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Abstract

The well-known numerical-analytic method based on zeroes/poles matching (as z-transform realization) of
equivalent transfer function or complex impedance (conductivity) in Laplace domain was proposed for high-speed
computer analysis of electric circuits transients. The advantages of this method were illustrated on simple examples
of the computer models of the first order eectric circuit (RC-circuit that correspond to real pole) and second order
electric circuit (RLC-circuit that correspond to complex pair of poles). These models were verified to the computer
models based on the analytic method using the Laplace transform. The method can be applied to modern computer
programs of power systems stability analysis, eectrical circuits transients calculations and common systems
dynamic analysis.

Keywords: computer simulation; electrical circuits, transient processes, zeros-poles matching method; z-
transform.

1. Introduction

The computer simulations of the electrical systems and circuits are usually based on the numeric
methods for the ordinary differential equations (ODES). It is quite easy to solve the systems of the ODEs with
smooth or low varying solutions if high-speed simulation are not required but problems appear when
solutions are complicated with the very fast components of the process and must be implemented in real time
or faster. The example to show one part of these problems using well-known environment MATLAB with
Simulink can be found in [1] — the different methods for ODEs give the different results and very various
calculation time for computer simulation of AC electric drive. Note that automatic step control of simulation
can't to improve this situation. Different solutions (only for second-order system of equations!) obtained by
means of different numeric methods intended for solving ODEs with the automatic step control strategy were
described in [2] also as example for MATLAB ODEs suit. This phenomenon of ODEs solution using the
numeric methods is the consequence of their basic principle — all numeric methods approximate the solution
by the limited Taylor series that is suitable for continues smooth functions only. As the result, modern
electric systems with pulse-width modulation (PWM) power electronics can't be simulated using the
traditional approach because their signals are sampled (discontinued).

Such problem can be solved using analytic or semi-analytic (or semi-numeric) methods some of which are
based on z-transform [3], [4], [5]. This method is suitable for nonlinear (linearized) systems ([4], [5], [6]) and is
similar to Laplace operator method [7] but produces the recurrent simulation equations directly. This approach
was well known during early-computer age (approx. 60-70 years of XX cent.) then computers were big, slow
and had small memory capacity. But scientists and engineers solved many complex computing problems using
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the above method at that time (for example [8], [9]). Note that z-transform-based method is actual in the modern
time [10]. The common problems such as:

» researcher must make the great amount of analytic transformations during the preparation process;
» researcher must understand the simulated problem well, made such an approach unpopular.

In the authors' opinion, this forgotten method is the best way to ssimulate the dectric circuits and systems in redl
time or faster. It uses the recurrent simulation formulas based on zeros/poles matching method that is well known
using as z-transform [ 3], [4]. Thiswill be shown by two simple examples bel ow.

2. Fundamentals

All of the redl linear or linearized systems that can be described by transfer functions (for a control theory) or
complex impedance (conductivity) in Laplace domain (for eectric circuits analysis) have the numerator polynomial
order no greater than denominator polynomia order. We can decompose (residue) these systems to the e ementary
particles (fig. 1) using Heaviside theorem [11] in this cases:

» simplereal poles (correspond to the first order block);
» complex conjugate of the poles (correspond to the second order block).
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Fig. 1. Thetwo types
0 of the elementary dynamic blocks
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These two blocks are the elementary parts to construct the whole designed computer model. The responses of
every eementary dynamic block can be represented as the discrete transfer functions using zeros/poles matching
method as the z-transform. This method corresponds to convolution integral using zero-order approximation of the
signal (rectangles approximation) that produces simple but effective recurrent modelling equations. Some problems
can be solved using this approach:

» absolute numerical stability — the theorem of the strong numeric stability of thisformulas was proved in [11];
» simplicity of the obtained recurrent formulas — they are simple and comprehensible;

» obtained equations are quite effective — the operating step during the computer simulation is limited by the
Nyquist-Shannon sampling theorem.

The basic principle of zerog/poles matched method is corresponding Laplace domain to unit circle (discrete-time
equivalent or z-domain — agterisk marked).

sampling

Ps-r) P PRy,

where R — i-th root of numerator/denominator of the system transfer function (it's zerog/poles); R* — i-th root of

numerator/denominator of the discrete transfer function of system that corresponds to a discretetime R =e®* (it's
discrete zerog/poles), where his sampling time.
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As the result, continuous-time transfer function (or impedance/conductivity) can be rewritten to discrete-
time transfer function (or impedance/conductivity) with a sampling time h after this discretization procedure:

P(s Z)z. P(z Z)

K i=1
= F’l’ﬂ

P(s P) P(z P)

where K — the DC gain of the continuous-time system; K* — the DC gain of the discrete-time system; m — order of
numerator of the system (electrical circuit); n — order of denominator of the system (electrical circuit); Z; —i-th root of

numerator of the system transfer function (it'szeros); Z, —i-th root of numerator of the discrete transfer function (it's

discrete zeros); P; —j-th root of denominator of the system transfer function (it's poles); P* —j-th root of denominator
of the discrete transfer function (it's discrete poles).

The last step is setting DC (or low-frequency) gain of the discrete transfer function egual to continuous-time
system gain (or equal to impedance/conductivity on DC):

.Pm(s_ Z|) N Pm (Z- Z:)
limK 2 =limK" =
El(s' P) |J_:_)1(z- P)

For example, first-order transfer function

1 1 or the simple electrical circuit with one reactance describe by

the ordinary differential equation T xy(+y = x, where y — output response, T — time constant, X — input signal or
excitation. We perform discretization of this continuous-time system:

. . .1
» the continuous pole of thissystem is - ?;

h
« accordingly, the discrete pole of thissystemis e T ;

*

e anddiscretetransfer functionis
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z-eT

h
+ to equalize the gain of both systems (continuous and discrete) getting K™ =1- e 7 yield final discrete

transfer function that corresponds to recurrent equation for simulation:
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Using zerog/poles matching method, we get second order system with transfer function —————
Ts" +2xTs+1

(or equivalent second-order eectrical circuit, RLC-circuit for example):

. . . . - X*4/x2-1
- this continuous system has a pair of complex conjugate poles. %;

E < X+ xz-lg
- accordingly, the discrete poles of this system are eT§ 2,

K

- this pair of discrete complex conjugate poles produce discrete transfer function S A+BiLL
z- z

h . h
where A= 2e Tcosgd_l_lwll- x?2 B=e T,
& o

to equalize the gain of both systems (continuous and discrete) getting K™ =1- A+B yield final discrete
transfer function that corresponds to recurrent equation for simulation:

1 1- A+B
P =Y XA- Y B+ X X1- A+B). 2
T232+2XTS+1 z- A+BXZ.1 yll y yl )(1><( ) ()
Discrete transfer function for common-order continuous system can be obtained using Heaviside theorem
(classic way to get z-transform) with sample step h:

_g Ps), 1
. 2 0es) 1z

z=€
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where n —number of poles, z— z-transform operator; s —i-th root of denominator polynomial (pol€); P(s) — numerator
of the continuous-time transfer function; Q'(s) — first derivative of the denominator of the continuous-time transfer
function.

3. Examples
The simple e ectric circuits are the good tests and illustrations to use for zeros/poles matching method.

The smple RC-circuit
The simple RC-circuit (fig. 2) is the good first object (example) to investigate the properties and
behavior of the proposed modeling equations because it achievement is the possibility to find the analytic
solution for all variables and compare it with simulation results (see [7], [14]). The capacitor’s voltage Uc(t)
is unknown variable in this example.

. Ri=50W
0 R
1 I

E=100V (_El =3.3nF Fig. 2. The smple RC-circuite for the first example
Uc(t)

The Kirchhoff' s laws can be written for this circuit as equations:

E =R x(t) +U.(t) wherei(t) :01% . Astheresult, finaly
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duc (1)

C
RC, ot

+U. (1) =E.

The solution of this differential equation can be written as recurrent formula based on the formula (1):

.h e h§
Uciy =Ug e R + 8- e S E, )
1]
LI
Symbolic solution for zero initial condition isknown: Uc(t) = EXl-e R

-, and can be compared to zero/poles
(4]

matching solution obtained by formula (3). Both solutionsareidentical and show in Fig. 3.
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Fig. 3. The capacitor’s voltage Uc(t)
for the first example for the zero initial condition

The smple RLC-circuit

The smple RLC-circuit (Fig. 4) isthe good second object (example) to investigate the properties and behavior of
the proposed modding equation (2). The analytic solution for the unknown capacitor’s voltage Uc(t) can be found
using Laplace transform for this example also (see[7], [14]).

——1__
Uc(t) (:: Ci1=33nF
Fig. 4. The smple RLC-circuite for the second example
(T E=100V
L:=01H

Thetransient processes are described by the system of two equations of this circuit (4):
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i
U~ (t) =U(0) +—g(t)dt;
U= c()"'Cld() .
1,20 R +ucm =E.

This equations can be rewritten to second-order differential equation (5) with zeroinitial conditions:

ZUc(t) duc(t) duc(t)

+Uc(t) = E wherei(t) =C; ot

LG ———+RG—— ®)

Denote T =,/LLC; and X = RlCl that produce recurrent equation (6) for computer simulation

Ugis =Uci ¥A- Ug;. B+EX1- A+B), (6)
R .. R
-ho = & o} -h=>
where A=e 24 cos °h ab R2:, B=e " inthisexample
€2\ C 13

The computer simulation results can be verified with analytic solution using direct and inverse Laplace transform
obtained from equation (5):

E
Uc(s) = , after inverse Laplace transform (using Mathcad or MATLAB for example)

s{L,C,s” +RCs+1)

we get analytic solution for capacitor voltage for zero initial conditions and four digits precision:

U (t) =100- (100c0s(524.4t) + 4.334sin(524.4t)) > 2273 )

Solution of the equation (6) can be compared to anaytic solution (7) shown in fig. 5 for zero initial conditions.
Both resultsareidentical.

180}{
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30y .
—— using Laplace transform
0 0.05 0.1 0.15 0.2 0.25 0.3
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Fig. 5. The capacitor’s voltage Uc(t) for the second example for the zero initial condition
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4. Conclusions
The overviewed method is suitable for various problems solution in the field of electrical engineering. The

method is suitable for a wide range of linear and nonlinear dynamic systems [3], [11]. Main advantages of the
proposed method are:

» obtained modeling equations are numerically stable and don't dependent on the step size;
» thismethod produces quite simple but very effective equations that are suitable for high-speed ssimulation of

linear and nonlinear dynamic objects.
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HIBuakicHe KOMIT' IOTEPHE MOJAEJTIOBAHHS €JIeKTPUYHHUX KiJ

Bonomumup Mopos®, I'anmuna CusikoBa”

& Hayionanvnuii ynisepcumem “ Jlvsiscoxa nonimexuixa” , syn. C. banoepu, 12, Jlvsie, 79013, Vrpaina

® Kapazanouncexuii depacasnuii indyempianshuii ynisepcumem, np. Pecny6nixu, 30, m. Temipmay Kapazanouncokoi

061., 101400, Kazaxcman

AHoTalisa

I[J'IH BI/ICOKOIJ_IBI/II[KiCHOFO KOMH’IOTepHOl"O MOJCIOBAaHHA HepeXiI[HI/IX npoueciB B CICKTPUYHHUX KOJIax

3aMpOIIOHOBAHO BHUKOPUCTAaTH JaBHO BiJOMHII METOJ BIiAMOBIAHOCTI HyMiB/MOMIOCIB (IK OJHY 3 peamizariif
Z-TIepeTBOPCHHS) BiAMOBIIHOI HEMepepBHOI TepeaaTHOi (GYHKINI YW KOMIUIEKCHOTO iMmegaHcy (mpoBimHocTi) B
obnacti meperBopeHb 3a Jlamutacom. IlepeBaru Iboro MeTomy IOKa3aHO Ha IPOCTUX IPHKIAJaX KOMII FOTEPHUX
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Mojieiell enekTpudHoro koja mepmoro mopsaky (RC-koso, sike BigmoBizae ogHOMY IIHCHOMY IIONIOCY) 1 Koia
npyroro mopsaky (RLC-koro, sike BiANOBifae mapi KOMIUICKCHO-CIPSDKEHHX TMOMiociB). OTpuMani Mozeni Oyau
MepeBipeHi 3 BUKOPHCTAHHSAM KOMIT FOTEPHUX MOJENeH, sSKi OJepXaHi aHAIITHYHHM METOJOM 3 BHKOPHUCTAHHSIM
neperBopeHHs1 Jlaruaca. Meron Moke BHKOPHUCTOBYBATHCSI B Cy4acHHX KOMIT IOTEpPHHX Hporpamax JJisi aHajiizy
CTIMKOCTI €JIEeKTPOSHEPIreTUYHUX CHCTEM, PO3paxyHKy MEpeXiJHUX MpOLECIB B €JIEKTPUYHUX KOJaxX Ta aHaJi3y
IVHAMIKY 1HIIAX TEXHIYHUX CUCTEM.

KirouoBi ciioBa: elnekTpuyHi Kojia; KOMIT FOTEPHE MOJICIIIOBAHHS, METOI BIAMOBIAHOCTI HYJIB 1 IOJIOCIB;
MepEeXiIHI MPOIECH; Z-TICPETBOPEHHS.



