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Abstract 

The well-known numerical-analytic method based on zeroes/poles matching (as z-transform realization) of 
equivalent transfer function or complex impedance (conductivity) in Laplace domain was proposed for high-speed 
computer analysis of electric circuits’ transients. The advantages of this method were illustrated on simple examples 
of the computer models of the first order electric circuit (RC-circuit that correspond to real pole) and second order 
electric circuit (RLC-circuit that correspond to complex pair of poles). These models were verified to the computer 
models based on the analytic method using the Laplace transform. The method can be applied to modern computer 
programs of power systems stability analysis, electrical circuits' transients' calculations and common systems 
dynamic analysis. 

Keywords: computer simulation; electrical circuits; transient processes; zeros-poles matching method; z-
transform. 

1. Introduction 

The computer simulations of the electrical systems and circuits are usually based on the numeric 
methods for the ordinary differential equations (ODEs). It is quite easy to solve the systems of the ODEs with 
smooth or low varying solutions if high-speed simulation are not required but problems appear when 
solutions are complicated with the very fast components of the process and must be implemented in real time 
or faster. The example to show one part of these problems using well-known environment MATLAB with 
Simulink can be found in [1] – the different methods for ODEs give the different results and very various 
calculation time for computer simulation of AC electric drive. Note that automatic step control of simulation 
can't to improve this situation. Different solutions (only for second-order system of equations!) obtained by 
means of different numeric methods intended for solving ODEs with the automatic step control strategy were 
described in [2] also as example for MATLAB ODEs suit. This phenomenon of ODEs solution using the 
numeric methods is the consequence of their basic principle – all numeric methods approximate the solution 
by the limited Taylor series that is suitable for continues smooth functions only. As the result, modern 
electric systems with pulse-width modulation (PWM) power electronics can't be simulated using the 
traditional approach because their signals are sampled (discontinued). 

Such problem can be solved using analytic or semi-analytic (or semi-numeric) methods some of which are 
based on z-transform [3], [4], [5]. This method is suitable for nonlinear (linearized) systems ([4], [5], [6]) and is 
similar to Laplace operator method [7] but produces the recurrent simulation equations directly. This approach 
was well known during early-computer age (approx. 60-70 years of XX cent.) then computers were big, slow 
and had small memory capacity. But scientists and engineers solved many complex computing problems using 

                                                
* Corresponding author. Email address: vmoroz@outlook.com; Volodymyr.I.Moroz@lpnu.ua 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Volodymyr Moroz, Galina Sivyakova 

 

the above method at that time (for example [8], [9]). Note that z-transform-based method is actual in the modern 
time [10]. The common problems such as: 

• researcher must make the great amount of analytic transformations during the preparation process; 

• researcher must understand the simulated problem well, made such an approach unpopular. 

In the authors' opinion, this forgotten method is the best way to simulate the electric circuits and systems in real 
time or faster. It uses the recurrent simulation formulas based on zeros/poles matching method that is well known 
using as z-transform [3], [4]. This will be shown by two simple examples below. 

2. Fundamentals 

All of the real linear or linearized systems that can be described by transfer functions (for a control theory) or 
complex impedance (conductivity) in Laplace domain (for electric circuits' analysis) have the numerator polynomial 
order no greater than denominator polynomial order. We can decompose (residue) these systems to the elementary 
particles (fig. 1) using Heaviside theorem [11] in this cases: 

• simple real poles (correspond to the first order block); 

• complex conjugate of  the poles (correspond to the second order block). 
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These two blocks are the elementary parts to construct the whole designed computer model. The responses of 

every elementary dynamic block can be represented as the discrete transfer functions using zeros/poles matching 
method as the z-transform. This method corresponds to convolution integral using zero-order approximation of the 
signal (rectangles approximation) that produces simple but effective recurrent modelling equations. Some problems 
can be solved using this approach: 

• absolute numerical stability – the theorem of the strong numeric stability of this formulas was proved in [11]; 

• simplicity of the obtained recurrent formulas – they are simple and comprehensible; 

• obtained equations are quite effective – the operating step during the computer simulation is limited by the 
Nyquist-Shannon sampling theorem. 

The basic principle of zeros/poles matched method is corresponding Laplace domain to unit circle (discrete-time 
equivalent or z-domain – asterisk marked). 
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where Ri – i-th root of numerator/denominator of the system transfer function (it's zeros/poles); *
iR  – i-th root of 

numerator/denominator of the discrete transfer function of system that corresponds to a discrete-time hR
i

ieR ⋅=*  (it's 
discrete zeros/poles), where h is sampling time. 

Fig. 1. The two types  
of the elementary dynamic blocks 
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As the result, continuous-time transfer function (or impedance/conductivity) can be rewritten to discrete-
time transfer function (or impedance/conductivity) with a sampling time h after this discretization procedure: 
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where K – the DC gain of the continuous-time system; K* – the DC gain of the discrete-time system; m – order of 
numerator of the system (electrical circuit); n – order of denominator of the system (electrical circuit); Zi – i-th root of 

numerator of the system transfer function (it's zeros); *
iZ  – i-th root of numerator of the discrete transfer function (it's 

discrete zeros); Pj – j-th root of denominator of the system transfer function (it's poles); *
iP  – j-th root of denominator 

of the discrete transfer function (it's discrete poles). 

The last step is setting DC (or low-frequency) gain of the discrete transfer function equal to continuous-time 
system gain (or equal to impedance/conductivity on DC): 
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There is after some elementary conversions: 
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For example, first-order transfer function 
1

1
+⋅ sT

 or the simple electrical circuit with one reactance describe by 

the ordinary differential equation xyyT =+′⋅ , where y – output response, T – time constant, x – input signal or 
excitation. We perform discretization of this continuous-time system: 

• the continuous pole of this system is 
T
1

− ; 

• accordingly, the discrete pole of this system is T
h

e
−

; 

• and discrete transfer function is 
T
h
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K
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*

; 

• to equalize the gain of both systems (continuous and discrete) getting T
h

eK
−

−= 1*  yield final discrete 
transfer function that corresponds to recurrent equation for simulation: 
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Using zeros/poles matching method, we get second order system with transfer function 
12

1
22 +ξ+ TssT

  

(or equivalent second-order electrical circuit, RLC-circuit for example): 

• this continuous system has a pair of complex conjugate poles: 
T

12 −ξ±ξ− ; 

• accordingly, the discrete poles of this system are 

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• this pair of discrete complex conjugate poles produce discrete transfer function 1
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• to equalize the gain of both systems (continuous and discrete) getting BAK +−= 1*  yield final discrete 
transfer function that corresponds to recurrent equation for simulation: 
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Discrete transfer function for common-order continuous system can be obtained using Heaviside theorem 
(classic way to get z-transform) with sample step h: 
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where n – number of poles; z – z-transform operator; si – i-th root of denominator polynomial (pole); P(s) – numerator 
of the continuous-time transfer function; Q'(s) – first derivative of the denominator of the continuous-time transfer 
function. 

3. Examples 

The simple electric circuits are the good tests and illustrations to use for zeros/poles matching method. 

The simple RC-circuit 

The simple RC-circuit (fig. 2) is the good first object (example) to investigate the properties and 
behavior of the proposed modeling equations because it achievement is the possibility to find the analytic 
solution for all variables and compare it with simulation results (see [7], [14]). The capacitor’s voltage UC(t) 
is unknown variable in this example. 

 

UC(t) 

i(t) 

E = 100 V C1 = 3.3 µF 

R1 = 50 Ω 

 
 

The Kirchhoff’s laws can be written for this circuit as equations: 

)()(1 tUtiRE C+⋅=  where 
dt

tdUCti C )()( 1= . As the result, finally 

Fig. 2. The simple RC-circuite for the first example 
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EtU
dt

tdUCR C
C =+ )()(

11 . 

The solution of this differential equation can be written as recurrent formula based on the formula (1): 
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Symbolic solution for zero initial condition is known: 
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matching solution obtained by formula (3). Both solutions are identical and show in Fig. 3. 
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Fig. 3. The capacitor’s voltage UC(t)  

for the first example for the zero initial condition 

The simple RLC-circuit 

The simple RLC-circuit (Fig. 4) is the good second object (example) to investigate the properties and behavior of 
the proposed modeling equation (2). The analytic solution for the unknown capacitor’s voltage UC(t) can be found 
using Laplace transform for this example also (see [7], [14]). 

 R1 = 50 Ω 

L1 = 0.1 H 
E = 100 V 

C1 = 3.3 µF 

i(t) 

UC(t) 

 
 

The transient processes are described by the system of two equations of this circuit (4): 

Fig. 4. The simple RLC-circuite for the second example 
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This equations can be rewritten to second-order differential equation (5) with zero initial conditions: 
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=ξ  that produce recurrent equation (6) for computer simulation 
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The computer simulation results can be verified with analytic solution using direct and inverse Laplace transform 
obtained from equation (5): 

2
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, after inverse Laplace transform (using Mathcad or MATLAB for example) 

we get analytic solution for capacitor voltage for zero initial conditions and four digits precision: 

 22.73( ) 100 (100cos(524.4 ) 4.334sin(524.4 )) t
CU t t t e−= − + ⋅ . (7) 

Solution of the equation (6) can be compared to analytic solution (7) shown in fig. 5 for zero initial conditions. 
Both results are identical. 
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Fig. 5. The capacitor’s voltage UC(t) for the second example for the zero initial condition 
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4. Conclusions 

The overviewed method is suitable for various problems solution in the field of electrical engineering. The 
method is suitable for a wide range of linear and nonlinear dynamic systems [3], [11]. Main advantages of the 
proposed method are: 

• obtained modeling equations are numerically stable and don't dependent on the step size; 

• this method produces quite simple but very effective equations that are suitable for high-speed simulation of 
linear and nonlinear dynamic objects. 
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Швидкісне комп’ютерне моделювання електричних кіл 

Володимир Морозa, Галина Сивяковаb 
a Національний університет “Львівська політехніка”, вул. С. Бандери, 12, Львів, 79013, Україна 

b Карагандинський державний індустріальний університет, пр. Республіки, 30, м. Теміртау Карагандинської 
обл., 101400, Казахстан 

Анотація 

Для високошвидкісного комп’ютерного моделювання перехідних процесів в електричних колах 
запропоновано використати давно відомий метод відповідності нулів/полюсів (як одну з реалізацій  
z-перетворення) відповідної неперервної передатної функції чи комплексного імпедансу (провідності) в 
області перетворень за Лапласом. Переваги цього методу показано на простих прикладах комп’ютерних 
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моделей електричного кола першого порядку (RC-коло, яке відповідає одному дійсному полюсу) і кола 
другого порядку (RLC-коло, яке відповідає парі комплексно-спряжених полюсів). Отримані моделі були 
перевірені з використанням комп’ютерних моделей, які одержані аналітичним методом з використанням 
перетворення Лапласа. Метод може використовуватися в сучасних комп’ютерних програмах для аналізу 
стійкості електроенергетичних систем, розрахунку перехідних процесів в електричних колах та аналізу 
динаміки інших технічних систем. 

Ключові слова: електричні кола; комп’ютерне моделювання; метод відповідності нулів і полюсів; 
перехідні процеси; z-перетворення. 
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