32 36 40 42 46 48 52 66 70 72 76 96
31 34 38 42 44 48 50 54 68 72 74 78 98
41 44 48 52 54 58 60 64 78 82 84 88 108
43 46 50 54 56 60 62 66 80 84 86 90 110
59 62 66 70 72 76 78 82 96 100 102 106 126
61 64 68 72 74 78 80 84 98 102 104 108 128
71 74 78 82 84 88 90 94 108 112 114 118 138
73 76 80 84 86 90 92 96 110 114 116 120 140  

 
Theorem 2. Every odd number 4n +1, beginning with 9, can be represented by the sum     q + 2p, 

where q∈B4, p∈B2,  
Proof. Let’s mark the n-th odd number as an, an = 4n + 1. We’ll prove this theorem by using the 

method of mathematical induction by the number n ≥ 2, beginning with a2 = 3 +2⋅3. Let’s suppose, that all 
odd numbers 4n + 1, that are less than or equal to an, can be represented by the sum qn + 2pn, where qn∈B4, 
pn∈B2.  

Then an+1 will look like 
 an+1 = an + 4 = qn + 2pn + 4 .      (5) 

If at least one prime in (5) is the smaller one, then the proof is concluded, as or an+1 = qn + 2p’n+1, 
p’n+1 = pn + 2, p’n+1∈B2  if  pn is the smaller prime, join an+1 = q’n+1 + 2pn,  q’n+1 = qn + 4, q’n+1∈B4, if qn is 
the smaller prime. Let’s suppose, that qn∈B4, pn∈B2 are both greater primes. If qn-1∈B4,  pn-1∈B2, then an+1 

will look like 
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 an+1 = an-1 + 8 = qn-1 + 2pn -1 + 8 ,      (6) 
For primes in (6) the following opportunities are possible: 

1) both numbers are the smaller primes; 
2) pn-1∈B2 is the smaller prime, qn-1∈B4 is the greater prime; 
3) pn-1∈B2 is the greater prime, qn-1∈B4 is the smaller prime; 
4) both numbers are the greater primes. 

If condition 1) is executable, then the proof is concluded, as an+1 = q’n+1 + 2p’n+1, q’n+1∈B4, p’n+1∈B2 
and q’n+1 = qn -1 + 4, p’n+1 = pn-1 + 2 are the greater primes.  

By carrying out condition 2) from  (6), we’ll get:  
 an+1 = qn-1 + 2p’n + 4 ,        (7) 

where  p’n∈B2, p’n = pn-1 + 2 is the greater prime. 
As a result of assumption of the induction, it follows from (7), that 

 an = qn + 2pn = qn-1 + 2p’n .       (8) 
If condition 3) is executable, then it follows from (6) that 

 an = qn + 2pn = q’n + 2pn-1 ,       (9) 
where  q’n∈B4 , q’n = qn-1 + 4 is the greater prime. 

Correlations  (8) and (9) signify, that every odd number an = 4n +1 can be represented in form of the 
sum of the greater prime from set B4 and the doubled greater prime from set B2, that contradicts the 
statement that 9 = 3 + 2⋅3, and 3= 7 + 2⋅3 = 3 + 2⋅5, where the prime 3 is the smaller prime in any case. 

If condition 4) is executable, then it means, that all odd numbers an-1, an can be represented in form 
of the sum of the greater prime number from B4 and the doubled greater prime from set B2, that 
contradicts, for example, such expantions as: 9 = 3 + 2⋅3 and 13  = 3 + 2⋅5, where the numbers 3 and 5 are 
the smaller primes, or the expantions: 33 = 11 + 2⋅11 and 37 = 13 + 2⋅11, where 11 is the smaller prime in 
B2. Theorem 2 is proved. 

The numbers in form of 4n +1, that can be represented by the sum q + 2p, where q∈B4, p∈B2, are 
given in Table 2.  

               Table 2  

  

p\q 3 7 11 19 23 43 47 67 71 79 83
3 9 13 17 25 29 49 53 73 77 85 89
5 13 17 21 29 33 53 57 77 81 89 93
7 17 21 25 33 37 57 61 81 85 93 97

11 25 29 33 41 45 65 69 89 93 101 105
13 29 33 37 45 49 69 73 93 97 105 109
17 37 41 45 53 57 77 81 101 105 113 117
19 41 45 49 57 61 81 85 105 109 117 121
29 61 65 69 77 81 101 105 125 129 137 141
31 65 69 73 81 85 105 109 129 133 141 145
41 85 89 93 101 105 125 129 149 153 161 165
43 89 93 97 105 109 129 133 153 157 165 169
59 121 125 129 137 141 161 165 185 189 197 201
61 125 129 133 141 145 165 169 189 193 201 205
71 145 149 153 161 165 185 189 209 213 221 225
73 149 153 157 165 169 189 193 213 217 225 229   

 
Theorem 3. Every even number 6n + 2, beginning with 14, can be represented by the sum q + 3p, 

where q∈B6, p∈B2.  
Proof. Let’s mark the n-th even number as an, an = 6n + 2. We’ll prove this theorem by using the 

method of mathematical induction by the number n ≥ 2, beginng with a2 = 14. Let’s suppose, that all even 
numbers in form of 6n + 2, that are less than or equal to an, can be represented by the sum qn + 3pn, where 
qn∈B6, pn∈B2. Then 

 an+1 = an + 6 = qn + 3pn + 6 .      (11) 
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If at least one prime in (11) is the smaller one, then the proof is concluded, as or    an+1 = qn + 3p’n+1 , 
p’n+1 = pn + 2, p’n+1∈B2,  if  pn is the smaller prime, join  an+1 = q’n+1 + 3pn, q’n+1 = qn + 6, q’n+1∈B6, if qn  
is the smaller prime. 

Let’s suppose, that qn∈B6, pn∈B2 are both greater primes. Let’s present an+1 in form of 
 an+1 = an-1 + 12 = qn-1 + 3pn-1 + 12 ,      (12) 

where  qn-1∈B6,  pn-1∈B2. 
For the primes in (12) the following opportunities are possible: 

1) both  numbers are the smaller primes; 
2) pn-1∈B2 is the smaller prime, qn-1∈B6 is the greater prime; 
3) pn-1∈B2 is the greater prime, qn-1∈B6 is the smaller prime; 
4) both  numbers are the greater primes. 

If condition 1) is executable, then the proof is concluded, as an+1 = q’n+1 + 3p’n+1,  q’n+1∈B6,  
p’n+1∈B2  and q’n+1 = qn-1 + 6, p’n+1 = pn-1 + 2 are the greater primes. 

By carrying out condition 2) from (12), we’ll get:  
 an+1 = qn-1 + 3p’n + 6 ,       (13) 

where  p’n∈B2, p’n = pn-1 + 2 is the greater prime. 
As a result of assumption of the induction, it follows from (13), that 

 an = qn + 3pn = qn-1 + 3p’n .      (14) 
By carrying out condition 3) from (6) we’ll get, if q’n∈B6 , q’n = qn-1 + 6 is the greater prime: 

 an = qn + 3pn = q’n + 3pn-1 ,      (15) 
Correlations  (14) and (15) signify, that every even number an = 6n + 2 can be presented in form of 

the sum of the greater prime from set B6 and the greater prime from set B2, that is multiplied by three, that 
contradicts the expantion 14 = 5 + 3⋅3, where both numbers are the smaller primes. 

By carrying out proof step 4) from (11) and (12), we’ll get the equality  qn +3pn +6=qn-1 +3pn-1 + 12. 
Taking into account the assumption of the induction, it follows from this equality, that 

 an-1 = qn-1 + 3pn-1 = q’n-1 + 3pn = qn + 3p’n-1 ,     (16) 
where  q’n-1∈B6 , p’n-1∈B2 , q’n-1 = qn − 6, p’n-1 = pn-1 − 2 are the smaller primes. 

Correlation (16) means, that every even number an-1 = 6(n − 1) + 2   can be presented in form of the 
sum of the prime from set B6 and the prime from set B2, that is multiplied by three, where at least one of the 
primes is the greater one, that contradicts the statement, that even number 20 = 5 + 3⋅5 = 11 + 3⋅3 has an 
expantion, in which both primes are the smaller ones.  

We got the contradictions, which prove, that or one of the primes is the smaller one in the correlation 
(11), join both primes are the smaller ones in the correlation (12) Theorem 3 is proved. 

The numbers, that look like 6n + 2 and can be represented by the sum q + 3p, where q∈B6, p∈B2, 
are shown in Table 3. 

Table 3 
p/q 5 11 17 29 41 47 53 59 67 73

3 14 20 26 38 50 56 62 68 76 82
5 20 26 32 44 56 62 68 74 82 88
7 26 32 38 50 62 68 74 80 88 94

11 38 44 50 62 74 80 86 92 100 106
13 44 50 56 68 80 86 92 98 106 112
17 56 62 68 80 92 98 104 110 118 124
19 62 68 74 86 98 104 110 116 124 130
29 92 98 104 116 128 134 140 146 154 160
31 98 104 110 122 134 140 146 152 160 166
41 128 134 140 152 164 170 176 182 190 196
43 134 140 146 158 170 176 182 188 196 202
59 182 188 194 206 218 224 230 236 244 250
61 188 194 200 212 224 230 236 242 250 256
71 218 224 230 242 254 260 266 272 280 286
73 224 230 236 248 260 266 272 278 286 292  
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Theorem 4. Every odd number 8n + 1, beginning with 17, can be represented by the sum  q + 4p, 
where q∈B8, p∈B2.  

Proof. Let’s mark the n-th odd number as bn, bn = 8n + 1.We’ll prove this theorem by using the 
method of mathematical induction by the number n ≥ 2, beginning with a2 = 5 + 4⋅3. 

Let’s suppose, that all odd numbers 8n + 1, that are less than or equal to bn, can be represented by 
the sum qn + 4pn, where qn∈B8, pn∈B2. Then 

 bn+1 = bn + 8 = qn + 4pn + 8 .      (17) 
If at least one of the primes in (17) is the smaller one, then the proof is concluded, as or     

bn+1 = qn + 4p’n+1, p’n+1 = pn + 2, p’n+1∈B2, if pn is the smaller prime, join, if qn is the smaller prime, then 
bn+1 = q’n+1 + 4pn, q’n+1 = qn + 8, q’n+1∈B8. 

Let’s suppose, that qn∈B8, pn∈B2 are both greater primes. Let’s write bn+1 in form of 
 bn +1 = an-1 + 16 = qn-1 + 4pn-1 + 16 ,     (18) 

where  n-1∈B8, pn-1∈B2. 
For the primes in (18) the following opportunities are possible: 

1) both numbers are the smaller primes; 
2) pn-1∈B2 is the smaller prime, qn-1∈B8 is the greater prime; 
3) pn-1∈B2 is the greater prime, qn-1∈B8 is the smaller prime; 
4) both numbers are the greater primes. 

If condition 1) is executable, then the proof is concluded, as an+1 = q’n+1 + 4p’n+1, q’n+1∈B8, p’n+1∈B2  
and q’n+1 = qn-1 + 8, p’n+1 = pn-1 + 2 are the greater primes. 

By carrying out 2) from (18) we’ll get:  
 bn+1 = qn-1 + 4p’n + 8 ,       (19) 

where p’n∈B2, p’n = pn-1 + 2 is the greater prime. 
As a result of asumption of the induction, it follows from (19), that 

 bn = qn + 4pn = qn-1 + 4p’n .      (20) 
If condition 3) is executable, then 

 bn = qn + 4pn = q’n + 4pn-1 ,      (21) 
where q’n∈B8 , q’n = qn-1 + 8 is the greater prime. 

It arises from (20) and (21), that every odd number bn = 8n + 1 can be represented by the sum of the 
greater prime from set B8 and the greater prime from set B2, that is multiplied by four, that contradicts such 
expantions as 15 = 3 +4⋅3, 17 = 5 +4⋅3, 25 = 5 +4⋅5, 35 = 23 +4⋅3, in which  both primes are the smaller 
ones. 

By carrying out condition 4) from (17) and (18) we’ll get: qn + 4pn + 8 = qn-1 + 4pn-1 +16., Taking into 
account  assumption of the induction , it follows from this equality, that 

bn-1 = qn-1 + 4pn-1 = q’n-1 + 4pn = qn + 4p’n-1                                                      (22) 
where   q’n-1∈B8, p’n-1∈B2, q’n-1 = qn − 8, p’n-1 = pn-1 − 2 are the smaller primes. 

Equality (22) means, that every odd number bn-1 = 8(n − 1) + 1 can be represented by the sum of the 
prime from set B8 and the greater prime from set B2 that is multiplied by four, but that contradicts the fact, 
that the odd numbers have the expantions in form of the sum 23 = 3 +4⋅5 = 11 + 4⋅3, 49 = 5 +4⋅11 = 29 + 4⋅5,  
in which both primes are the smaller ones.  

We got the contradictions, which prove that or in the equality  (17) one of the primes is the smaller 
one, join in the equality (18) both primes are the smaller ones. Theorem 4 is proved.  

Theorem 5. (Bertand’s postulate). For every natural number n > 2 between n and 2n there is at least 
one prime number р ≥ 3.  

Proof. According to theorem 1 for every even number 2n = p + q, where p, q are the primes, there is 
a prime (let’s call it р), that p < 2n. The following opportunities are possible: or  p > n, and the proof is 
concluded, join p < n. Let’s suppose, that p < n. Then р doesn’t divide or divides  n. 

Let’s take up the first case. Then n − p = a, 2n − p = q. By subtracting and adding these two 
equalities, we’ll get, that n = q − a, 3n − 2p = q + a, and it follows from them, that      a2 = q2 + 2pn − 3n2. 
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The last equality is executable for every n number. And as its left part is a perfect square, so the 
discriminant of its right part is 4(p2 + 3q2) =0, but that is impossible, as      p ≠ 0, q ≠ 0. So, if p < n, then р 
divides n, n = mp, m < 1. Then 2mp = p + q, that is p(2m − 1) = q, but that is impossible, as  q is a prime 
number. We came to the contradictions, which prove, that the unequality p < n is impossible.  

Theorem 6. (The generalization of Bertand’s postulate). For every n > 2 and k, 0 ≤ k < n/2 between 
n i 2(n − k) there is at least one prime number p ≥ 3. 

Proof. According to theorem 1 for every even number 2(n − k) the equality 2(n − k) = p + q is 
executable, where p and q are the odd primes, so there is a prime number (let’s call it p), which p < 2(n − k). 
So, or p > n and the proof is concluded, join p ≤ n. Let’s suppose, that p ≤ n. Then p doesn’t divide n or p 
divides n. Let’s take up the first case. Then n − p = a, 2n − p = q + 2k. By subtracting and adding these two 
equalities, we’ll get, that: n = q−a + 2k and 3n−2p = q + a + 2k.  It arises from these equalities, that for 
every natural n: −a2 = 3n2 − 2(p + 4k)n + 4k(p + k) − q2. The last part of the last equality is a perfect square 
for every n. Then the discriminant of its right part is equal to zero. It means, that the following equality is 
correct: (p − 2k)2 + 3q2 = 0, but it’s impossible, because p ≠ 0 i q ≠ 0. So, if  p ≤ n, then p divides n. Let’s 
suppose, that n = mp. Then the equality (2m − 1)p − 2k = q is executable, and, according to the fact, that q 
> 2 is a prime, it arises from this statement, that (p, k) = 1. Let’s suppose, that p < n/2. Then n−2p=a, 
2n−p=q+ 2k. By subtracting and adding these two equalities, we’ll get, that  n+p=q + 2k−a, 3n−3p =  
= q + 2k+ a. It arises from these equalities, that forevery natural n the following equality is executable:  
−a2 = 3n2 − [3p2 + (q + 2k)2]. The left part of the last equality is a perfect square for every n. Then the 
discriminant of its right part is equal to zero. It means, that the following equality is correct:  (q + 2k)2 +  
+  3p2 = 0, but it’s impossible, because p ≠ 0 and q > 0. So, p ≥ n/2, so n ≤ 2p. When the last inequality  
is divided by p, we’ll get, that m ≤ 2. If m = 1 then p − q = 2k, n = p and theorem 6 is proved. If m = 2 than 
n =2p and by theorem 5 the theorem 6 also is proved. 

Corollary 1. Every even number 2k can be represented in form of p − q = 2k, where p, q are some 
primes, (p, k) = 1. 

The proof arises from the proof of theorem 6, because for m = 1  n = p, then p − q = 2k. 
Corollary 2. Every even number 2k can be represented in form of  3p − q = 2k, where p, q are some 

primes, (p, k) = 1.  
The proof  also arises from the proof of theorem 6, because if m = 2, n = p and 3p −q = 2k. 
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