Оценка *in vitro* микробиологических и биохимических показателей почвы, инокулированной *Bacillus* sp. Ф-99 – продуцентом фитазы

При интродукции в почву штамма Bacillus sp. Ф-99, мобилизующего фосфаты и продуцирующего внеклеточную фитазу, его численность в опытах in vitro через 20 дней повышается более чем в 100 раз. Результатом жизнедеятельности бактерий Bacillus sp. Ф-99 является повышение фитазной активности почвы в 2,6 раза, а также увеличение содержания в ней фосфора в 2,6 раза, редуцирующих веществ и белка — в 14,5 и 25,3 раза, соответственно. В условиях глубинного культивирования установлено, что помимо фитазы Bacillus sp. Ф-99 синтезирует также целлюлазу и протеазу. Предполагается, что синтез штаммом комплекса гидролитических ферментов, расщепляющих соответствующие полимеры растительных клеток, может обеспечивать ему конкурентные преимущества перед аборигенной микрофлорой и служить дополнительным аргументом в пользу его использования в качестве инокулянта, стимулирующего рост растений.

Introduction into the soil of Bacillus sp. F-99 culture generating extracellular pthytase results in 100-fold increase of its microbial titer after 20 days of experiments in vitro. By this time phytase activity in soil rises 2.6-times while concentrations of phosphorus, reducing substances and protein tends to grow 2.6, 14.5 and 25.3 times, respectively. It was established during submerged fermentation of Bacillus sp. F-99 that phytase production was accompanied by synthesis of cellulase and protease. It is suggested that production by this strain of a hydrolytic enzyme complex splitting plant cell polymers may provide a competitive advantage over indigenous microflora and serve as additional argument in favor of its inoculation to promote plant growth.

В лабораторных и полевых условиях показано, что результатом интродукции в почву фосфатмобилизующих бактерий рода *Bacillus* является повышение урожайности различных сельскохозяйственных культур и снижение экологической нагрузки от излишнего использования фосфорных удобрений [1-3]. Ранее нами было установлено, что обработка семян кресс-салата культуральной жидкостью штамма Ф-99 *Bacillus* sp., утилизирующего нерастворимые в воде неорганические фосфорсодержащие соединения и продуцирующего фитазу, повышает их всхожесть, энергию прорастания и сухой вес проростков [4]. Цель настоящего исследования — оценка *in vitro* биохимических и микробиологических показателей почвы, интродуцированной фосфатмобилизующей культурой *Bacillus* sp. Ф-99.

Для интродукции использовали культуральную жидкость бактерий *Bacillus* sp. Ф-99 – продуцента фитазы. Для этого во флаконы, содержащие 15 г почвы влажностью 40%, стерильно вносили 1,5 мл культуральной жидкости Bacillus sp. Ф-99 (опыт) или 1,5 мл инактивированной при 100°C в течение 20 мин бесклеточной культуральной жидкости (контроль). Продолжительность опыта составляла 20 дней при температуре 20-24°C. Результаты исследования, выполненного в динамике, указывают на то, что спустя 20 дней титр жизнеспособных клеток Bacillus sp. Ф-99 превосходит исходный показатель более чем в 100 раз. При этом бактерии синтезируют ферментные белки, о чем свидетельствует повышение ферментативной активности почвы, а также увеличение содержания в ней фосфора, редуцирующих веществ и белка (таблица 1). Так, через 10 дней после инокуляции почвы уровень фитазной активности в почве повышается по сравнению с ее исходной величиной в 1,5 раза, а через 20 дней – в 2,6 раза. Отмечается также увеличение содержания в почве растворимого белка, редуцирующих веществ и фосфора соответственно в 3,7; 2,5 и 1,4 раза на 10 сутки после введения инокулянта и в 14,5; 25,3 и 2,6 раза – на 20 сутки. Полученные результаты указывают на то, что исследуемый штамм отличается высокой жизнеспособностью и высоким уровнем продукции внеклеточной фитазы.

Таблица 1. Характеристика почвы, инокулированной культурой *Bacillus* sp. Ф-99

Показатель почвы	0 суток		10 суток		20 суток	
показатель почвы	опыт	контроль	опыт	контроль	опыт	контроль
Титр клеток <i>Bacillus</i> sp. Ф-99, КОЕ/100 г почвы	$3,5\cdot10^6$	0	$19,5 \cdot 10^6$	0	385,0·10 ⁶	0
Белок, мг/100 г почвы	0,89	0,67	3,33	0,73	12,89	0,70
Редуцирующие вещества, мг/100 г почвы	59,33	12,67	71,78	13,08	80,22	12,75
Фитаза, ед/100 г почвы	21,3	0	30,9	0	56,0	0
Содержание фосфора, мг/100 г почвы	8,7	8,5	12,4	8,6	22,7	8,4

Повышение содержания в почве свободных редуцирующих веществ и белка при инокуляции *Bacillus* sp. Ф-99 может указывать на синтез бактериями ферментов, гидролизующих белки и растительные полисахариды, прежде всего целлюлозу. Действительно, исследуемый штамм помимо фитазы синтезирует внеклеточные протеазу и целлюлазу (таблица 2), значения удельных активностей которых составляют соответственно 3,82; 116,5 и 1,20 ед/мг белка.

Таблица 2. Характеристика ферментативной активности культуры *Bacillus* sp. Ф-99

·	Голом	Фитаза		Протеаза		Целлюлаза	
	Белок, мг/мл	ед/мл	ед/мг белка	ед/мл	ед/мг белка	ед/мл	ед/мг белка
7,2	0,69	2,70	3,82	81,0	116,5	0,83	1,20

Штамм *Bacillus* sp. Ф-99 отобран в качестве модели для оценки его жизнеспособности, ферментативной активности и взаимоотношений с аборигенной микрофлорой в ризосфере растений. Можно предположить, что высокий уровень продукции бактериями комплекса гидролитических ферментов обеспечит ему конкурентные преимущества *in vivo* и станет дополнительным аргументом в пользу его использования в качестве стимулирующего рост растений инокулянта.

Литература

- 1. Ahmad F., Ahmad I., Khan M.S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities // Microbiol. Research. 2008. Vol. 163. P. 173-181.
- 2. Khan A.A., Jilani G., Akhtar M.S., Naqvi S.M.S., Saqlan S.M., Rasheed M. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities // J. Agr. Biol. Sci. 2009. Vol. 1. P. 48-58.
- 3. Banerjee S., Palit R., Sengupta C., Standing D. Stress induced phosphate solubilization by *Arthrobacter* sp. and *Bacillus* sp. isolated from tomato rhizosphere // Australian J. Crop Sci. 2010. Vol. 4. P. 378-383.
- 4. Сапунова Л.И., Картыжова Л.Е., Павлюк А.Н., Ерхова Л.В., Крученок Т.В. Влияние культур бактерий *Bacillus* species и продуцируемых ими внеклеточных ферментов на прорастание семян кресс-салата // Микробные биотехнологии: актуальность и будущее: Матер. Междунар. научно-практ. конф. Radostim-2012, Киев, 19-22 ноября 2012. С. 287-288.