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A synthesis method for the ordinary differential equations is proposed.Their solutions 

reconstructthe statistical properties of the given pseudo-random sequence. The method is 

illustrated by an example of simulating singular Lorenz attractor and the sequence of 

pseudo-random numbers whish are uniformly distributed within [0,1] interval. 

Key words: mathematical simulation, identification, strange attractor, random processes. 

Lorentz inhis published article [1]showedthe possibilityof obtaining one-

dimensional discrete sequences corresponding to the chaotic motion of the certain 

continuous system of the third order. The comparison of continuous and discrete 

systemsis evidently useful for many applications. Her the solution of inverse 

problem is proposed: the synthesisof a continuous system which is in some sense 

equivalent to one-dimentional random sequence. 

Statement of the problem. There is an object – black box – at whish output 

the sequence of random numbers appear. An autonomous continuous dissipate 

system with lumped parameters should be found which can reconstruct the 

statistical properties of the given random sequence. This system is known to have a 

strange attractor and its order chouldnot be less than three [2].  

The work consist of three sections: in the first, the structure of the 

mathematical model and a general method of its identification is justified; in the 

second section the model synthesis is made for Lorenz attractor in a special and 

general cases; the sources of possible incorrectnessesand methods of their 

elimination are shown; in the third section the model of pseudo-random process is 

constructed. 

Structure of mathematical model and its identification.Consider a nonlinear 

system with a rather general description 
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where u, y are the vectors of input and output sygnals;xis the vector of the state 

variables of the k dimensionality;f(.)is the differentiable vector-function;φ(.)isthe 

vector-function differentiatedwhich respect to t.  

In [3] the theorem is proved by which the system involving linear stationary 

dynamic and nonlinear inertialess subsystems, is equivalent to (1) as to its input-

output: 
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Here  u, y  correspond to (1) description; v  is its inner vector (but not the state 

vector  x);  ψ(.)  is the nonlinear vector-function. 

The matrix of transfer function  W(λ)=D(λ)/a(λ)  describes the linear 

subsystem with the output vector  y,…, y
(k-1)

, v
(1)

,…, v
(k-2)

  and input vector  v. The 

nonlinear vector-function  ψ(.)  corresponds to the nonlinear subsystem with vector 

inputs  y,…, y
(k-1)

, v,…, v
(k-2)

, u, 𝒖   and output vector  v.  

The modelling structure (2)may be used for mathematical model synthesis of 

the systems which assumethe description(1). If there isan identification algorithm 

for definition of model parameters on the basis of information about the input 

vector  u  and object reactions  y, a macromodel can be built which recon-structs 

which a certain accuracy the reaction  y  to perturbations  u.  

Sometimes the equations (1) may be transformed into (2) in an analytical 

way. The Lorentz equations 
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is written in the form corresponding to (2) with  y=x1=y1, v=v, u=0, k=3,  

W(λ)= –1/(1040-88/3*λ–41/3*λ
2
–λ
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The structure (4) makes it possible to built a simple reconstruction algorithm 

for the equation set coefficients only by the output signal y1. To make it, the signal 



variable y1shuld be calculated and a metric shuld be selected where the distance 
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in a certain given domain. If the metric is quadratic and the signal  y1(tm)  ym  is 

discrete at M points, the problem becomes  
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and is reduced to solving the system of the  Mlinear algebraic equation with the 

seven unknown components of the vectors  a  and  c.  

Model identification for Lorentz system. The problem (5) has been solved in 

[4], but it is not explained why such basis of approximation. The variables were 

calculated by the method [5] in terms of the eigen vectors of covariance matrix 

built with discrete values of the signal  y1. The coefficient values were 

reconstructed with rather small errors of initial data. Some other problems of 

inverse nonlinear dynamics were solved in [5], including those with additive noises 

available in initial data.  

The numerical differentiation of the digital function is known to be an 

incorrect pocedure, in particular, unstable with respect to perturbations of initial 

data. This fact necessitates the use of regularizing algoritms for achieving steady 

results [6]. The numerical procedures of smoothing initial sygnal were used in [4] 

which made it possible to eliminate incorrectnesses associated with noises of initial 

signal. But incorrectness becomes apparent by solving the problems of the type (5) 

even if initial data are “noiseless”. Therefore regularization should involve all 

stage of the above problem statement and solution. In [5] ther are no indications as 

to regularizing procedures and in [4] the regularization was not used for solving (5) 

and similar problems. The correctness of the obtained results is explaned by the 

small dimension of the problems to be solved.  

Numerical differentiation is performad by varios regularized methods [7]. We 

show here the use of splines. The interpolating spline can be always built with the 

set of  ym, m=1,...,Mvalues. This spline is of the  n<M  power with the coefficients 

number  p=M  and variable continuity of the  (n–1)  order inclusive [8]. For the 

problem (5) the derivatives up to the third order should be calculated. If the 

derivative continuity at least up to the fourth order is required, the interpolating 

spline should be of the fifth power. The regularization of the spline construction 

procedure and consequently, of the analytical spline derivative calculation is 

achieved by means of approximating spline [8] with  p<Mcoefficient number 



which can filter noises of initial signal. The texts of FORTRAN codes are also 

given in the approximating spline which realise all necessary algorithms. 

When the derivatives in (5) are calculated by spline-interpolation of the fifth 

power the reconstruction accuracy of the coefficients in (4) is not lower than in [4].  

The problem (5) is simple because the exact approximate basis of nonlinear 

function is known. But if the basis is not known, the approximation is performed as 

a rule by many-dimentional power polynomial [9]. In our case it is the polynomial 

of the third order: 
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We restrict ourself by conditions r=3, i+j+k<=3. Then the number of 

unknown coefficients is 20 and the problem similar to (5) becomes 
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But it is impossible to obtain the stable results by direct solution (7) because 

of its incorrectness. By the initial regularization idea [6], instead of the problem 

(7), the minimum is sought for: 
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The regularization parameter  α  is selected by an empirical way based on the 

incorrectness of the problem (8).  

The approximation coefficients are given below which are the solution of (8) 

with  M = 500  and  α = 1.0: 

000 10 100 10 010 10

001 10 200 10 020 10

002 10 110 10 101 10

011 10 300 10 030

 3.4120 1;    5.8604 2;    1.0572 2;

5.6501 0;  1.7036 1;  5.8876 3;

 1.4002 4;    2.1736 2;   1.5655 2;

 7.8429 4;   5.3826 0;    
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Fig. 1a  shows the phase tragectory of the system (3), projected on the plane 

(𝑥1, 𝑥 1), and Fig.1b – the phase tragectory of the system (6) with the coefficients 

(9), projected on the plane  𝑦1, 𝑦2  with the initial conditions  y1(0)=1; y2(0)= -10; 

y3(0)=500. Fractal dimention [2] for the the system (6) is 2.33, with correspond to 



value 2.1 for the system (3). The projections of phase portraits in Fig. 1 show 

topological similarity.  

 

Figure 1. Phase portrait of the Lorenz attractor (a) and its reconstraction (b) 

Simulation of pseudo-random sequence. A model reconstruction method 

[10] by one output variable is used for the sequence of pseudo-random numbers 

distributed uniformly within the interval [0,1].  

We suppose that a pseudo random numbers come at intervals of 1 second. An 

interpolation fifth power spline is constructed in a sequence section [8]. This spline 

and the three derivatives are found an interpolation system for the random 

sequence. Fig. 2a presents the phase portrait for two first variables of this system, 

which correspond the pseudo-random sequence in the sense of the above spline 

interpolation. 

 

 
Figure 2. Interpolation of pseudo-random sequence (a) and its macromodel (b). 

 

The problem (8) is solved by a set values of spline and its derivatives, i. e. the 

coefficients of simulating system (6) are found. Numerical stable solutions which 

correspond to differential equations having chaotic motions, were obtained for 



various pseudo-random sequences containing 25 – 100 numbers and with the 

regularization parameter value  α = 0.001 – 0.42. 

More than 10 systems with strange attractors are obtained for different lengths 

of initial sections and different values  α. One of the systems (6) obtained from (8) 

for the 29 values of pseudo-random sequence with  α = 0.001  has the following 

coefficients:  

a000 =-0.11817; a100 = 6.55425; a010 =-11.0487; a001 =-0.38934;  

a200 =-9.41420; a020 =-4.23326; a002 =-0.03089; a110 = 38.6623;  

a101 = 2.12705; a011 = 9.24564; a300 = 2.82030; a030 =-6.76449;             (10) 

a003 =-0.08485; a210 =-34.6874; a201 =-2.19388; a120 = 3.47065;  

a021 = 0.46197; a102 =-0.47460; a012 =-3.26361;  a111 =-16.9036 

 

 
Figure 3. Comparison of macromodel and pseudo-random sequence: “a” is the macromodel; “b” 

is the random process; “c,d” are the spectra of model and random process; “e,f” are 

autocorrelation functions of model and random process; “g,h” are the histograms of model and 

random process. 



The system (6) with the coefficients (10) was integrated by an implicit 

method of the second order with the integration step not more the 0.1 and maximal 

local error 0.00001 under the initial conditions:  y1(0)=0.5; y2(0)=0.2; y3(0)=0. The 

projection of phase portrait on the plane  y1 - y2  is presented in Fig. 2b. This phase 

portrait correspond to the strange attractor for which the major Lyapunov number 

is 0.23 [2].  

An initial pseudo-random sequence is simulated by the sequence of  y1  values 

with time interval 1 sec and mapped within the interval values [0,1]. Certain results 

of their comparison are given in Fig. 3. Spectral densities were calculated for 4096 

points of the appropriate sequence. Autocorrelation functions were calculated for 

500 points, 50 initial points are given in Fig. 3. By and large the statistical 

properties of pseudo-random sequence and simulating sequences are similar.  

It should by noted that all the above strange attractors proved to be rather 

brittle. They were destroyed when the explicit integration methods were used. 
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