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We review briefly the approach of Parisi and co-workers comprising replica Ornsein-Zernike

integral equations with hypernetted chain closure to describe the glass transition for the model
fluid of hard spheres. However, the original elements of the present communication are in the
application of the expression for the fluid chemical potential in the replicated form and in the
calculations of the isothermal compressibility. These tools permit us to characterize perfectly
well the transition into glass phase without resorting to the explicit evaluation of the effective
potential.
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I. Brief review of the methodology

In the present work, we would like to investigate the
glass transition in the one-component model fluid of
hard spheres. The method has been developed quite
recently by Parisi and coworkers [1, 2] but has not re-
ceived much attention so far. Therefore, we feel appro-
priate to reconsider briefly the basic physical arguments
and key ingredients of the approach for the sake of con-
venience of the reader. However, a comprehensive ex-
planation of the method can be consulted in the original
publications. In the specific model under consideration
the only control parameter is the fluid density. How-
ever, for the sake of better understanding and having
in mind other possible applications we present first the
arguments in terms of fluid temperature rather than the
density of particles. Consider a system that undergoes
cooling from the liquid phase. At a certain tempera-
ture Tg, it falls out of equilibrium and remains stuck in
a certain region of the configuration space. This situa-
tion is common at glass transition when the liquid stops
flowing. Specifically, the large scale motion of particles
is frozen while the small scale motion is still present
(e.g. vibrations of atoms), these latter degrees of free-
dom still can equilibrate at temperatures below Tg. At
such conditions, it is appropriate to restrict the mea-
sure in configuration space to the vicinity of a certain
configuration y that is reached when the system crosses
temperature Tg. In order to describe similarity or dis-
tance among different configurations, Parisi et al. [1, 2]
have introduced a quantitave measure q(x, y). Here and
above the notation for the configuration of the system

of N particles is as common x = (x1, x2, ..., xN ). More-
over, let us mention that the system is encountered in
the volume V and introduce notation for the interac-
tion potential between particles as uff (xi − xj). The
similarity or co-distance between configurations will be
called the overlap according to the original terminology.
Similar configurations must correspond to high values
of the overlap while very different configurations must
correspond to very low values of the overlap q. Then
the appropriate definition is

q(x, y) =
1
N

∑

i,j

w(|xi − yj |) (1)

where the function w(r) is chosen equal to 1 for small
distances, r < aσ, and close to zero for r > aσ, where
σ is the diameter of particles and a is a constant less
than unity. In other words, couples of particles belong-
ing to two configurations and located at small distances
will contribute positively into q. One just needs to re-
member that high overlap means small distance between
configurations. An initial ingredient of the theory is a
restricted Boltzmann-Gibbs distribution function

P (x|y) =
1

Z(β, y)
exp[−βH(x)]δ(q(x, y)− q) (2)

where β = 1/kBT is the inverse temperature and the
normalizing partition function Z(β, y) is the result of
integration of the numerator of Eq.(2) over all configu-
rations x. It is worth to comment that the configuration
y is supposed to be a typical configuration of the system
at Tg with respect to the Boltzmann-Gibbs probability
distribution function. On the other hand, the value for
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the parameter q in Eq.(2) is formally arbitrary. The sys-
tem at certain temperature T will tend to adjust itself
and select natural ”distance” from the chosen configu-
ration y, according to the free energy minimization. In
some sense, the role of a configuration y is analogous to
the one of quenched variables in the systems with struc-
tural disorder. Finally, it is necessary to make comment
on the choice of Tg involved in the delibarations above.
There is no any a priori criterion to use straightfor-
wardly in this aspect. Actually, it is a quantity depen-
dent on the cooling rate in the experiments. Therefore,
it is natural to think off Tg as the temperature of the
configuration y, this temperature will be called T

′
be-

low. Thus, the probability to find y can be written as
proportional to exp(−β

′
H(y))/Z(β

′
). The key element

of the theory of Parisi et al. [1, 2] is the so-called effec-
tive potential or in other words the free energy associ-
ated with the introduced Boltzmann-Gibbs distribution
function,

V (q, β, β
′
) = − T

N

1
Z(β)

∫
dy exp(−β

′
H(y)) ∗

(3)

ln

∫
dx exp(−βH(x))δ(q(x, y)− q).

What is written here is in fact the average of the free
energy associated with the distribution function given
by Eq.(2) over realizations of the ”self-generated disor-
der”, the term frequently used in the theory of struc-
tural glasses. Equivalently, one can use the function
F (ε, β, β

′
),

F (ε, β, β
′
) = − T

N

1
Z(β)

∫
dy exp(−β

′
H(y)) ∗

(4)

ln

∫
dx exp(−β[H(x)− εq(x, y)]),

where ε is the Langrange multiplier, such that

V (q, β, β
′
) = min[F (ε, β, β

′
) + εq], (5)

where the minimum is taken with respect to ε. The ex-
pressions above for V (q, β, β

′
) and/or F (ε, β, β

′
) can be

evaluated by using replica trick as common. The prob-
lem reduces to the calculation of thermodynamics of the
system composed of s+1 replicas, actually the configu-
ration y plays role of the replica with the index 0. It is
a privileged component in the sense that the interaction
between 0 replica and others is

Nε

s∑
a=1

= ε

s∑
a=1

N∑

i,j

w(x0
i − xa

j ). (6)

Note that we have changed notation and use here x0

for the distinguished replica. In order to proceed fur-
ther with the calculation of the free energy F (ε, β, β

′
),

one can apply the hypernetted chain approximation that
yield,

−βFHNC =
1
2

∫
d3x

s∑

a,b=0

ρaρbgab(x)[lngab − 1 + βau(x)δab]

(7)

+βε

s∑
a=1

ρ0ρag0a(x)w(x) + Tr[L(ρh)],

where it is worth to recall that u(x) is the interaction
potential between particles. The free energy is given in
terms of the pair distribution functions with subindices
corresponding to replicas,

ρaρbgab(x, y) + ρaδabδ(x− y) =
∑

i,j

δ(xa
i − x)δ(xb

j − y),

(8)
and hab = gab − 1 is the correlation function. The
last term in Eq.(7) is the following abbreviation L(f) =
f − f2/2− ln(1 + f). The trace over L concerns replica
indexes and real space[1, 2]. The expression for the pair
distribution functions in the HNC approximation can be
obtained by taking the functional derivative of the free
energy, see e.g. [3],

gab(r) = exp(−βau(r)δab + [δ0a(1− δ0b)βb + δ0b(1− δ0a)βa)]εw(r) + hab(r)− cab(r)), (9)

where cab are the direct correlation functions. In this
equation above we have modified notations for the sake
of compactness. Namely, β

′
= β0, β = βa = βb for all

replicas distinct from the one numbered by zero. The
correlation functions and the direct correlation func-
tions satisfy the replicated Ornstein-Zernike equations,
see e.g. [4]. The matrix with elements gab is parame-
trized implying replica symmetric structure: gab = g00

for a = b = 0; gab = g10 for a = 0, b > 0 or b = 0, a > 0.

Next, gab = g∗ab if a and b are different then zero. These
starred elements are g∗ab = g11 if a = b and g∗ab = g12 if
a and b do not coincide. This choice of the structure of
the matrix with elements gab is similar to the structure
applied by Given and Stell [5–7] for the description of
partly quenched disordered systems. Technical aspects
of the final stage of the theory can be resumed as fol-
lows. The principal task of the approach is to solve the
replicated Ornstein-Zernike (ROZ) integral equations,

h00(r12)− c00(r12) = ρ0

∫
dr3c00(r13)h00(r32) + sρ1

∫
dr3c01(r13)h10(r32), (10)
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h10(r12)− c10(r12) = ρ0

∫
dr3c10(r13)h00(r32) + ρ1

∫
dr3[c11(r13)

(11)
+(s− 1)c12(r13)]h10(r32),

h11(r12)− c11(r12) = ρ0

∫
dr3c10(r13)h10(r32) + ρ1

∫
dr3c11(r13)h11(r32)

(12)

+(s− 1)ρ1

∫
dr3c12(r13)h12(r32),

h12(r12)− c12(r12) = ρ0

∫
dr3c10(r13)h10(r32) + ρ1

∫
dr3c11(r13)h12(r32)

(13)

+ρ1

∫
dr3c12(r13)h11(r32) + (s− 2)ρ1

∫
dr3c12(r13)h12(r32),

where s+1 is the number of replicas of the system as we
have mentioned already. The limit s = 0 is taken before
the solution of Eqs.(10)–(13). The ROZ equations are
supplemented by the HNC closure which can be written
in the simpler form comparing to Eq.(9),

1 + hij(r) = exp[−βuij(r)] exp[hij(r)− cij(r)], (14)

where i, j take values 0,1 and 2. There are four unknown
functions according to the equations above, namely 00,
10, 11 and 12. Remember that u12 = 0, because parti-
cles belonging to different replicas do not interact. We
would like to recall here that the model in question is
solely density dependent, in addition we restrict our-
selves to the case β = β

′
similarly to the analysis pro-

vided in [1, 2]. Moreover,

u00(r) = u11(r) = uff (r),
(15)

u10(r) = u01(r) = εw(r)

where w(r) is taken similar to the original
developments[1, 2] in the form

w(r) = 1, r < 0.3σf ,

(16)
w(r) = 0, r > 0.3σf .

The energetic parameter ε∗ = ε/kBT describes cou-
pling (either attraction or repulsion dependent on the
sign of ε) between the ”reference” configuration of the
system chosen as replica with number 0 and configura-
tions corresponding to other replicas. The distinguished
(s = 0) and all other replicas are at the same density
ρ0 = ρ1 = ρ. Without loss of generality the diameter of
particles is taken as the length unit, σf = 1. The overlap

constant q is the function of coupling and is determined
through the distribution function g10(r) as follows, cf.
Eq.(6),

q(ε) = 4πρ

∫ ∞

0

drr2g10(r)w(r). (17)

The glassy behavior of the system is associated with
nonconvexity of the effective potential V (q),

V (q) =
∫ q

d

dq
′
ε(q

′
) (18)

where the lower limit of integration, d, is a constant cho-
sen for convenience of calculations. The nonconvexity of
V (q) in turn is related to the existence of multiple solu-
tions of the function q(ε) at vanishing and zero coupling
ε → 0. In the fluid phase q(ε) is a single valued function,
the effective potential V (q) has minimum at ρ

∫
dxw(x)

corresponding to the absence of any structure of the
function g10(x) or in other words this function equals
unity for all values of its argument. A strong coupling ε
leads to the attraction of a system towards the reference
configuration and forces the function g10 to acquire cer-
tain structure. Similar trends of behavior are expected
for the function g12. When the system approaches glass
transition conditions, a solution of the ROZ/HNC will
exist in which both functions g10(r) and g12(r) will have
very pronounced structure even at zero coupling ε = 0.
All this discussion actually is borrowed from [1, 2] to
make things clearer for the reader.

On the other hand, we will show just now that im-
portant conclusions about glass transition for the model
in question can be reached without resorting to the ex-
plicit calculation of the effective potential. In order to
elucidate the glass transition we apply the expression
for the chemical potential of the replicated system in
the ROZ/HNC approximation [8],
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βµ1 = −ρ0

∫
drc00(r)− ρ1

∫
dr[c11(r)− c12(r)] +

1
2
ρ0

∫
drh10(r)(h10(r)− c10(r))

(19)

+
1
2
ρ1

∫
drh11(r)(h11(r)− c11(r))− 1

2
ρ1

∫
drh12(r)(h12(r)− c12(r))

Moreover, one can obtain the isothermal compressibil-
ity via commonly used expression for the replicated OZ
equations with HNC closure resulting from the com-
pressibility route to thermodynamics,

κ∗ = ρ1β
−1κ = β−1(

∂ρ

∂P
) = [1−ρ1

∫
r(c11(r)−c12(r))]−1.

(20)

II. Results and discussion

Let us proceed to the numerical results. The ROZ/HNC
equation have been solved by iterations on a grid of 212

points with the step δr = 0.005 and by applying stan-
dard fast Fourier-transform routine. Next, the distribu-
tion functions provide q(ε), the chemical potential and
compressibility.

In Fig. 1a we present the dependence of the overlap
on the coupling parameter q(ε∗) at different fluid densi-
ties. The limiting density at which the overlap remains
continuous is ρ ' 1.065 or in terms of the packing frac-
tion η = πρ/6 is η = 0.5576. At higher densities we
observe two branches of q(ε∗) that exhibit hysteresis at
positive values of ε∗. A discontinuity is observed for
the first time at ρ = 1.07 or η = 0.56. Many authors
reported and discussed observation of a glass transition
in a hard sphere fluid at this value of density [9–11].
It is documented that at this density, the particles are
confined to ”cages” by their neighbors and the fluid dy-
namics separates into a fast rattling inside the cage and
slow rearrangements of the cages. One example of the
behavior of the chemical potential at density ρ = 1.10 is
given in Fig. 1b. There are two branches of the chemical
potential dependence on ε∗ and they join together via
jump discontinuities. Interesting changes on the depen-
dence of the overlap on coupling occur at higher den-
sities, Fig. 2a. Namely, at ρ ' 1.17 (η = 0.6126) the
branch corresponding to a high overlap crosses the zero
coupling point. At slightly lower density, however, the
chemical potential curves exhibit hysteresis located at
positive values of ε∗ (cf. Fig. 2b). In Ref. [2] it has been
discussed that at such density the metastable states have
an infinite time life (a minimum of the effective poten-
tial develops), in contrast to lower densities. Only at
density approximately equal to 1.17 two branches of

the chemical potential cross at ε∗ = 0 demonstrating
coexistence of two phases characterized by a different
amount of overlap (Fig. 2c). This ”critical” density
(packing fraction) is in the range of densities estimated
for the commonly called ideal glass transition or Kauz-
mann transition η= 0.58 - 0.62. However, at Kauzmann
density the ”configurational” entropy must vanish. In
contrast, the ROZ/HNC approach in the Parisi et al. [1,
2] version provides small but definitely nonzero entropy
at this density. At higher densities than ρ = 1.17 we
again observe crossing of two branches of the chemical
potential (Fig. 2d) and cannot establish upper limit of
the application of the expression (19). However, if one
employs some sort of Maxwell construction to the q(ε∗)
curves in Fig. 2a, it can be deduced that the ”end point”
must be at ρ ' 1.19. On the other hand, if one resorts
to the calculation of the effective potential by using Eq.
(18) and calculates the configurational entropy from the
difference of two minima of the effective potential, sim-
ilar value for limiting density can be found [1, 2]. At
this density the configurational entropy vanishes. These
data in fact demonstrate strength and failures of the
ROZ/HNC approach involving concept of the effective
potential.

Finally we would like to provide some comments
about the behavior of the isothermal compressibility. A
set of results concerning it is shown in Fig. 3. At low
density (ρ = 1.065) the line of compressibility values
does not exhibit discontinuities but has a maximum at
certain value of ε∗ corresponding to the highest deriva-
tive of the function q(ε∗), cf. Fig. 1a. Interestingly, at
a higher density, ρ = 1.10, we observe that at a certain
coupling the compressibilities of systems characterized
by a low and a high overlap can be equal (Fig. 3b).
At even higher density, ρ = 1.15, the dependence of
the isothermal compressibility on coupling strength ε∗

exhibits hysteresis in the region of positive values for
ε∗. Finally, at ρ = 1.185 (as well as at ρ = 1.18) the
hysteresis involves the point of zero coupling strength,
Fig. 3d. The coexisting phases (according to the chem-
ical potential behavior cf. Fig. 2d) are characterized by
different compressibilities. This observation is in accor-
dance with the results for the pressure dependence on
density around glass transition, cf. Fig. 4 of the recent
work of Parisi and Zamponi [11].
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Fig. 1. Part a: The dependence of the overlap function on the coupling parameter q(ε∗) at different fluid densities. The

solid, dotted, short-dash, dash-dotted and dash - double dotted lines are for the fluid density ρ = 1.065, 1.075, 1.08, 1.09

and 1.10, respectively. Part b: The dependence of the chemical potential on the coupling parameter µ∗(ε∗) at ρ = 1.10

(µ∗ = µ1/kBT ) The hollow and filled circles correspond to the branches of increasing and decreasing q values, respectively
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Fig. 2. Part a: The dependence of the overlap function on the coupling parameter q(ε∗) at different fluid densities. The

solid, dotted, short-dash, dash-dotted and dash - double dotted lines are for the fluid density ρ = 1.15, 1.165, 1.17, 1.175

and 1.185, respectively. Parts b, c and d: The dependence of the chemical potential on the coupling parameter µ∗(ε∗) at

ρ = 1.15 (part b), ρ = 1.17 (part c) and ρ = 1.185 (part d)
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Fig. 3. The dependence of the isothermal compressibility on the coupling parameter, κ∗(ε∗), at ρ = 1.065 (part a), ρ = 1.10

(part b), ρ = 1.15 (part c) and ρ = 1.185 (part d), respectively
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Fig. 4. The pair distribution function g11(r) (part a) and g10(r) (part b) at ρ = 1.17 at zero coupling ε∗ = 0. The thin solid

line in part b shows g10(r) ' 1.0 on the branch of low q values at zero coupling ε∗ = 0 whereas the thick solid line shows the

same function at zero coupling on the branch of high q

We have already commented above on the expected
changes of the distribution functions g10 and g12 dur-
ing glass transition. In order to provide illustration, we
present the distribution functions g11 and g10 in parts

a and b of Fig. 4. These functions are shown at the
density ρ = 1.17 at zero coupling strength ε∗ = 0. The
function g11(r) is equal to g00(r) and is characterized by
a very high and sharp peak at r = 1+, one can see a very
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weakly pronounced smooth shoulder around r = 1.5,
this shoulder could be very pronounced if the system
would undergo spontaneous crystallization (cf. Fig. 10
of Ref. [2]). Drastic changes are observed on the func-
tion g10(r) if one compares the curves corresponding to
a low q(ε∗) branch (thin line in Fig. 4b) of the overlap
function with a high q branch (thick line in Fig. 4b) at
zero coupling strength.

To conclude, we have carefully checked the results
obtained previously in Refs. [1, 2] and performed
our own more precise calculations of the distribution
functions involved in the solution of the replicated
Ornstein-Zernike equations with hypernetted chain clo-
sure. Moreover we have augmented findings concern-
ing glass transition in the model fluid of hard spheres
by considering chemical potential and isothermal com-
pressibility. We have found two characteristic densities.
One of them corresponds to the beginning of the jump

discontinuity on the dependence of the overlap function
on coupling strength, this density coincides with previ-
ously reported data on glass transition. In addition we
have found the value of density at which the branches of
the chemical potential for low and high overlaps cross at
zero coupling strength. At this coexistence the isother-
mal compressibility corresponding to two branches is dif-
ferent as expected at glass transition. Further research
to describe thermodynamics of glass transition in this
model fluid and related systems is necessary along lines
provided in e.g. Ref. [11].
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Ìè âèêîíàëè îãëÿä ìåòîäó Ïàðiçi òà ñïiâðîáiòíèêiâ, ÿêèé âêëþ÷à¹ ðåïëiêîâàíå
iíòåãðàëüíå ðiâíÿííÿ Îðíøòåéíà-Öåðíiêå ó ãiïåðëàíöþãîâàíîìó í7àáëèæåííi äî îïèñó
ïåðåõîäó ó ôàçó ñêëà â ìîäåëi òâåðäèõ êóëüîê. Îðèãiíàëüíi åëåìåíòè ðîáîòè ïîëÿãàþòü
ó çàñòîñóâàííi âèðàçó äëÿ õiìi÷íîãî ïîòåíöiàëó òà içîòåðìi÷íî¨ ñòèñëèâîñòi. Çàñòîñîâàíi
ìåòîäè äîçâîëèëè îïèñàòè ïåðåõiä ó ôàçó ñêëà áåç çàñòîñóâàííÿ êîíöåïöi¨ åôåêòèâíîãî
ïîòåíöiàëó.
Êëþ÷îâi ñëîâà: Iíòåãðàëüíi ðiâíÿííÿ, ôàçà ñêëà, õiìi÷íèé ïîòåíöiàë, ãiïåðëàíöþãîâå
íàáëèæåííÿ.
PACS: 74.72 Jt, 74.60 Ec
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