
 86 

УДК 681.3, 004.3 

Rodrigue Elias 
Computers Department, Institute of Computer Technology,  

Automation and Metrology,  
Lviv, Polytechnic National University 

BASES OF DIGITAL SIGNATURE USING ELLIPTIC-CURVE CRYPTO 
PROCESSOR OVER GALOIS FIELD (2M) 

© Rodrigue Elias, 2009 

Визначено основи для створення нової послідовної архітектури процесора для 
виконання додавання і скалярного множення точок еліптичних кривих. 

In this study, the procedure is to design a base for new hardware processor to perform 
elliptic curve addition and scalar multiplication. It will be based on a serial architecture. 

Introduction 
An obvious application of cryptography is the transformation of information to prevent other from 

observing its meaning. This is the classical concept of secrecy, wherein we attempt to prevent information 
from reaching an enemy in a usable form. Secrecy is viewed by many as the central issue in the field of 
information protection. Secure communication is the most straightforward use of cryptography. Two 
people may communicate securely by encrypting the messages sent between them. While secure 
communication has existed for centuries, the key management problem has prevented it from becoming 
commonplace. Thanks to the development of public-key cryptography, the tools exist to create a large-
scale network of people who can communicate securely with one another even if they had never 
communicated before. Cryptography is widely used. Not only is it used over the Internet, but also it is used 
in phones, televisions, and a variety of other common household items. Without cryptography, hackers 
could get into our e-mail, listen in on our phone conversations, or break into our bank/brokerage accounts. 
Cryptography is not confined to the world of computers. Cryptography is also used in cellular (mobile) 
phones as a means of authentication; that is, it can be used to verify that a particular phone has the right to 
bill to a particular phone number. This prevents people from stealing ("cloning"') cellular phone numbers 
and access codes. Another application is to protect phone calls from spying using voice encryption. Many 
other uses for cryptography exist at present, and further applications will almost certainly grow as our 
understanding of information protection increases.  

 
Problem description 

The major advantage of properly designed and implemented cryptographic applications is that they 
are inexpensive to use, expensive to attack, and independent of other factors in the environment. The major 
problems are in the assurance of these advantages in actual use. Now there are many algorithms and 
standards for cryptographic applications. The problem is to select some algorithms that are more secured, 
more confidential, and in a way, faster than the previous designed architectures. 

 
Purpose of Work 

In the information age, cryptography has become one of the major methods for protection in all 
applications. Cryptography allows people to carry over the confidence found in the physical world to the 
electronic world. It allows people to do business electronically without worries of deceit and deception. In 
the distant past, cryptography was used to assure only secrecy. Wax seals, signatures, and other physical 
mechanisms were typically used to assure integrity of the message and authenticity of the sender. When 
people started doing business online and needed to transfer funds electronically, the applications of 
cryptography for integrity began to surpass its use for secrecy. Hundreds of thousands of people interact 
electronically every day, whether it is through e-mail, e-commerce (business conducted over the Internet), 
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ATM machines, or cellular phones. The constant increase of information transmitted electronically has 
lead to an increased reliance on cryptography and authentication. 

The purpose of this work is to select some algorithms that are more secured, more confidential, and 
in a way, faster than ones used in the previous designed architectures. These algorithms will be 
implemented in the next following stages. 

 
Introduction to finite fields  

Fields are abstractions of familiar number systems (such as the rational numbers Q, the real numbers 
R, and the complex numbers C) and their essential properties. They consist of a set F together with two 
operations, addition (denoted by +) and multiplication (denoted by ·), that satisfy the usual arithmetic 
properties: 

(F, +) is an abelian group with (additive) identity denoted by 0. 
(F - {0}, ·) is an abelian group with (multiplicative) identity denoted by 1. 
The distributive law holds: (a + b) ·c = a ·c + b ·c for all a, b, c ∈ F. 
If the set F is finite, then the field is said to be finite. 

Field operations 
A field F is equipped with two operations, addition and multiplication. Subtraction of field elements 

is defined in terms of addition: for a, b ∈ F, a −b = a + (−b) where −b is the unique element in F such that 
b + (−b) = 0 (−b is called the negative of b). Similarly, division of field elements is defined in terms of 
multiplication: for a, b ∈ F with b = 0, a/b = a ·b−1 where b−1 is the unique element in F such that b ·b−1 = 1. 
(b−1 is called the inverse of b.) 
Prime fields 

Let p be a prime number. The integers modulo p, consisting of the integers {0, 1, 2,  . . ., p −1} with 
addition and multiplication performed modulo p, is a finite field of order p. We shall denote this field by 
Fp and call p the modulus of Fp. For any integer a, a mod p shall denote the unique integer remainder r, 0 
≤r ≤ p−1, obtained upon dividing a by p; this operation is called reduction modulo p. 
Binary fields 

Finite fields of order 2m are called binary fields or characteristic-two finite fields. One way to 
construct F(2m) is to use a polynomial basis representation. Here, the elements of F(2m) are the binary 
polynomials (polynomials whose coefficients are in the field F2 = {0,1}) of degree at most m −1: 

F(2m)  = {am−1zm−1 + am−2zm−2 + ··· + a2z2 + a1z + a0 : ai ∈ {0,1}}. 
An irreducible binary polynomial f(z) of degree m is chosen (such a polynomial exists for any m and 

can be efficiently found). Irreducibility of f(z) means that f(z) cannot be factored as a product of binary 
polynomials each of degree less than m. Addition of field elements is the usual addition of polynomials, 
with coefficient arithmetic performed modulo 2. Multiplication of field elements is performed modulo the 
reduction polynomial f (z). For any binary polynomial a(z), a(z) mod f(z) shall denote the unique remainder 
polynomial r(z) of degree less than m obtained upon long division of a(z) by f(z); this operation is called 
reduction modulo f(z). 
Elliptic Curves 

Cryptographic mechanisms based on elliptic curves depend on arithmetic involving the points of the 
curve. Curve arithmetic is defined in terms of underlying field operations, the efficiency of which is 
essential. Efficient curve operations are likewise crucial to performance. 

Let E be an elliptic curve defined over the field K. There is a chord-and-tangent rule for adding two 
points in E(K) to give a third point in E(K). Together with this addition operation, the set of points E(K) 
forms an abelian  group with ∞ serving as its identity. It is this group that is used in the construction of 
elliptic curve cryptographic systems. The addition rule is best explained geometrically. Let P = (x1, y1) 
and Q = (x2, y2) be two distinct points on an elliptic curve E. Then the sum R, of P and Q, is defined as 
follows. First draw a line through P and Q; this line intersects the elliptic curve at a third point. Then R is 
the reflection of this point about the x-axis. The double R, of P, is defined as follows. First draw the 
tangent line to the elliptic curve at P. This line intersects the elliptic curve at a second point. Then R is the 
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reflection of this point about the x-axis. Algebraic formulas for the group law can be derived from the 
geometric description. 
How Digital Signature Technology Works  

Digital signatures are created and verified by cryptography, the branch of applied mathematics that 
concerns itself with transforming messages into seemingly unintelligible forms and back again. Digital 
signatures use what is known as "public key cryptography", which employs an algorithm using two 
different but mathematically related "keys"; one for creating a digital signature or transforming data into a 
seemingly unintelligible form, and another key for verifying a digital signature or returning the message to 
its original form. Computer equipment and software utilizing two such keys are often collectively termed 
an "asymmetric cryptosystem." 

 
Main Standards and Algorithms 

ECC Standards 
Cryptographic standards are important for two reasons: (1) to facilitate the widespread use of 

cryptographically sound and well-specified techniques; and (2) to promote interoperability between 
different implementations. Interoperability is encouraged by completely specifying the steps of the 
cryptographic schemes and the formats for shared data such as domain parameters, keys and exchanged 
messages, and by limiting the number of options available to the implementer. This section describes the 
salient features of selected standards and draft standards that describe elliptic curve mechanisms for 
signatures, encryption, and key establishment.  
American National Standards Institute (ANSI). 

 The ANSI X9F subcommittee of the ANSI X9 committee develops information security standards 
for the financial services industry. Two elliptic curve standards have been completed: ANSI X9.62 which 
specifies the ECDSA, and ANSI X9.63 which specifies numerous elliptic curve key agreement and key 
transport protocols including STS. The objective of these standards is to achieve a high degree of security 
and interoperability. The underlying finite field is restricted to being a prime field Fp or a binary field 
F(2m). The elements of F(2m) may be represented using a polynomial basis or a normal basis over F2.  
National Institute of Standards and Technology (NIST). 

 NIST is a non-regulatory federal agency within the U.S. Commerce Department’s Technology 
Administration. Included in its mission is the development of security-related Federal Information 
Processing Standards (FIPS) intended for use by U.S. federal government departments. The FIPS standards 
widely adopted and deployed around the world include the Data Encryption Standard (DES) [1], the 
Secure Hash Algorithms (SHA-1, SHA-256, SHA-384 and SHA-512: FIPS 180-2 [2]), the Advanced 
Encryption Standard (AES: FIPS 197 [3]), and Hash-based Message Authentication Code (HMAC: FIPS 
198 [4]). FIPS 186-2, also known as the Digital Signature Standard (DSS), specifies the RSA,  DSA and 
ECDSA signature schemes. NIST is in the process of developing a recommendation [5] for elliptic curve 
key establishment schemes that will include a selection of protocols from ANSI X9.63. 
Institute of Electrical and Electronics Engineers (IEEE). 

 The IEEE P1363 working group is developing a suite of standards for public-key cryptography. The 
scope of P1363 is very broad and includes schemes based on the intractability of integer factorization, 
discrete logarithm in finite fields, elliptic curve discrete logarithms, and lattice-based schemes. The 1363-
2000 standard includes elliptic curve signature schemes (ECDSA and an elliptic curve analogue of a 
signature scheme due to Nyberg and Rueppel), and elliptic curve key agreement schemes (ECMQV and 
variants of elliptic curve Diffie- Ellman (ECDH)). It differs fundamentally from the ANSI standards and 
FIPS 186-2 in that there are no mandated minimum security requirements and there is an abundance of 
options. Its primary purpose, therefore, is to serve as a reference for specifications of a variety of 
cryptographic protocols from which other standards and applications can select. The 1363-2000 standard 
restricts the underlying finite field to be a prime field Fp or a binary field F2m . The P1363a [7] draft 
standard is an addendum to 1363-2000. It contains specifications of ECIES and the Pintsov-Vanstone 
signature scheme providing message recovery, and allows for extension fields Fpm of odd characteristic 
including optimal extension fields. 
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International Organization for Standardization (ISO). 
 ISO and the International Electro-technical Commission (IEC) jointly develop cryptographic 

standards within the SC 27 subcommittee. ISO/IEC 15946 is a suite of elliptic curve cryptographic 
standards that specifies signature schemes (including ECDSA and EC-KCDSA), key establishment 
schemes (including ECMQV and STS), and digital signature schemes providing message recovery. 
ISO/IEC 18033-2 provides detailed descriptions and security analyses of various public-key encryption 
schemes including ECIES-KEM and PSEC-KEM. 
Standards for Efficient Cryptography Group (SECG). 

 SECG is a consortium of companies formed to address potential interoperability problems with 
cryptographic standards. SEC 1 specifies ECDSA, ECIES, ECDH and ECMQV, and attempts to be 
compatible with all ANSI, NIST, IEEE and ISO/IEC elliptic curve standards. 
New European Schemes for Signatures, Integrity and Encryption (NESSIE). 

The NESSIE project was funded by the European Union’s Fifth Framework Programme. Its main 
objective was to assess and select various symmetric-key primitives (block ciphers, stream ciphers, hash 
functions, message authentication codes) and public-key primitives (public-key encryption, signature and 
identification schemes). The elliptic curve schemes selected were ECDSA and the key transport protocols 
PSEC-KEM and ACE-KEM. 
Cryptographic Research and Evaluation Committee (CRYPTREC). 

 The Information-technology Promotion Agency (IPA) in Japan formed the CRYPTREC committee 
for the purpose of evaluating cryptographic protocols for securing the Japanese government’s electronic 
business. Numerous symmetric-key and public-key primitives are being evaluated, including ECDSA, 
ECIES, PSEC-KEM and ECDH. 

 
Digital Signature Main Algorithms 

RSA Systems and Key Generations.  
RSA, named after its inventors Rivest, Shamir and Adleman, was proposed in 1977 shortly after the 

discovery of public-key cryptography. It consists of selecting key pair (public key & private key), so that 
the problem is, deriving the private key from the corresponding public key. The public key consists of a 
pair of integers (n, e) where “n” is a product of two randomly generated and secret primes (p & q) of the 
same bitlength. The encryption exponent “e” is an integer satisfying 1 < e < φ & gcd(e,φ) = 1 where 
φ = (p−1)(q −1). The private key “d”, called the decryption exponent, is the integer satisfying 1 < d < φ 
and ed ≡ 1 (mod φ). 
RSA Encryption. 

 RSA encryption is used to generate a ciphertext “c” such that c = me mod n. 
RSA Decryption.  

RSA decryption works in the opposite direction. Here, we have to find the plaintext “m” from the 
ciphertext “c”. The security relies on the difficulty of computing the plaintext “m”. 

RSA Signing Scheme: The signer of a message m first computes its message digest h = H(m) using a 
cryptographic hash function H, where h serves as a short fingerprint of m. Then, the signer uses his private 
key d to compute the eth root s of h modulo n: s = hd mod n. The signer transmits the message m and its 
signature s to a verifying party. This party then recomputes the message digest h = H(m), recovers a 
message digest h’ = se mod n from s, and accepts the signature as being valid for m provided that h = h’. 
The security relies on the inability of an intruder (who does not know the private key d) to compute eth 
roots modulo n. 
RSA Signature Generation. 

 To generate a digital signature, RSA public Key (n, e), RSA private key “d”, and a message “m” 
must be generated. Then, two steps will be made: 

Compute h = H(m) where H is a hash function. 
Compute s = hd mod n. 
Finally, attach the signature s with the message m. 
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RSA Signature Verification.  
At the reception terminal, the RSA public key (n, e), the message m, and the signature must be held. 

To accept or reject the signature, the following procedure must be applied: 
Compute h = H(m) where H is the same hash function. 
Compute h’ = se mod n. 
If h = h’ then “Accept the signature”, Else “Reject the signature”. 

Discrete Logarithm Systems.  
The first discrete logarithm (DL) system was the key agreement protocol proposed by Diffie and 

Hellman in 1976. In 1984, ElGamal described DL public-key encryption and signature schemes. 
DL Key Generation: In discrete logarithm systems, a key pair (x, y) is associated with a set of public 

domain parameters (p, q, g). 
DL Domain Parameter Generation. 

The following steps must be applied in order to generate the three public domain parameters (p, q, g) 
based on two input parameters (l, t). 

i. Select a t-bit prime q and an l-bit prime p such that q divides (p − 1). 
ii. Select an element g of order q: 

iii. Select arbitrary h ∈ [1, p−1] and compute g = h(p − 1)/q mod p. 
iv. If g = 1 then go to step iii. 
v. Return (p, q, g). 

DL key pair generation. 
Now, the key pair (x, y) will be generated from the public domain parameters (p, q, g) using the 

following part of an algorithm. 
i. Select x ∈ Z [1, q −1]. 

ii. Compute y = gx mod p. 
iii. Return (y, x).  

Discrete Logarithm Encryption Scheme. 
Next, the most known encryption and decryption for the El-Gammal public key procedures will be 

presented. 
El-Gamal Encryption.  

The inputs will be: the DL domain parameters (p, q, g), the public key (y), and the plaintext (m) ∈ 
[0, p−1]. After that, two ciphertexts (c1, c2) will be generated as followed: 

i. Select k ∈ R [1, q −1]. 
ii. Compute c1 = gk mod p. 

iii. Compute c2 = m · yk mod p. 
iv. Return (c1, c2). 

El-Gamal Decryption. 
Now, the DL domain parameters (p, q, g), the private key (x), and the Ciphertext (c1, c2) will be as 

inputs, to generate back the plaintext (m). 
i. Compute m = c1*c2

-x mod p. 
ii. Return (m). 

Discrete Logarithm Signature Scheme.  
An entity A with private key x signs a message by selecting a random integer k from the interval 

[1, q-1], and computing T = gk mod p, r = T mod q, s = k−1(h + xr) mod q, where h = H(m) is the message 
digest. A’s signature on m is the pair (r, s). To verify the signature, an entity must check that (r, s) satisfies 
the previous equation. Since the verifier knows neither A’s  private key x nor k, this equation cannot be 
directly verified. Note, this equation is equivalent to k ≡ s−1(h + xr) (mod q). 

Raising g to both sides yields the equivalent congruence T ≡ (ghs)−1(yrs)−1 (mod p). 
The verifier can therefore compute T and then check that r = T mod q. 
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DSA Signature Generation. 
As inputs, DL domain parameters (p, q, g), private key (x), and the message (m), as outputs, 

Signature (r, s). 
i. Select k ∈ R [1, q −1]. 

ii. Compute T = gk mod p. 
iii. Compute r = T mod q. If r = 0 then go to step i. 
iv. Compute h = H(m). 
v. Compute s = k−1(h + xr) mod q. If s = 0 then go to step i. 

vi. Return (r, s). 
DSA Signature Verification 

As inputs, DL domain parameters (p, q, g), public key (y), message (m), and the signature (r, s). As 
output, either accept the signature or reject the signature. 

i. Verify that r and s are integers in the interval [1, q −1]. If any verification fails 
ii. then return (“Reject the signature”). 

iii. Compute h = H(m). 
iv. Compute w = s−1 mod q. 
v. Compute u1 = hw mod q and u2 = rw mod q. 

vi. Compute T = gu1 yu2 mod p. 
vii. Compute r ´ = T mod q. 

viii. If r = r  ́then return (“Accept the signature”); 
ix. Else return (“Reject the signature”). 

Elliptic Curve Key Pair Generation. 
Let E be an elliptic curve defined over a finite field Fp. Let P be a point in E(Fp), and suppose that P 

has prime order n. Then the cyclic subgroup of E(Fp) generated by P is:<P> = {∞, P, 2P, 3P, . . ., 
(n−1)P}. The prime p, the equation of the elliptic curve E, and the point P and its order n, are the public 
domain parameters. A private key is an integer d that is selected uniformly at random from the interval [1, 
n −1], and the corresponding public key is Q = dP. 

INPUT: Elliptic curve domain parameters (p, E, P, n). 
OUTPUT: Public key Q and private key d. 
i. Select d ∈ Z [1,n−1]. 

ii. Compute Q = dP. 
iii. Return (Q, d). 

Elliptic Curve Encryption Scheme. 
Here are the procedures for the elliptic curve analogue of the basic ElGamal encryption. A plaintext 

m is first represented as a point M, and then encrypted by adding it to kQ where k is a randomly selected 
integer, and Q is the intended recipient’s public key. The sender transmits the points C1 = kP and C2 = M 
+ kQ to the recipient who uses her private key d to compute dC1 = d(kP) = k(dP) = kQ, and thereafter 
recovers M = C2 −kQ. An eavesdropper who wishes to recover M needs to compute kQ. 
Basic ElGamal Elliptic Curve Encryption.  

INPUT: Elliptic curve domain parameters (p, E, P, n), public key Q, plaintext m. 
OUTPUT: Ciphertext (C1, C2). 
i. 1. Represent the message m as a point M in E(Fp). 

ii. 2. Select k ∈ R [1, n−1]. 
iii. 3. Compute C1 = kP. 
iv. 4. Compute C2 = M +kQ. 
v. 5. Return (C1, C2). 

Basic ElGamal Elliptic Curve Decryption:  
INPUT: Domain parameters (p, E, P, n), private key d, ciphertext (C1, C2). 
OUTPUT: Plaintext m. 
i. 1. Compute M = C2−dC1, and extract m from M. 

ii. 2. Return (m). 
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Why Elliptic Curve Cryptography? 
There are several criteria that need to be considered when selecting a family of public key schemes 

for a specific application [8, 9]. The principal ones are: 
Functionality. Does the public-key family provide the desired capabilities? 
Security. What assurances are available that the protocols are secure? 
Performance. For the desired level of security, do the protocols meet performance objectives? 
The RSA, DL and EC families all provide the basic functionality expected of public-key 

cryptography—encryption, signatures, and key agreement. Over the years, researchers have developed 
techniques for designing and proving the security of RSA, DL and EC protocols under reasonable 
assumptions. The fundamental security issue that remains is the hardness of the underlying mathematical 
problem that is necessary for the security of all protocols in a public-key family—the integer factorization 
problem for RSA systems, the discrete logarithm problem for DL systems, and the elliptic curve discrete 
logarithm problem for EC systems. The perceived hardness of these problems directly impacts 
performance since it dictates the sizes of the domain and key parameters. That in turn affects the 
performance of the underlying arithmetic operations. 

Performance: The efficiency of an algorithm is measured by the scarce resources it consumes. 
Typically the measure used is time, but other measures such as space and number of processors are also 
considered. It is reasonable to expect that an algorithm consumes greater resources for larger inputs, and 
the efficiency of an algorithm is therefore described as a function of the input size. Here, the size is defined 
to be the number of bits needed to represent the input using a reasonable encoding. Expressions for the 
running time of an algorithm are most useful if they are independent of any particular platform used to 
implement the algorithm. This is achieved by estimating the number of elementary operations (e.g., bit 
operations) executed. The (worst-case) running time of an algorithm is an upper bound, expressed as a 
function of the input size, on the number of elementary steps executed by the algorithm. Studies are made 
to calculate the efficiency of the different algorithms; it was found that EC algorithms have the best 
efficiency. 

Security: Estimates are given for parameter sizes providing comparable levels of security for RSA, 
DL, and EC systems, under the assumption that the algorithms mentioned above are indeed the best ones 
that exist for the integer factorization, discrete logarithm, and elliptic curve discrete logarithm problems. If 
time is the only measure used for the efficiency of an algorithm, then the parameter sizes providing 
equivalent security levels for RSA, DL and EC systems can be derived using the running times. The 
parameter sizes, also called key sizes, that provide equivalent security levels for RSA, DL and EC systems 
as an 80-, 112-, 128-, 192- and 256-bit symmetric-key encryption scheme are listed in the table below. By 
a security level of k bits we mean that the best algorithm known for breaking the system takes 
approximately 2k steps. 

RSA, DL and EC key sizes  
for equivalent security levels. 

Security level (bits) [6]  
80 112 128 192 256 

DL parameter q 
EC parameter n 

160 224 256 384 512 

RSA modulus n 
DL modulus p 

1024 2048 3072 8192 15360 

 
Note: bitlengths are given for the DL parameter q and the EC parameter n, and the RSA modulus n 

and the DL modulus p, respectively. 
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The comparisons in the table above demonstrate that smaller parameters can be used in elliptic curve 
cryptography (ECC) than with RSA and DL systems at a given security level. The difference in parameter 
sizes is especially pronounced for higher security levels. The advantages that can be gained from smaller 
parameters include speed (faster computations) and smaller keys and certificates. In particular, private-key 
operations (such as signature generation and decryption) for ECC are many times more efficient than RSA 
and DL private-key operations. Public-key operations (such as signature verification and encryption) for 
ECC are many times more efficient than for DL systems. Public-key operations for RSA are expected to be 
somewhat faster than for ECC if a small encryption exponent is selected for RSA. The advantages offered 
by ECC are important where processing power, storage, bandwidth, or power consumption is constrained. 

 
Conclusion 

In this article, cryptography was introduced for its high importance in transferring digital data 
between terminals without hijacking. In addition to this, several algorithms have been described. Two out 
of them have been chosen for implementation at next higher stages. Moreover, a comparison has been 
made between ECC and other techniques, so ECC has been selected to have the most reliable, efficient, 
and secured algorithms. In this article, an algorithm will be choosen, Basic El-Gamal Elliptic Curve 
Encryption-Decryption Scheme, and implemented it in the next following stages. 
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