УДК 621.396.96

І.В. РОЖАНКІВСЬКИЙ, В.І. ЛОЗИНСЬКИЙ

ВПЛИВ ЧАСОВОГО ЗСУВУ МІЖ ВІДЛІКАМИ СИГНАЛУ ТА ІМПУЛЬСНОЇ ХАРАКТЕРИСТИКИ НА РЕЗУЛЬТАТ ЦИФРОВОЇ УЗГОДЖЕНОЇ ФІЛЬТРАЦІЇ

© Рожанківський І.В., Лозинський В.І., 2004

The results of imitating modeling of digital matching filtration of the chirp-signals in time domain in PCM-format and combined formats PCM-DPCM, PCM-MDPCM are given, when random time shift between samples of signal and samples of pulse response occurs.

Постановка проблеми

Узгоджена фільтрація (УФ) широко застосовується для виявлення шумоподібних сигналів, зокрема лінійно-частотно-модульованих (ЛЧМ) радіоімпульсів. Останнім часом для узгодженої фільтрації ЛЧМ-сигналів почали застосовувати цифрові методи, в тому числі різницеві на основі різних видів дельта модуляції [1]. Для цифрової УФ ЛЧМ-сигналів характерною є наявність випадкового часового зсуву між відліками сигналу та імпульсної характеристики (ІХ) фільтра в межах одного періоду дискретизації. Вплив такого часового зсуву на співвідношення між головною пелюсткою та рівнем бокових пелюсток (SNR) стисненого сигналу на виході фільтра може бути значним, однак досліджений він недостатньо.

Постановка задачі

Метою роботи ε дослідження впливу часового зсуву між відліками сигналу і ІХ на результат цифрової УФ в часовій області ЛЧМ-сигналу. У роботі за допомогою комп'ютерного моделювання досліджувалася цифрова УФ в форматі ІКМ-ІКМ, а також в комбінованих форматах ІКМ-диференційна ІКМ (ІКМ-ДІКМ) та ІКМ-модифікована ДІКМ (ІКМ-МДІКМ) .

Аналіз останніх досліджень і публікацій. Цифрова УФ ЛЧМ-сигналів в часовій області

У форматі ІКМ-ІКМ цифрова узгоджена фільтрація в часовій області здійснюється на основі згортки

$$y_n = \sum_{m=0}^{N-1} x_{n-m} h_m \,, \tag{1}$$

де $\{y_n\}$ — результат фільтрації; $\{x_m\}$ — ІКМ-відліки вхідного сигналу; $\{h_m\}$ — ІКМ-відліки ІХ, N — кількість відліків сигналу (та ІХ), N = ENT $(\theta/T_{\rm d})$, θ — довжина сигналу x(t), $T_{\rm d}^{-1} = f_{\rm d}$ — частота дискретизації, ENT (\bullet) — ціла частина числа.

При однаковій довжині ЛЧМ сигналу і IX узгодженого фільтра згортка стає симетричною і тоді для комбінованих форматів ІКМ-ДІКМ можна записати два рівнозначні вирази для цієї згортки. В [1] показано, що при використанні згладжуючого вікна для забезпечення оптимальної фільтрової обробки доцільним є представлення сигналу в форматі ІКМ, а IX — в форматі ДІКМ. Для цього випадку згортка (1) набирає вигляд [2]

$$y_n = h_0 \sum_{m=0}^{i} x_m + s_{min}^{(h)} \sum_{i=1}^{n} \sum_{m=0}^{i} r_{i-m}^{(h)} x_m , \qquad (2)$$

де h_0 — початковий відлік IX у форматі IKM; $s_{min}^{(h)}$ — мінімальний ДІКМ крок квантування IX; $\left\{r_m^{(h)}\right\}$ — коефіцієнти квантування, які залежать від вигляду характеристики квантизатора в ДІКМ-кодері.

Кроки квантування $\{s_i\}$ при ДІКМ визначають так [2]

$$s_i = E_i |r_i| s_{min} = r_i s_{min}, \quad E_i = \operatorname{sgn} \alpha_i \in \{-1, 1\},$$

$$\alpha_i = x_i - \hat{x}_i, \quad s_{min} \neq 0,$$
(3)

де x_i – відліки вхідного сигналу; \hat{x}_i – сигнал апроксимації ДІКМ-кодера.

Коефіцієнти квантування для класичної ДІКМ

$$\left| r_i \right| \in \left\{ b \left| b = \overline{1, 2^c - 1} \right\},$$

$$\tag{4}$$

де с – розрядність ДІКМ-коду.

Модифікована ДІКМ характеризується кроками квантування кратними до 2^{j} [3]. Для такої характеристики квантизатора коефіцієнти квантування мають такий вигляд

$$|r_i| = 2^j, \quad j \in \{b|b = \overline{0, c-1}\}.$$
 (5)

Алгоритм (2) компенсує початкове перевантаження ДІКМ-кодера, оскільки оперує початковим ІКМ-відліком $\{h_0\}$ і наступними ДІКМ-кроками $\left\{s_i^{(h)}\right\}_{i=1}^{N-1}$, зв'язок між якими для k-го відліку ІХ визначається на основі виразу [2]

$$\hat{h}_k = h_0 + \sum_{j=1}^k s_j^{(h)} = h_0 + s_{min}^{(h)} \cdot \sum_{j=1}^k r_j^{(h)} . \tag{6}$$

Згладжувальне вікно $\{w_m\}$, $m=\overline{0,N-1}$ накладають в часовій області перемноженням відповідних коефіцієнтів ІХ і вікна, що дає ряд $\{h_mw_m\}$. При цьому придушуються початкові та кінцеві значення ІХ. Якщо вибрати мінімальний крок ДІКМ та параметри згладжувального вікна таким чином, щоб виконувались нерівності

$$h_0 w_0 < s_{\min}^{(h)}, \quad h_{N-1} w_{N-1} < s_{\min}^{(h)},$$
 (7)

то відповідні початкові та кінцеві відліки ІХ будуть перетворюватися ДІКМ-кодером без перевантаження у значення $h_0w_0=0,\ h_{N-1}w_{N-1}=0$. В цьому випадку вираз (2) спроститься до вигляду

$$y_n = s_{\min}^{(h)} \sum_{i=1}^n \sum_{m=0}^i r_{i-m}^{(h)} w_{i-m} x_m .$$
 (8)

Зменшення розрядності ДІКМ звичайно супроводжується збільшенням $s_{\min}^{(h)}$. На основі проведених авторами комп'ютерних симуляцій можна стверджувати, що для 5-ти та менш розрядної ДІКМ умови (7) виконуються для усіх згладжувальних вікон, які на практиці використовуються для оптимальної фільтрації ЛЧМ сигналів.

Виклад основного матеріалу

Для комп'ютерного моделювання ЛЧМ радіоімпульс подано у вигляді косинусоїдального сигналу

$$x(t) = A\cos[2\pi(at + f_1)t + \varphi_0], \tag{9}$$

де $a=\Delta f/2\tau_i$, $\Delta f=f_2-f_1$ — девіація частоти, f_1 — початкова частота, f_2 — кінцева частота, τ_i — довжина імпульсу; φ_0 — початкова фаза. Сигнал x(t) продискретизовано з частотою $f_{\rm L}$ і подано у вигляді часового ряду $\{x_n\}$, $n=\overline{0,N-1}$, $N={\rm ENT}\big(\tau_if_{\rm L}\big)$.

Вплив часового зсуву $\Delta t_{\rm 3C}$ між відліками сигналу та IX на SNR досліджувався в межах одного періоду дискретизації $\Delta t_{\rm 3C} \in \left[-0.5T_{\rm д}; 0.5T_{\rm д}\right]$ на підставі алгоритмів (1) та (6) для форматів ІКМ-ІКМ і відповідно ІКМ-ДІКМ та ІКМ-МДІКМ з урахуванням згладжувального вікна. Попередні дослідження показали, що вплив типу згладжувального вікна в цьому випадку є несуттєвим, тому усі подальші результати наводяться для вікна Хемінга, яке найчастіше використовується для оптимальної фільтрації ЛЧМ сигналів.

Розрядність ІКМ-відліків дорівнює 8. Така розрядність в більшості випадків забезпечує результати згортки, аналогічні до результатів, одержаних при використанні 32-розрядної ІКМ [4, 6]. Для ДІКМ та МДІКМ розрядність вибиралася мінімально можливою за умови забезпечення результатів згортки, рівноцінних з результатами 8-розрядної ІКМ.

Негативний вплив випадкового часового зсуву $^{\Delta t_{3\mathrm{C}}}$ можна компенсувати вибором відповідної довжини ЛЧМ сигналу (добутку $\Delta f \cdot au_i$) та частоти дискретизації $^{f_{\mathrm{Z}}}$. Тому в роботі основну увагу приділено дослідженню впливу $^{\Delta t_{3\mathrm{C}}}$ на результат фільтрації при різних параметрах $^{\Delta f} \cdot au_i$ та $^{f_{\mathrm{Z}}}$.

На рис. 1 зображено сімейство залежностей SNR від нормованої величини часового зсуву $\Delta t_{\rm 3C}/T_{\rm Д}$ для форматів ІКМ-ІКМ, ІКМ-ДІКМ та ІКМ-МДІКМ при фільтрації коротких сигналів ($\Delta f \cdot au_i = 37.5$).

Параметри ЛЧМ сигналу такі: $\tau_i = 2,5\,$ мкс, $f_0 = 62,5\,$ МГ μ , $\Delta f = 15\,$ МГ μ , $\phi_0 = 1,73\,$ радо. ЛЧМ сигнал продискретизовано з частотою дискретизації $f_{\rm д} = f_2\,$ на засаді смугової дискретизації, побічним ефектом якої є зсув спектра високочастотного діапазон в область низьких частот [5]. Кількість відліків для такої частоти дискретизації N = 194. Розрядність для формату ДІКМ — 4, для МДІКМ — 3, з них один знаковий. Для подання абсолютних значень МДІКМ відліків використано 4 кроки квантування: $s_{\rm min}$, $2s_{\rm min}$, $4s_{\rm min}$, $8s_{\rm min}$.

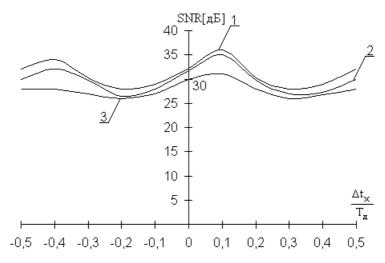


Рис. 1. Залежність SNR на виході узгодженого фільтра від нормованого часового зсуву $\Delta t_{\rm 3c}$ / $T_{\rm д}$ для $\Delta f \cdot au_i = 37,5$; 1 — формат ІКМ-ІКМ, 2 — ІКМ-ДІКМ, 3 — ІКМ-МДІКМ

Характер впливу часового зсуву на результат УФ є подібним для усіх форматів. Окрім того, спостерігається покращання SNR на виході узгодженого фільтра при $\Delta t_{\rm 3c} = 0.1 T_{\rm д}$ порівняно з SNR при повному збіганні відліків сигналу і ІХ ($\Delta t_{\rm 3c} = 0$). Нерівномірність SNR (різниця між максимальним і мінімальним значеннями SNR) є максимальною для формату ІКМ-ДІКМ і становить 8,5 дБ і мінімальною для ІКМ-МДІКМ – 5 дБ.

Дослідження показали, що вплив часового зсуву на SNR при коротких сигналах є найбільш помітним для формату ІКМ, особливо при частотах дискретизації, близьких до частоти Найквіста. При збільшенні частоти дискретизації цей вплив швидко нівелюється. Двомірна залежність SNR на виході узгодженого фільтра у форматі ІКМ від нормованої величини часового зсуву $\Delta t_{\rm 3c}/T_{\rm д}$ та відносної зміни частоти дискретизації $f_{\rm д}/f_2$ подана на рис. 2. Ця залежність отримана при таких параметрах ЛЧМ сигналу: $\Delta f \cdot \tau_i = 37.5$, $\tau_i = 2.5$ мкс, $\Delta f = 15$ МГ μ , $f_0 = 300$ кГ μ , $\phi_0 = 1.7$ рад. Мінімальна частота дискретизації була дорівнювала частоті Найквіста $f_{\rm H} = 2f_2$.

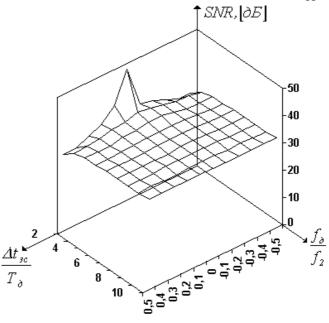


Рис. 2. Залежність SNR на виході узгодженого фільтра від нормованої величини часового зсуву $\Delta t_{\rm 3C}$ / $T_{\rm II}$ та відносної зміни частоти дискретизації $f_{\rm II}$ / $f_{\rm 2}$

Із рис. 2 видно, що найбільші зміни SNR залежно від величини часового зсуву відбуваються при $f_{\rm L}=f_{\rm H}$, але вже при частоті дискретизації $f_{\rm L}=4f_2$ цей вплив практично відсутній.

Дослідження залежності SNR від $\Delta t_{\rm 3C}$ при різних довжинах сигналу ($\Delta f \cdot \tau_i \in [40,300]$) показали, що зі зростанням величини добутку $\Delta f \cdot \tau_i$ вплив $\Delta t_{\rm 3C}$ на SNR зменшується, що пов'язано зі зростанням кількості відліків сигналу і ІХ. Для прикладу на рис. З показано залежності SNR від нормованої величини часового зсуву $\Delta t_{\rm 3C} / T_{\rm д}$ для формату ІКМ-ІКМ і комбінованого формату ІКМ-ДІКМ при $\Delta f \cdot \tau_i = 150$.

Ці залежності отримано для таких параметрів ЛЧМ сигналу: $\tau_i=10\,$ мкс, $\Delta f=15\,$ МГu, $f_0=300\,$ кГu, $\phi_0=2$,2 $pa\partial$. Частота дискретизації $f_{\rm H}=5\,f_2$, а кількість відліків, яка їй відповідає N=766. Розрядність ДІКМ-відліків — 5.

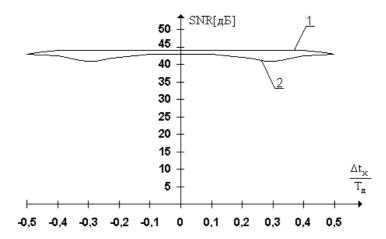


Рис. 3. Залежність SNR на виході узгодженого фільтра від нормованого часового зсуву $\Delta t_{\rm 3c}$ / $T_{\rm Д}$ для $\Delta f \cdot au_i = 150$; 1 – IKM-IKM; 2 –IKM-ДІКМ

Із залежностей на рис. 3 видно, що у форматі ІКМ-ІКМ при зазначених параметрах сигналу зміна SNR відбувається тільки при максимальних часових зсувах в околі $\Delta t_{\rm 3c} = 0.5 T_{\rm д}$. При цьому нерівномірність SNR менша, ніж 1 дБ. У форматі ІКМ-ДІКМ ця нерівномірність є більшою, однак не перевищує 2 дБ, що вказує на суттєве покращання SNR порівняно з коротким ($\Delta f \cdot \tau_i = 37.5$) сигналом.

Результати проведених досліджень дають підставу зробити висновок, що вплив часового зсуву між відліками ЛЧМ сигналу і ІХ на SNR на виході цифрового узгодженого фільтра можна зменшити збільшенням кількості відліків сигналу і одночасно ІХ. Цього можна досягти, збільшуючи частоту дискретизації або ж довжину сигналу. В обох випадках зростають затрати часу на обчислювальні операції, що погіршує швидкодію цифрового фільтра.

Для забезпечення високої швидкодії можна збільшити кількість відліків структурним шляхом, використовуючи M паралельних узгоджених фільтрів. Кожний з M фільтрів повинен згортати з імпульсною характеристикою ЛЧМ сигнал, зсунений щодо сигналу сусіднього фільтра на інтервал $T_{\rm 3c} = T_{\rm g}/M$. Щоб одержати тільки один результат, необхідно застосувати розв'язувальний пристрій, який вибирає сигнал з максимальним SNR з виходу відповідного фільтра. Використання M паралельних фільтрів є рівноцінним збільшенню кількості відліків в M разів і зменшенням інтервалу випадкового зсуву $\Delta t_{\rm 3c}$ до величини $\Delta t_{\rm 3c} \in \left[-0.5T_{\rm g}/M;0.5T_{\rm g}/M\right]$, що відповідним чином зменшує нерівномірність SNR .

Висновки

Випадковий часовий зсув між відліками ЛЧМ сигналу і імпульсної характеристики при цифровій узгодженій фільтрації проявляється в нерівномірності SNR вихідного сигналу фільтра. Вплив часового зсуву особливо суттєвий, коли сигнал і IX подані короткими часовими рядами. Збільшити кількість відліків і тим самим зменшити нерівномірність SNR можна збільшенням довжини ЛЧМ сигналу (добутку $\Delta f \cdot \tau_i$) або ж частоти дискретизації. Однак в обох цих випадках погіршується швидкодія фільтра. Для збереження високої швидкодії, характерної для коротких часових рядів, доцільно використовувати структуру паралельних фільтрів з розв'язувальним пристроєм. Введення M паралельних фільтрів рівноцінне збільшенню в M разів кількості відліків сигналу і IX.

1. Погрібний В.О., Рожанківський І.В., Лозинський В.І., Лютовскі З. Компресія частотно-модульованих сигналів у змішаних форматах // Міжвідомчий збірник наукових праць "Відбір і обробка інформації". — 2002. — №17(93). — 151 с. 2. Погрибной В.А. Дельта—модуляция в цифровой

обработке сигналов — М.: Радио и связь, 1990. — 216 с. 3. Pogribny W., Rais A. Optimization of DM coders algorithms with the use of steps with multiplication factor equal to power 2 // Proceedings of the 6th Intern. Conf. Mixed Design of Integrated Circuits and Systems MIXDES'99 — Kraków, Poland, 1999. — Р. 399—404. 4. Погрібний В.О., Рожанківський І.В., Лозинський В.І. Цифрова узгоджена фільтрація частотно-модульованих сигналів у часовій області // Вісник Національного університету "Львівська політехніка". — 2002. — №443. — С.105—111. 5. Richard G. Lyons, Wprowadzenie do cyfrowego przetwarzania sygnalów —Wydawnictwa Komunikacji i Łączności. — Warszawa, 1999. — 462 s. 6. Pogribny W., Rozhankivsky I., Milewsky A., Lozynsky V. Studying the exactitude of digital matching filtration of widepass location signals // Hydroacoustics Annual Journal. — 2001. — Vol. 4. — P. 209—212.

УДК 683.05

О.В. ТИМЧЕНКО, Р.С. КОЛОДІЙ, М.В. СМОЛІНСЬКИЙ

КЕРУВАННЯ ЯКІСТЮ МОВНОГО ЗВ'ЯЗКУ В МЕРЕЖАХ З ПАКЕТНОЮ КОМУТАЦІЄЮ

© Тимченко О.В., Колодій Р.С., Смолінський М.В., 2004

The methods are proposed for voice service quality increase due to subscribers activity analysis and coding rate change.

Постановка проблеми

Забезпечити ґарантовану якість зв'язку (Quality of Service, QoS) — означає розподілити всі мережені ресурси так, щоб мовні пакети могли передаватись мережею точно за призначенням з найменшою часовою затримкою (згідно із рекомендаціями ITU-T G.114). У широкому розумінні основна задача обумовленого варіанта телефонії полягає в забезпеченні звичайного перебігу мовного спілкування двох або кількох абонентів, що є абонентами різних комутаційних мереж, засобами мережі зв'язку з комутацією пакетів. Отже, для кодування мови потрібно використовувати алгоритми, що мають найвигідніше співвідношення якість мови І швидкість передачі, і розглянути сеанс мовного зв'язку абонентів двох вузлів у годину найбільшого навантаження за відсутності трафіку даних і трафіку систем керування. Для цього необхідно створити модель діалогу двох абонентів у пакетній мережі, яка дасть можливість оптимізувати пропускну здатність каналу зв'язку в мережі з комутацією пакетів. З цих позицій можна зробити висновок про кількість абонентів пакетної мережі , що мають можливість вести телефонні розмови по мережі ІР.

Аналіз останніх досліджень

Для передачі мови по мережі передачі даних IP відповідно до рекомендації ITU-Т Н.323 необхідна швидкість передачі каналу зв'язку 19,6 кбіт/с. Внесена в мову затримка може досягати значних величин, що істотно перевищують рекомендоване ITU-Т у рекомендації G.114 значення 150 мс. Величина внесеної в мову затримки при кодуванні нижча, ніж при передачі мови по мережі IP, але і вона може досягати значних величин, тому в каналі при використанні алгоритмів стиску важливим є використання оптимальних алгоритмів кодування мови.

Постановка задачі: розглянути можливості керування методами кодування сигналів для забезпечення гарантованої якості зв'язку при передачі мовних пакетів по ІР-мережі.