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In most extended in Poland PC burners an individual air excess ratio rules an amount of
pollution generated, yet there is a lack of method that allows measurement of output
parameters. It is therefore necessary to use indirect methods, which could primarily
include acoustic, and optical methods. These methods are non-invasive and can provide
virtually not delayed and additionally spatially selective information about the combustion
process but they are really difficult in interpretation. The article shows application of
relatively new class of classification methods – the artificial immunology algorithms to the
combustion process diagnostics consisting in detection of incorrect air excess in pulverised
coal burner on the basis of signals acquired from optical sensor.
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1. Introduction

Power industry and coal based especially has its important share in air pollution. In order to decrease an
amount of toxic substances originated in a combustion process the so-called low emissive combustion
technology has been introduced. It generally consists in gradual supply of air, in order to create
reduction zones in a flame, what reduces emission of gaseous pollutants e.g. like NOx. The main
advantage of such modifications is relatively low investment cost. Unfortunately, such technology has
some adverse side effects. In order to minimise their consequences it is necessary to obtain information
about the course of combustion process as well as its adequate control. Both tasks are relatively
difficult because of high complexity of the phenomena proceeding during combustion. Commonly used
control systems employ process variables such as: flow of the air-pulverised coal mixture from each
mill, air fans load, unit power or emission of gasses (CO, O2, NOx). There are also attempts to
include some related values e.g. near wall gas composition [1, 2]. However, in spite of big complexity,
all these systems have one basic disadvantage: the control is based on averaged and heavily delayed
measurements. Even the most advanced of recently available control systems is not able to control an
individual burner, while an individual air excess ratio rules an amount of NOx generated.

The analysis of the problem let us conclude that there is a lack of method that allows measurement
of output parameters of an individual burner like for example air excess level. It is therefore necessary
to use indirect methods, which could primarily include acoustic, and optical methods. These methods
are non-invasive and can provide virtually not delayed and additionally spatially selective information
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Optical combustion sensor data interpretation using hybrid negative selection algorithm 59

about the combustion process. The biggest disadvantage of such method is the problem of interpre-
tation of signals obtained. Artificial immunology algorithms are relatively new class of classification
methods. This article describes their application to the combustion process diagnostics consisting in
detection of incorrect air excess in pulverised coal burner.

2. Optical fflame sensor

The estimation of the NOx content within the flame of an individual burner based on the emission
spectrum analysis is possible, yet it can be hardly done in harsh, industrial conditions, especially high
temperature, vibrations and dustiness are present. Additionally combustion of pulverized coal in the
power burner takes place in a turbulent flow. In its each point local fluctuations of both fuel and
gaseous reactants concentrations as well as of temperature occur. It leads to permanent local changes
in the combustion process’ intensity, which result in continuous changes in the flame luminosity that
can be observed as the flame flicker. As the combustion process affects the turbulent movement of its
products and reactants it determines the parameters of the way the flame flickers such as e.g. mean
luminosity and luminosity frequency spectrum. A number of combustion supervision and flame-fault
protection systems use information contained within the flame flicker. A multichannel fibre-optic flame
monitoring system developed at the Lublin University of Technology is an example of a solution of
that kind [3].

The aforementioned system is designed for operations in harsh conditions. It provides signals cor-
responding to radiation generated within spatially limited flame zones. Generally, the systems consist
of the following elements: measuring probe, optical fibre bundle, photodetectors, and signal processing
unit. Schematic diagram of a typical flame monitoring system is presented in fig. 1. A measuring probe
is placed inside a combustion chamber, close to a burner and is exposed to temperatures in the order
of hundreds degrees centigrade. Its construction ensures a long-term operation inside the combustion
chamber by the air that purges the probe front. Solid angles from which the radiation is delivered to
the photodetectors are determined by the place where the probe is installed and the numerical aperture
of the optical fibres applied. The probe’s orientation is adjusted so as to provide the highest signal
susceptibility to the changes in the combustion process e.g. the equivalence ratio. A photograph of a
multichannel measuring probe is shown in fig. 2.
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Fig. 1. Schematic diagram of a
flame monitoring system.

Fig. 2. Multichannel measuring probe. Fig. 3. Areas of view of fibers.

An optical fibre bundle enables to separate the signal processing unit from high temperatures inside
the combustion chamber enabling more flexible mounting of the whole system. As the length of the
fibres applied is in the order of a few meters, the attenuation of the optical signal within a spectral
range of the radiation emitted by a coal flame can be neglected. To maximize the radiation power
acquired by the measuring probe a thick-core PCS or HCS were used for their maximum temperature
up to 350◦C.
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To detect coal flame radiation, photodetectors designed for the visible or the near-infrared range
are suitable. Materials such as Si, Ge, InGaAs or the so called modified silicon are commonly used.
The latter one has better performance in the UV range, so it may be applied also for the fuel-oil flame
detection. The spectral characteristic of the photodetector applied is presented in fig. 3. To minimize
the influence of electromagnetic noise in industrial conditions and to simplify the construction of an
electronic part of the whole device, it is better to apply a photodetector with an integrated operational
amplifier.

In the signal processing unit, a signal obtained from the photodetector is amplified at an adjustable
level. The flame monitoring system is insensitive to interferences of both the adjacent flames and the
hot elements of the boiler.

3. Artificial immune algorithms

The Artificial Immune Systems, as defined by de Castro and Timmis [4] are: “Adaptive systems inspired
by theoretical immunology and observed immune functions, principles and models, which are applied to
problem solving”. However AIS are one of many types of algorithms inspired by biological systems, such
as neural networks, evolutionary algorithms and swarm intelligence. There are many different types of
algorithms within AIS and research to date has focused primarily on the theories of immune networks,
clonal selection and negative selection. These theories have been abstracted into various algorithms
and applied to a wide variety of application areas such as anomaly detection, pattern recognition,
learning and robotics.

3.1. Negative selection algorithm

The negative selection of T-cells is responsible for eliminating the T-cells whose receptors are capable of
binding with self-peptides presented by self-MHC molecules. This process guarantees that the T-cells
that leave the thymus do not recognize any self-cell or molecule. Forrest et al. [5] proposed a change
detection algorithm inspired by the negative selection of T-cells within the thymus. This procedure was
named as negative selection algorithm and was originally applied in computational security. A single
type of immune cell was modelled: T-cells were represented as bit strings of length L. The negative
selection algorithm of Forrest and collaborators is simple [5]. Given a set of self-peptides, named self-
set S, the T-cell receptors will have to be tested for their capability of binding the self-peptides. If a
T-cell recognizes a self-peptide — it is discarded, else it is selected as an immune-competent cell and
enters the available repertoire A.

The idea of negative selection algorithm is to generate a set of detectors in a complementary set
of N and then to use these detectors for binary classification as “Self” or “Non-Self” [5]. Formally, the
negative selection algorithm can be represented as [6]:

NegAlg =
(
ΣL, L,S,N, r, n, s, pr

)
(1)

where ΣL denotes shape-space; L is receptor length; S is “Self” detector set; N is “Non-Self” detector
set; r denotes cross-reactive threshold; n is total number of appointed detectors; s is detector set size;
pr denotes rule matching rows in adjacent positions.

The negative selection algorithm can be summarized as follows [5]:

• Define self as a collection S of elements in a feature space U. a collection that needs to be monitored.
For instance, if U corresponds to the space of states of a system represented by a list of features,
S can represent the subset of states that are considered as normal for the system.

• Generate a set F of detectors, each of which fails to match any string in S. An approach that
mimics the immune system generates random detectors and discards those that match any element
in the self set.
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• Monitor S for changes by continually matching the detectors in F against S. If any detector ever
matches, then a change is known to have occurred, as the detectors are designed not to match any
representative samples of S.

Fig. 4. Negative selection algorithm [7].

3.2. Artificial immune network algorithm

Immune network can be presented mathematically as a graph (moreover, not obligatory fully con-
nected), which consists of the set of nodes, i.e., cells of network (antibodies) and the set of weighted
edges, denoting connections between cells [6]. The value of edge weight corresponds to affinity of
connection of cells with each other. One distinguishes two types of affinity in immune networks:

• affinity of connection “antigen-antibody” Ag-Ab is degree of difference;
• affinity of connection “antigen-antibody” Ab-Ab is degree of similarity.

Formalism of immume network is similar to CLONALG wit addition of several new operators and
parameters [8]:

immNET = (P l, Gk, l, k,mAb, δ, f, I, τ, AG,AB,S,C,M, n, d,H,R), (2)

here P l is the space of search (space of forms); Gk is representation of the space; l is the length of
vector of attributes; k is the length of receptor of cell; mAb is size of cells population; δ is the expression
function; f is the affinity function; I is the function of initialization of the initial population of network
cells; τ is the condition of completion of algorithm work; AG is subset of antigens, AB is population of
network cells (antibodies); S is the operator of selection; C is the cloning operator; M is the mutation
operator; n is the number of the best cells selected for cloning, d is the number of the worst cells
subject to substitute by new ones; H the operator of the clonal removal; R is the operator of network
compression.

Behavior of immune network in many respects differs from behavior of the clonal selection algorithm,
which stepwise realization is represented below.

1. Initialization.
1.1. Creation of the initial population of cells of memory MR.
1.2. Creation of population of antibodies (AB).

2. Antigen presence. Starting from this block algorithm realizes one pass at a time for every antigen.
2.1. Determination of affinity. Affinity is determined for all cells of memory mj, mj ∈MR for regular

antigen Agi, Agi ∈ AG and one the best cell mb, is selected.
2.2. Cloning. The selected cell of memory is cloned proportionally to its affinity with generation of

population of clones MC .
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2.3. Maturation of affinity. Mutation of clones from MC is performed. Changed clones are added to
population of antibodies, i.e., AB ← AB ∪MC . Affinity of population of antibodies AB with
the antigen Ag, is determined.

2.4. Methadynamics. Clonal removal of nonstimulated cells is done in accordance with the thresh-
old σd.

2.5. Repeated cloning of a part of antibodies from the population AB with generation of clones
population MC and transition to items 2.3 if mean affinity of the population AB is lower than
the given threshold value.

2.6. From the population AB the cell-candidate (the best antibody) is selected into population of
cells of memory Abb.

2.7. Go to item 3 if f(Abb, Agi) < f(mb, Agi).
2.8. Addition of antibody Abb into the population MR.
2.9. Cell-cell interaction. Affinity of interaction of all cells of population MR with each other is

determined, i.e., f(mi,mj), mi,mj ∈MR.
2.10. Network compression. Recognizing each other cells of population MR are removed according to

the given threshold σS
3. Verification of the condition of stoppage of the algorithm and passing to item 2, if the condition

does not hold.

3.3. Combined immune network and negative selection algorithm

It is well known, that the algorithm of negative selection (NS) has the some restrictions and limita-
tions [7]. When it is not appropriate, for example, the number of self samples is small and sparse.

Some limitations of the binary-string representation in NS algorithms are as follows: binary match-
ing rules are not able to capture the semantics of some complex self/non-self spaces; it is not easy to
extract meaningful domain knowledge; in some cases a large number of detectors are needed to guar-
antee better coverage (detection rate); it is difficult to integrate the NS algorithm with other immune
algorithms; the crisp boundary of “self” and “non-self” may be very hard to define.

In real-valued representation the detectors are represented by hyper-shapes in n-dimensional space.
The algorithms use geometrical spaces and use heuristics to distribute detectors in the non-self space.

Some limitations of the real-valued representation in NS algorithms are: the issue of holes in some
geometrical shapes, and may need multi-shaped detectors; curse of dimensionality; estimation of the
coverage; selection of the distance measure.

In this study, concerns the problem of developing improved methods of generating detectors capable
adaptively choose their adjustment, the number and location.

Modification of the learning phase in the model of negative selection [9, 10]. Solving
a specific problem with the help the generalized m requires specific descriptions of some operators
and functions. In this case, the immune network uses encryption antibodies with the help real num-
bers, when to calculate the distance used Euclidean metric. This antibody forms around a radial
l-dimensional region recognition with a radius r, called cross-reactive threshold. As shown in Figure 5,
cross-reactive threshold was included in the structure of antibodies, what enables of adaptive setting
its value. Thus, the immune network fills space “Non-self”, which are recognized by hyper spheres of
different radius, that enables its more complete coverage.

 
r Abi1 Abi2 … Abil 

 

Fig. 5. Presentation of the immune network antibody.

To calculate the affinity values of the relationship “antigen-antibody” the following ratio is used:

fAb−Ag =
kr
r

+DE(Ab−Ag), (3)
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where r is the cross-reactive antibodies (detector) threshold, kr is coefficient of importance of cross-
reactive threshold (parameter settings). Parameter kr is very important study parameter. He manages
the robustness of the resulting solution. Increasing this parameter causes the immune network to main-
tain larger radius detectors, what gives a coarser, but more sustainable solution. However, excessive
increase of kr affects negative to the accuracy of solutions.

Compress of immune network is based on self-recognition cells that is numerically expressed as affin-
ity relationship of antibody with each other. To calculate the values of affinity relationship “antibody-
antibody” proposed the following formula:

fAb−Ab = −
DE(Ab1−Ab2) − (rAb1 + rAb2)

2 ·min(rAb1 , rAb2)
, (4)

Fig. 6. Different mutual arrangement of the recognizing hyper sphere of detectors depending on the value
fAb−Ab.

This possible interpretation of such values fAb−Ab :6 0 — recognizing hyper sphere detectors do not
overlap. This option does not require compression, because the antibodies do not recognize each other;
(0, 1) — hyper sphere overlap by shells, namely the value is the degree of overlap. This compression is
dependent on the value of the parameter of threshold compression σs, which is a parameter of study;
> 1 — hyper sphere smaller radius (r) is completely inside hyper sphere larger radius. In this case,
compression is definitely needed, because there is redundancy recognizing elements. This operator H
of clonal deletion acts only those antibodies that recognize at least one antigen. Thus, the resulting
immune network at the end of each generation is guaranteed to not contain detectors that recognize
“their” antigens.

Solution to the problem of binary classification. In general, the problem of anomaly detection
can be represented as follows [9–11]. Let this discrete time series variables of the process y1, y2, . . . , yn.
Assumed that the discrete control variable y(t) is carried out on the range [t1, tn]. At some chosen
temporal window width k measurements (k < n). The value of time series, which trapped inside the
time window, forming a feature vector Yt (yt, yt−1, . . . , yt−k+1). Feature vector is assigned membership
in one of two classes: normal(1) if the sample time series corresponding to this vector does not contain
anomalies (i.e., belongs to a class of “Self”), abnormal(0) otherwise. Temporary window shifts (slips)
along the time series on value steps of ∆l, forming a set of vectors that divide attribute space into two
parts, with or without abnormalities. The problem lies in attributing any vector Yj formed by sliding
time window to one of two selected classes. On the other hand, if we consider the study process as a
dynamic system is obtained by sliding window set of vectors is the restored phase portrait of dynamical
system, and the same vectors – points that are phase trajectories of the system.

In normal behavior, this trajectory can be interpreted as a reference image, whatever deviation
from which is a sign of abnormality. It should be emphasized that the use of negative selection is
not necessary to include in the training sample vectors corresponding to the anomalous behavior that
makes it possible to fix any, even unknown anomaly (non-self).
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Fig. 7. Generalized block-diagram of the hybrid procedure of the immune network with a negative selection.

Fig. 8. The task of binary classification of a signal.

4. Test methodology and facility

Combustion of pulverized coal was examined through optical methods, which were based on analysis
of wide spectrum radiation emitted by the flame. The analysis also takes into account spatial features
of such radiation source. Combustion of pulverized coal in the power burner takes place in a turbulent
flow. In its each point local fluctuations of both fuel and gaseous reagents concentrations, as well as
temperature occur. It leads to permanent local changes in combustion process intensity, which result
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in continuous changes in flame luminosity that can be observed as flame flicker. As combustion process
affects the turbulent movement of its products and reagents it determines the way the flame flicker
parameters such as e.g. mean luminosity and luminosity frequency spectrum. A number of combustion
supervision and flame-fault protection systems use information contained within flame flicker. The
multichannel fibre-optic flame monitoring system developed at Lublin University of Technology belongs
to this class of solutions but additionally it allows observation of selected areas of the flame.

Experiments were made on test rig located in the Institute of Power Engineering in Warsaw. It is
a combustion chamber with a single pulverized coal swirl burner made in 1:10 scale in relation to a
low-emission industrial burner. This object was chosen because of the ability to perform experiments
with a single burner, and it’s a good instrumentation. All measured quantities are visualized and
recorded by the data acquisition system. Sampling period is 1 s. The combustion chamber is equipped
with the above mentioned optical fibre probe which allows observation of five different areas of the
flame. Figure 3 shows section of part of the chamber with marked areas of view.

Measurements

The experiment begins with bringing the chamber to the proper temperature. When the temperature
stabilizes the series of measurements are performed with changing air and fuel flows. During an
individual measurement the amounts of fuel and air are kept constant. A single measurement lasts
approximately 300 seconds. Such a measurement method is to eliminate the impact of the transport
delay of gas analysers. It is assumed that during the measurement the conditions are fixed and the
emission values stabilized. The tests were made at three different thermal loads, for pure pulverised
coal and 10% blend with biomass (shredded straw). The amount of secondary air was being changed
in order to achieve the air excess corresponding to normal operation, too high and too low conditions.
Voltage signals corresponding to the instantaneous brightness of the flame of the areas observed by
individual optical fibres were sampled at the rate of 8KS/s and saved by a dedicated system. Figure 9
shows example measurements corresponding to normal, too low and too high air excess ratio. A set of
features was randomly divided into learning and testing subsets by 30%/70% and 70%/30%.

Table 1. Class distribution of the data points in the training and testing datasets.

Class Training set Testing set Total

λ too high 720 1680 2400

λ correct 720 1680 2400

λ too low 720 1680 2400

Total 2160 5040 7200

λ too high 1680 720 2400

λ correct 1680 720 2400

λ too low 1680 720 2400

Total 5040 2160 7200

λ too high 1920 480 2400

λ correct 1920 480 2400

λ too low 1920 480 2400

Total 5760 1140 7200

In order to avoid the bias associated with the random sampling of the training data the k-fold
cross-validation was also performed. In k-fold cross-validation, the data is partitioned into k subsets
of approximately equal size. Training and testing the algorithm is performed k times. Each time,
one of the k subsets is used as the test set and the other k − 1 subsets are put together to form a
training set. Thus, k different test results exist for the algorithm. However, these k results are used to
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Fig. 9. Example measurements corresponding to normal, too low and too high air excess ratio.

estimate performance measures for the classification system. Table 1 contains class distribution of the
data points in the training and testing datasets.

The common performance measures used in diagnostics are accuracy, sensitivity and specificity.
Accuracy expresses the ability of the classifier to produce accurate diagnosis. The measure of the
ability of the model to identify the occurrence of a target class accurately is determined by sensitivity.
Specificity is determined the measure of the ability of the algorithm to separate the target class. The
accuracy can be expressed as:

Accuracy(Z) =

|z|∑
i=1

Assess(zi)

|Z| , Assess(z) =

{
1, if classify(z) = z.c,
0, otherwise,

(5)

where z denotes the patterns in testing set to be classified, z.c is the class of pattern z, classify(z)
returns the classification of z by classification algorithm. For sensitivity and specificity analysis, the
following equations can be used:

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
, (6)

where TP, TN, FP and FN denote respectively true positive, true negative, false positive and false
negative classification.

Many discriminative methods, including Support vector machine, neural network and classifiers
based on the artificial immune systems, are often most accurate and efficient when dealing with two
classes only (they can deal with more classes, but usually at reduced accuracy and efficiency). For
large number of classes, higher-level multi-class methods are developed that utilize these two-class
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classification methods as the basic building blocks. To solve our problem, we used the strategy of
one-versus-all based on the hybrid algorithm we developed negative selection and artificial immune
network [12]. The simplest approach is to reduce the problem of classifying among K classes into K
binary problems, where each problem discriminates a given class from the other K−1 classes [13]. For
this approach, we require N = K binary classifiers, where the k th classifier is trained with positive
examples belonging to class k and negative examples belonging to the other K − 1 classes. When
testing an unknown example, the classifier producing the maximum ouput is considered the winner,
and this class label is assigned to that example. Rifkin and Klautau [13] state that this approach,
although simple, provides performance that is comparable to other more complicated approaches when
the binary classifier is tuned well [14].

Fig. 10. Synthesis of adaptive binary classifiers – learning phase in negative clonal selection algorithm.

5. Results

Classification tests using modification of the learning phase in the model of negative selection were
made according to the algorithm shown in Fig. 5. Table 2 contains the results of performance analysis.
Average accuracy was about 98.99%. Classification accuracy obtained using fuzzy networks (TSK) was
about 96.4% [15]. Normalised execution time of both algorithms was similar.

Table 2. Performance measures for negative clonal selection algorithm.

learning set/testing set distribution accuracy sensitivity specificity

40/60 98.96 99.30 99.15

60/40 99.16 99.20 99.55

80/20 5-fold cross-validation 98.88 98.75 99.35

mean 98.90 99.07 99.30

Mathematical Modeling and Computing, Vol. 2, No. 1, pp. 58–70 (2015)

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua
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Fig. 11. Classification phase in negative clonal selection algorithm.

6. Conclusions

Optical signal can be used for operation status detection of an individual burner. The optical signal
is the fastest and provides a selective way of getting information about the quality of combustion. Its
interpretation, however, poses many difficulties.

The modification of the learning phase in the model of negative selection that uses optimization as
well as the artificial immune network for optimization parameters detectors are developed. A distinctive
feature of this procedure is a modification of the learning process, due to which is implemented the
adaptive selection settings, the number and location of detectors. Experimental studies have shown
high efficiency of the proposed procedure, which is evident in its stability through adaptive value of
cross-reactive threshold; optimality due to the adaptive immune network configuration size, i.e. the
number of required detectors; accuracy by reducing the number and size created “cavities”.

Classification accuracy of the modification of the learning phase in the model of negative selection
was better than one of fuzzy (TSK) algorithm when applied to the problem of detection of anomalies in
air excess ratio using optical system. Considering similar computational complexity of above mentioned
algorithms the advantage of the former one is clear. The modification of the learning phase in the model
of negative selection combined with optical methods can then be used for diagnostics of correct cofiring
of pulverised coal blends with biomass in individual PC burner.
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У найпоширенiших у Польщi промислових котлах кiлькiсна характеристика забруд-
нення пiд час горiння здiйснюється за допомогою «коефiцiєнта надлишку повiтря».
Однак, сьогоднi вiдсутнi будь-якi методи, якi б дали змогу вимiрювати вихiднi пара-
метри, якi безпосередньо давали б можливiсть визначати якiсть горiння. З цiєї при-
чини, значно цiкавить використання акустичних i оптичних методiв для оцiнювання
якостi горiння. Зазначенi методи належать до класу так званих «неiвазивних» мето-
дiв, якi дають змогу, з одного боку, дистанцiйно i миттєво отримувати великий обсяг
iнформацiї про горiння, але, з iншого боку, в разi їх застосування виникають пробле-
ми iнтерпретацiї отриманих даних. У статтi описано застосування нового гiбридного
iмунного алгоритму для виконання завдань дiагностики процесу горiння. Запропоно-
ваний алгоритм дає можливiсть виявити надлишок повiтря в казанi з розпорошеним
вугiллям на основi оброблення сигналiв, отриманих вiд оптичного датчика.

Ключовi слова: оптичнi iндустрiальнi системи, промислова дiагностика, горiлки
вугiльного пилу, штучнi iмуннi системи, алгоритм негативного добору
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