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The problem of electromagnetic waves scattering on the small particle is reduced to
solving the Fredholm integral equation of the second kind. Integral representation of solutions
to the diffraction problem implies in determination of some auxiliary function which contains
in integrand of this equation. The respective linear algebraic system for the components of this
auxiliary function is derived and solved by the successive approximation method. The region
of convergence of the proposed method is substantiated numerically. The numerical results
show rapid convergence in the wide region of the physical and geometrical parameters of
problem. The numerical results of scattering on the particles of various forms and sizes are
presented.
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3agaya eJeKTPOMArHIiTHOrO0 PO3CilOBAHHS MAJMM BKJIIOYEHHAM 3BeleHA 10 pPO3B’s3y-
BaHHA iHTerpajibHoro piBHAHHA @Ppearonbma Il-ro poay. IHTerpasbHe MOJaHHS PO3B’A3KY
3agavi Audpakuii NPUBOAUTH 10 HEOOXITHOCTI 3HAXOUKEHHS NEBHOI 10NMOMixKHOI QyHKIII, sika
MiCTHTBCA Yy MiiHTerpaibHOMY BHpa3i JaHoro piBHsHHsA. BinmoBimHa cucrema JaiHiIHHHX
aqre0paiyHuX pPiBHAHb JAJI KOMIIOHEHT Ii€i JomOMikHOI (YHKUii pO3B’A3Y€ETbCS METOA0M
NocaiIoBHUX Ha0aMmKeHb. O0JacTh 30IKHOCTI 3aNPONMOHOBAHOIO MeTOAy BHM3HAYAEThCH HAa
OCHOBI OTPMMAaHMX YHCJOBUX pe3yabTaTiB. UmncioBi pe3yabTaTH AeMOHCTPYIOTh HIBHIAKY
30iKHICTH 3alIPONIOHOBAHOIO METOAY B IIMPOKOMY Aiana3oHi ¢isMYHMX Ta reoMeTpHYHHUX
napamMeTtpiB 3anaui. HaBeaeHo 4uCJOBI pe3yibTaTH PoO3CilOBaHHSI HA BKJIIOYEHHSAX Pi3HOI
¢opmu i BeTHunHM.

KarouoBi cioBa: po3ciloBaHHSI eJeKTPOMATHITHMX XBWJIb, iMIeJaHCHe BKJIOYEHHS
Majioro po3mipy, iHTerpajbHe PpiBHAHHS OpearoabMa, MeTOA NOCTITOBHUX HAOJIMKEHbD,
YHCI0BI pe3yabTaTH.

Introduction

In this paper wave scattering by one small impedance particle is studied. Because of high intrinsic
interest for this problem, the devel oped theory allows one to generalize it to the case of many particles and
to obtain some physically interesting conclusions about the changes of the material properties of the
medium in which many small particles are embedded [1]-[7]. These results were presented firstly in paper
[8] and were used for developing a method for creating materials with a desired refraction coefficient by
embedding many small impedance particles into a given medium for scalar wave scattering [9], [10], as
well as for the electromagnetic wave scattering [11], [12]. In contrast to above papers, where the explicit
expression of solution to the diffraction problem was obtained, we deal here with another method of
solving the diffraction and scattering problem. The paper discusses the possibility to solve the formulated
diffraction problem using the solution of the obtained Fredholm integral equation of the second kind. The
problems, related to investigation of the method of the successive approximation for the respective to this
equation linear algebraic system, are discussed.
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The impedance boundary conditions widely applicable in physics and do not require that the body be
small or large. One can pass to the limit in the equation for the effective field [3] in the medium, obtained
by embedding many small impedance particles into a given medium. Such theory is applied for the scalar
wave scattering, where the equation for the limiting field in the medium is derived. The similar theory was
developed for the EM wave scattering by a small impedance particle embedded in a given material [11]
This provides to carry out the numerical calculations showing the possibility to use the developed theory in
the wide range of the parameters, such as the radius a of the particle, its boundary impedance ¢, the
distance d between neighboring particles, and the wavelength. The numerical results obtained on the basis
of the solution to Fredholm integral equation will alow to testify that the theory developed in the
mentioned above papers is rigorous and its application to creating media with desired refraction coefficient
or permeability is physically defensible.

Statement of Problem

The electromagnetic field scattered by the limited particle with smooth boundary S satisfies outside
the Maxwell equations
N E=iwmH,N" H =-iwg,E in D'=R*\D, 1)
where D is the particle region. The outside medium is described by constant permittivity e, >0 and
constant permeability m, >0, w is the frequency. The impedance boundary conditions have form

[N,[E,N]]=z[H,N] on S, 2
where z isthe surfaceimpedance of S, N isoutside normal on S; and radiation conditions:
E=E,+E, H=H,+H_, ©)

where Ey,H, arethe components of incident field, a E,,H are the components of scattered field.
Informula(2) [E,N]=E" N iscross product of two vectors.
Eq. (1) and boundary conditions (2) can be written as:
N R’ E=KE inD', H=NV = (4)
iwmy,
[N,[E,N]]=—2—[N" E,N] on S, )
iwmy,
where k is wavenumber, k =w(e,m)"?
radius of scattering.
Hence, the problem can be reduced to determination of one vector E, after its determination,
H components are determined by the second formula of Eqg. (4).

, sSmallness of particle means that ka<1, where a is effective

Method of Solution

Thevector E issought in theform [4]

E=E,+N’ Cp(x.0)I(D)dt, g(x.t) =

ik|x-t|

_ 6
ap|x- t| ©)
where J(t) isunknown function which will be determined below, g(x,t) is Green function of free space.

In order to abtain theintegral equation for function J(t) , we substitute first expression of (6) into
boundary conditions (5). Using the know formula [5]

NN @p(x It |m:dN,[ng(x,t)J(t)]]dti?, W
S S
where by m are marked limit values at passing variable x to boundary S of the domain D outside and

inside, and N g(x,t) is derivative of Green function with respect to variable x, we obtain in the general

operator form
J=AJ+T. (8)
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Eq. (8) is Fredholm integral equation of the second kind.
Action of operator A and function f aredefined as

AJ=-2N,BJ], f =2f,N], 9)
Operator B actsin such away
B[J(9)] =[6N,[ng(x,t),J(t)]]dt, N] +ziwe,[ cp(xt)J(t)dt, N], (10)

and function f, is presented in form

() IN[E(SNIT- 1 IR E(S)N]. (11

The cross product in Egs. (10) and (11) mismatches the components of function J ; thisyieldsin use
of the method of successive approximations while passing from Eqg. (8) to the respective linear algebraic
system (see Eq. (12) below).

Determination of the matrix coefficients of integral equation for vector J

In the matrix form Eq. (8) looks like as follows

ae]anA«AWAQan‘o

7 Ay Acstef, L (12)
éng A Ay Ap éf
Therights parts of (12) are expressed by the next formulae
E
f, =[E, cosq- Ey,singsinj | - .t fE,, 1 ¥)(- cos’q- sin*qsin®j ) +
iwm, Ty 9z (13)
+(E- ﬂEOX)SIhQCOSQCOS] +(‘"E‘)X - ﬂE"Z)siansinj cosj |,
™x Ty fix
f, =[E,, Sndcosj - Ey, cosal- ——[(ex . Touy g7 goos?] - cos?a) +
iwm, 1z X (14)
+(E- B)sinzqsinj Cosj +(i- B)sinqcosqsinj 1,
Yy Tz fix Ty
f, =[E, sngsinj - E,, snqoosj ]- —=— [\ - Tocyginz gginz; - sn?qeogtj )+
iwm, X My (15)

+(B EOZ

E
- ‘"E‘”)ancosqsmj +(ﬂ - ﬂ—"y)cosqsinqcosj ].
Tz 7z

The coefficients of matrix A are determl ned by
A, =2y 1002 3;, 2D singsinj +—ﬂg(X’ﬂi’ 28 cosq)dt +
S

f (16)
+2izwm, 3g(x, Y,z t)dt (- sin*gsin®j - cos’q),
S

A, :-Zdwsinq'sinj dt’ +2izwm, cp(x, y, z t)dt >sin®qgsinj cosj , (17)
X S

L T9(x, Y, Z,t)
=-20———=

S

cosqdt +2izwm,g(x,y,zt)dt >singcosqcosj , (18)
S

A, =- 25700 zt)

0 sing cosj dt +2izwm, g (x,y, zt)dt >sin*qsinj cosj , (19)
X S

S
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A, = Zd—ﬂg(x’ y.2t) cosq +Jo(xy.2t) sing cosj )dt +
S Tz x

2izwm, ¢p(x,y,z,t)dt (- cos’q- sin®qeos’j ), )
S
A, =- Zd%ssll’z’t)cosq'dt' +2izwm, (g (x, y, zt )dt >singcosgsinj (21)
S S

:-Zdwxﬂ—wgnq' cosj dt +2izwm ¢g(x,y,zt)dt >singcosqcosj (22)

S S
A, =- Zd%i’z’t')sinq'sinj dt +2izwm, ¢g(x,y, z,t)dt >sinqcosgsinj , (23)

S S

Azz :Zdwan COSj ' +Mansnj )dt -
s x Ty (24)
- 2izwm, ¢p(x, Yy, z,t)dt >sin’q.
S

Let uswritefirst line of (8) for determination of J, component

J,=AJ A A, + T, (25)
or

(E- A=A, +AJ, + 1, (26)
It isfollows from (26) that for determination of component J, it is necessary to have the values of the rest
components J, and J,. In this connection, we will use for solving the system (12) the method of
successive approximations. In the first stage, we prescribe J , and J,,; having these both values, we
determine J,; . In the next stage, we determine J,, by J,; and J,,. Inthethird stage, we determine J,,,
using found J,, and J,,.

In accordance with contraction mapping method, the proposed iterative method converges if
[[Al<1. As long as, determination of || A|| is complicate procedure, we will change the physical
parameters a, z, and w of problem in order to determine the convergence domain of the approach
proposed.

Numerical results

The numerical algorithms for solving the diffraction problem (1)-(3) need the accurate taking into
account of requirements related to convergence of the proposed iterative procedure for determination of the
J(t) components by the proposed iterative procedure (see [12]). The numerical results show that domain
of convergence for this procedure is enough wide. In Figs. 1-3, the characteristic of convergence are shown
for J,,J,,J, component for various values of radius a of particle. Therest parameters of problem arethe

following: e, =8.85" 10 *F/m, m, =4p” 10 "H/m, w=229.86GHz (k=0.1Im™), z =500.
One can see that iterative process converges very rapidly. The relative error of solution is
determined as degree of accuracy. This error is determined as

Vi - Va |

n+1

|Vn+1 |

RE = , (27)

where V,,V,

n+l

are the values of the respective componentsin n- th and n+1- iteration, V ={J,,J,,J,}.

At a=1.0, therelative error for J, component (see Fig. 1) decreases from 4.28% in the first iteration to
0.015% inthe seventh iteration. This error diminishes if a decreases. So, at a=0.1, the values of relative
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eror are equal to 0.52% and 0.004%, respectively. The respective values of the relative error for J,
component are equal to 8.32% and 0.013% for a=1.0, and 1.07% and 0.004% for a=0.1 (Fig. 2).
These values for J, are equal to 2.03% and 0.006% for a=1.0, and 0.78% and 0.002% for a=0.1

(Fig. 3). Summarizing these results, we can conclude that exactness of the obtained solutions does not

exceed several thousandths of percent; therefore the values of respective E components are calculated
with guaranteed high accuracy.
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Fig. 1. Therelative error of J, component versus

Fig. 2. Therelative error of Jy component versus
number K of iteration

number K of iteration

In order to determine the region of the applicability of the proposed method of successive
approximation, we carry out the calculations in wide region of parameter a . Be found that at the growth of
a theiterative procedure becomes instability; and it becomes divergent at a >10.0. In Fig. 4, the behavior
of convergence is shown at a=5.0. One can see that the convergence for J, and J, component is non-

monotone. Moreover, the values of relative error are greater than for small values of a (in thefirst stage,
they are equal to 9.39%, 18.51%, and 7.49% for J,, J, and J, components, respectively). The number

of necessary iterations to achieve the same degree of accuracy as for small a grows twice. So therelative

error equal to the thousandths of percent is achieved on 15 iteration; and it is equal to 0.008%, 0.007%,
and 0.005% for J,, J, and J, components, respectively.
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Fig. 3. Therelative error of J, component versus Fig. 4. Therelative error of J component versus

number K of iteration number K of iteration, a=>5.0
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After determination of the area of convergence of the problem parameters, one can deal with solving
the diffraction problem. First step consists of solving Eq. (8) by means of passing to linear equation system
(12). Let us consider the case of plane wave E,=bé***, b is constant vector, a is unit vector, and
a> =0. If the components of vector-function J are determined, the values of vector E are determined
explicitly by formula (6). For this case the vector E hasonly x- component, and E, =E, =0. In practice,
the spherical components of electromagnetic field are much of interest. In this connection, we pass to the
spherical components of field using the know formulas (see, for example, [13]). In Fig. 5, the amplitude of
E component is shown for a=0.1, therest of parameters are the same as in the previous example.

The electrical size of particle at such a issmall: in our case k =0.1, therefore total ka=0.01 that
corresponds to very small diameter of scattering, and amplitude of scattered field is fifth order lower than
the amplitude of incident field that is equal to 1.0 in our case of plane incident wave. The maximal value of
E, component is equal to 3.87" 10°°: there is value on the distance d =2a from the surface of particle,
and the amplitude diminishes if d grows. In the case if a grows, the form of scattered field changes
dightly, but the amplitude increases on several orders. For example, this amplitude is equal to 0.0913 at
a=50.

“\ ;‘ e
| ’z‘\\“/”?ll '&‘g‘ﬁ'[
z;:\\\\\\\\"\'ll{':‘o“\"l{l/o&‘\

\\\\\Q’,}o}:\‘h@'ﬁ“

0 0.0
6.0 6.0 :
N O30 3.0
00 00 0.0 0.0
Fig. 5. Amplitude of E, component Fig. 6. Amplitude of E, component
of the scattered field, a=0.1 of the scattered field, a=5.0

The above results concern to the case of spherical particle. If we wish to solve the problem for the
particle with another geometry, we should take into account the change of the particle form. For example,
in the process of numerical solving Fredholm Eq. (8) and respective to it the linear algebraic system, we
should use the actual representation of the element of surface area. So if we pass from investigation of
spherical particle to particle in the dlipsoid form, we should change the element of spherical area

dS=a’sinqdj dq by

dS:\/bzczcos“qcoszj +accos’ qsin?j +a’b®sin®qcos’ qdj dq, (28)

and to take into account that derivative respectively to r coordinate is not equal to zero on the surface of
ellipsoid, in contrast of a spherical particle. The numerical results show that the properties of convergence
of the method of successive approximations are similar to the case of spherical particle; this method
converges very rapidly for case if the semiaxes of elipsoid do not differ in the limits of 20 %. If this
difference grows, the convergence becomes slowly; and we need twice number of iteration to achieve the
same accuracy as for spherical particleif b3 3a, where a isvalue of semiaxis along x coordinate, and b
is value of semiaxis along y coordinate. The amplitude form of the scattered field does not differ

considerably if the semiaxes a,b,c of élipsoid vary in the limits of 10 %.
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Conclusions

The analytical-numerical method for solving the e ectromagnetic wave diffraction on the impedance
particle of arbitrary shapeis elaborated and tested. The integral equation with respect to unknown function
in the representation of solution is derived. The respective to this equation linear algebraic systemis solved
effectively by the method of successive approximations. It is shown numericaly that the region of
convergence of the proposed method is enough wide. The physical characteristics of scattering are
investigated for the particles with different form and size. The approach can be generalized for the case of
many particles and it can be used for solving the problems of forming the media with various
electromagnetic properties by embedding in theinitial medium the big number of small particles.
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