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conductive non-ferromagnetic solid within framework of the local gradient approach in
thermomechanics. An arbitrarily chosen subdomain of the solid is regarded as a thermo-
dynamically open system that can exchange by mass with environment. It is assumed that
this exchange occurs suddenly at the initial time when the body structure is instantly set.
The mass sources are introduced into the model to conform the actual and reference body
states. The sources are associated with method of body surface forming.
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1. Induction

One of the main objectives of mechanic of solids is developing mathematical models for prediction
of deformation, strength and other exploitation parameters of real structural elements and appliances
normally found in conditions of intense external action. These mathematical models should sufficiently
take into account the properties and structure of the material and the nature of the processes. Taking
into account the structural (local) heterogeneity is particularly important due to the wide use of thin
films, fibers and other nanoelements in engineering [1]. Such elements own comparable contribution
of bulk and surface compounds in the internal energy, which is usually associated with substantial
heterogeneity of element structure.

To describe and model surface and size effects proper to nanostructures the surface elasticity [2],
strain gradient theory [3], nonlocal theory [4] and others are used. Among the approaches that are
focused on the consideration of surface factor one can account for local gradient approach in thermo-
mechanics. The models that are constructed within this approach take into account the heterogeneity
(microstructure) of the material and describe various size effects. In [5–9] and others there is presented
the basic relations of such models and for the linear approximation there is studied the regularities of
nearsurface non-homogeneity in thermoelastic solids, electroconductive non-ferromagnetic solids and
solid solutions. In these papers the boundary condition formulation usually uses the constant value
of the chemical potential (conjugate parameter to the density) at the body surface. However, this
condition imposes substantial restrictions on the use of the approach models and often does not allow
adequate size effects describing. In [10] the boundary condition for the density is proposed and actual
density deviation from reference value is linked to the roughness of the real surface i.e. its geometric
heterogeneity. In [9,11] there is shown the existence of the “nearsurface mass defect” in such models,
and the model generalization is presented for its elimination. The mass sources are introduces in
consideration corresponding to the method of the surface forming.

214 c© 2014 Lviv Polytechnic National University
CMM IAPMM NASU

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Modeling local non-homogeneity in electroconductive non-ferromagnetic thermoelastic solid 215

In this paper there is derived the key equation system for studying stationary state of electro
conductive non-ferromagnetic locally non-homogeneous thermoelastic body taking into account the
heterogeneity of the real surface of the body. The multiscale size effects are illustrated using half-space
example.

2. Basic relations

We consider a deformable electroconductive non-ferromagnetic solid which can mass-, heat- and charge-
exchange with the environment. For basic processes occuring in the body, we accept the deformation
process, heat and mass transfer.

The equation of energy E conservation in the local form neglecting convective components of fluxes
has the form

∂E

∂τ
= ∇ ·

(
σ · v − T js −Hjm − ϕjω − 1

µ0
E ×B

)
+ σE, (1)

where σ is the Cauchy stress tensor, υ is the velocity vector, T,H,ϕ are the absolute temperature,
chemical and thermodynamic electric potentials, js, jm, jω are vectors of entropy, mass and charge
fluxes, E,B are vectors of the electric and magnetic fields, σE is energy production, τ denotes the
time, µ0 is the magnetic constant.

We assume that the total energy E is represented as the sum of internal energy U , kinetic energy
K and energy of electromagnetic field Ue [12]

E = U +K + Ue. (2)

Along with equation (1) the balance equations for the energy of electromagnetic field

Ue =
(
ε0E

2 + µ0H
2
)
/2, (3)

momentum of mechanical translational motion kv, entropy S, charge ω and mass, as well as Maxwell’s
equations must hold [12,13]. In the local form they are

∂Ue
∂τ

= − 1

µ0
∇ · (E ×B)− (jω + ωv) ·E,

∂kv
∂τ

= ∇ · σ + F e,
∂S

∂τ
+∇ · js = σs,

∂ω

∂τ
+∇ · jω = 0,

∂ρ

∂τ
+∇ · jm = σm, (4)

∇×E = −∂B
∂τ

, ∇×B = µ0ε0
∂E

∂τ
+ µ0 (jω + ωv) ,

∇ ·B = 0, ε0∇ ·E = ω. (5)

Here F e is the ponderomotive force, for which there is held the relation [12]

F e = (jω + ωv)×B + ωE, (6)

ρ is the density, σm = σE/H are sources of mass, H = B/µ0 is vector of magnetic H-field.
We note also that the equations for the electromagnetic field are written in the approximation of

slowly moving media when the speed v is much less than the speed c of electromagnetic waves in
vacuum.
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Taking into account relations (3)–(6) and the expression of kinetic energy increment dK = v · dkv
from the total energy balance equation (1), we obtain

∂U

∂τ
= T

∂S

∂τ
+H

∂ρ

∂τ
+ ϕ

∂ω

∂τ
+ σ :

∂e

∂τ
− Tσs −∇T · js −∇H · jm −

(
∇ϕ−E′) · jω, (7)

E′ = E + v ×B. (8)

We assume for mass flux such presentation

jm = −gmm
∂ (∇H)

∂τ
, (9)

that corresponds to the sudden appearance of the structure of the material at initial time [5,8].
Substituting this relation into (7) we obtain

∂G

∂τ
= T

∂S

∂τ
+H

∂ρ

∂τ
+ ϕ

∂ω

∂τ
+ σ :

∂e

∂τ
− Tσs −∇T · js −

(
∇ϕ−E′) · jω, (10)

where
G = U − gmm

2
∇H ·∇H.

Using the classical expression of entropy production for electroconductive body [13]

σs = −∇T

T
· js −

∇ϕ−E′

T
· jω (11)

on the base of Onsager principle the kinetic equations of the model are

js = −λss
∇T

T
− λsω

∇ϕ−E′

T
, jω = −λωs

∇T

T
− λωω

∇ϕ−E′

T
. (12)

Analyzing the relation (9), (10) we see that energy G is defined in the space of entropy, density,
electric charge and strain tensor

G = G (S, ρ, ω, e)

and for the energy increase the Gibbs equation is held

dG = T dS +H dρ+ ϕ dω + σ : de.

Introducing energy F with Legendre transformation

F = G− TS − ϕω

for this energy increase we obtain

dF = −SdT +Hdρ− ωdϕ+ σ : de, (13)

therefore the new thermodynamic potential is defined in the space of temperature T , density ρ, ther-
modynamic electric potential ϕ and strain tensor e

F = F (T, ρ, ϕ, e).

For entropy S, chemical potential H, electric potential ϕ and stress tensor σ the following state
equations must hold

S = −∂F
∂T

, H =
∂F

∂ρ
, ω = −∂F

∂ϕ
, σ =

∂F

∂e
. (14)
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The further specification of the model demands the state equations and reference state concretiza-
tion. We accept as reference state the state of uniform isotropic body free of charge and force load
with parameters

T = T∗, S = S∗, ρ = ρ∗, ω = 0, e = 0, σ = 0.

Further we take energy F as a quadratic function in the space of basic parameter disturbances from
the reference state

θ = T − T∗, ρ− ρ∗, e = e− 0, ϕ = ϕ− 0, (15)

in the form

F = F∗ − S∗θ +H∗ (ρ− ρ∗) +
1

2
λe2 + µe : e− (3λ+ 2µ) ateθ − (3λ+ 2µ) ame (ρ− ρ∗)−

− (3λ+ 2µ) aωϕe+
1

2
αmm (ρ− ρ∗)

2 + αmt (ρ− ρ∗) θ + αmω (ρ− ρ∗)ϕ+

+
cv
2T∗

θ2 + αtωθϕ+
1

2
αωωϕ

2, (16)

where λ, µ, ai, αij are the characteristics of material (i, j = {t,m, ω}); e = e : I, I is identity tensor.
Note that such energy F presentation is justified for relatively small deflection of parameters,

including density, relatively reference state, i.e. |ρ− ρ∗| /ρ∗ ≪ 1 must hold. If density dependence is
essential that is typical in the case of structured materials especially nanomaterials of high porosity
then the representation (16) would need to take into account higher orders of density disturbance. This
can also be achieved by postulating depending on the density of the coefficients in this representation.

Formulated above system of equations consisting of the balance equations of momentum, entropy,
mass, charge, the expression for the entropy production, Maxwell’s equations, state and kinetic equa-
tions, along with the formula for the mechanical momentum of translational motion

kv = ρv

and the Cauchy relation for strain tensor

e =
1

2

[
∇⊗ u+ (∇⊗ u)T

]

constitute complete system of equations of the model of local non-homogeneous electroconductive non-
ferromagnetic thermoelastic body. Here u is the displacement vector, ⊗ denotes tensor dyadic product,
superscript “T ” denotes transposition.

Presentation (9) reduces the mass balance equation to the form

−gmm∇2H + ρ− ρ∗ = dσm, (17)

where

dσm =

∫ τ

−∞
σm dτ.

Note that the mass source is introduced in order to correctly describe the heterogeneity of nearsur-
face density. They must satisfy relation

∫

(V )

(ρ− ρ∗) dV =

∫

(V )

dσm dV, (18)

where (V ) is the region of space occupied by the considered body. The parameters of mass source
distribution are to be proposed with account for the method of forming the body surface.
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3. The solid with microstructure. Equilibrium state

We now consider the model approximation where the disturbance of density from reference value is
relatively small, i.e. |ρ − ρ∗|/ρ∗ ≪ 1, that corresponds to accounting for the microstructure of the
material. In this case we assume that the coefficients in the presentation (16) are constant. On the
basis of (14) and (16) write the explicit form of the equations of state

σ = 2µe+ {λe− (3λ+ 2µ) [am(ρ − ρ∗) + atθ + aωϕ]} I,

S = S∗ + (3λ + 2µ)ate− αmt(ρ− ρ∗)− αtωϕ+
cv
T∗
θ,

H = H∗ − (3λ+ 2µ) ame+ αmm(ρ − ρ∗) + αmtθ + αmωϕ,

ω = (3λ+ 2µ) aωe− αtωθ − αmω(ρ − ρ∗)− αωωϕ. (19)

Taking as the key functions the displacement vector u, thermodynamic electric potential ϕ, the
disturbances of temperature θ and densityρ − ρ∗, we get a linear system of equations to describe the
stationary state of the solid

µ∇2u+ (λ+ µ)∇ (∇ · u)− (3λ+ 2µ) [am∇ (ρ− ρ∗) + at∇θ + aω∇ϕ] = 0,

λss∇2θ + λsω∇2ϕ− λsω
ε0

[(3λ+ 2µ) aω∇ · u− αtωθ − αmω(ρ − ρ∗)− αωωϕ] = 0,

αmm∇2(ρ − ρ∗) + αmt∇2θ + αmω∇2ϕ− (3λ+ 2µ)am∇2 (∇ · u)− 1

gmm
(ρ− ρ∗) = − 1

gmm
dσm,

λωs∇2θ + λωω∇2ϕ− λωω
ε0

[(3λ+ 2µ) aω∇ · u− αtωθ − αmω(ρ − ρ∗)− αωωϕ] = 0. (20)

This system of equations along with the equation (18) has to be complemented with condition of
electro-neutrality of the body ∫

(V )

ω dV = 0. (21)

Note that last three equations of (20) depend on first invariant of strain tensor e = e : I = ∇ · u
and mechanical component of solution may be removed from these equations resulting in coefficient
correction. In the case of third equation it does not cause changes in equation order. Acting by
operator “div” on the first equation of (20), we obtain

(λ+ 2µ)∇2 (∇ · u)− (3λ+ 2µ)
[
am∇2(ρ − ρ∗) + at∇2θ + aω∇2ϕ

]
= 0.

Using this relation, the third equation of (20) is converted to the form

(
αmm − (3λ+ 2µ)2 a2m

λ+ 2µ

)
∇2(ρ − ρ∗) +

(
αmt −

(3λ+ 2µ)2 amat
λ+ 2µ

)
∇2θ+

+

(
αmω − (3λ+ 2µ)2 amaω

λ+ 2µ

)
∇2ϕ− 1

gmm
(ρ− ρ∗) = − 1

gmm
dσm, (22)

that is written for density, temperature, electric potential and contains no strain component.
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If we neglect the influence of temperature on the thermodynamic electric potential and mechan-
ical fields, the system of equations for studying the steady state of local non-homogeneous non-
ferromagnetic electroconductive elastic body has the form

µ∇2u+ (λ+ µ)∇ (∇ · u)− (3λ+ 2µ) [am∇ (ρ− ρ∗) + aω∇ϕ] = 0,

αmm∇2(ρ − ρ∗) + αmω∇2ϕ− (3λ+ 2µ)am∇2 (∇ · u)− 1

gmm
(ρ− ρ∗) = − 1

gmm
dσm,

∇2ϕ− 1

ε0
[(3λ+ 2µ) aω∇ · u− αmω(ρ − ρ∗)− αωωϕ] = 0 (23)

along with integral conditions (18), (21).
If one of the solving functions is stress tensor σ, then the first equation of (23) is to be replaced

with the following equations
∇ · σ = 0,

∇×
{

1

2µ
σ −

[
λ

2µ (3λ+ 2µ)
σ − am (ρ− ρ∗)− aωϕ

]
I

}
×∇ = 0, (24)

that stand for equilibrium equation (Cauchy’s first law of motion) and compatibility condition respec-
tively.

The second equation of (23) in the form that does not contain either displacement, strain or stress
components is

(
αmm − (3λ+ 2µ)2a2m

λ+ 2µ

)
∇2(ρ − ρ∗) +

(
αmω − (3λ+ 2µ)2amaω

λ+ 2µ

)
∇2ϕ−

− 1

gmm
(ρ− ρ∗) = − 1

gmm
dσm. (25)

If the thermodynamic electric potential influence on density is neglected, then this equation may
be written in the form

∇2(ρ − ρ∗)− ξ2 (ρ− ρ∗) = −ξ2dσm. (26)

If the stresses are used as key functions then the last equation of (23) has the form

∇2ϕ+
1

ε0

{[
αωω − 3 (3λ+ 2µ) a2ω

]
ϕ+ [αmω − 3 (3λ+ 2µ) aωam] (ρ− ρ∗)− aωσ

}
= 0. (27)

If the deformation influence on thermodynamic electric potential is neglected, then this equation
may be written in the form

∇2ϕ− χ2ϕ = −αmω
ε0

(ρ− ρ∗). (28)

Thus besides the system (23) as a key equation system the relations (24), (25), (27) or (24), (26),
(28) can be conveniently used. Still the conditions (18), (21) are to be assured.

Analyzing the system of equations (23), (24) and further ones we see that when neglecting the
influence of strain and stress on the thermodynamic electric potential the study of equilibrium state of
non-homogeneous non-ferromagnetic electroconductive solid is reduced to a sequential finding of density
and thermodynamic electric potential through the interconnected system of equations and following
study of stress-strain state. If additionally we neglect the influence of the thermodynamic electric
potential on the density, the study of equilibrium state of the body is reduced to a sequential finding
of the density and the thermodynamic electric potential on the basis of inhomogeneous Helmholtz
equations with the following examination of the stress-strain state.
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4. Non-ferromagnetic electroconductive elastic half-space

We consider an isotropic non-ferromagnetic electroconductive elastic half-space that in Cartesian co-
ordinate system {x, y, z} occupies domain x > 0. Let the surface x = 0 be free of mechanical load and
the constant nonzero values of density disturbance ρa − ρ∗ and thermodynamic electric potential ϕa
are specified at it. At infinity x→ +∞ the reference state is realized.

The key system of equations in the considered one-dimensional case takes the form

dσxx
dx

= 0,
d2σyy
dx2

=
d2σzz
dx2

= a0
d2

dx2
(ρ− ρ∗ + aω0ϕ) ,

d2(ρ − ρ∗)

dx2
− ξ2 (ρ− ρ∗) = −ξ2dσm,

d2ϕ

dx2
− χ2ϕ = −αmω

ε0
(ρ − ρ∗). (29)

The boundary conditions are

n · σ|x=0 = 0, ρ|x=0 = ρa, ϕ|x=0 = ϕa,

σ −→
x→+∞

0, ρ −→
x→+∞

ρ∗, ϕ −→
x→+∞

0, (30)

and the integral conditions are
+∞∫

0

(ρ− ρ∗) dx =

+∞∫

0

dσmdx,

+∞∫

0

ωdx ≡
+∞∫

0

{
aωσ − [αmω − (3λ+ 2µ)amaω] (ρ− ρ∗)−

[
αωω − (3λ+ 2µ)a2ω

]
ϕ
}
dx = 0. (31)

The mass source distribution dσm we model with density distribution that sets up in the body
where no mass sources are specifies, i.e. with solution of homogeneous second equation of (29). We
assume also that characteristic size of mass source distribution may be different from the characteristic
size of structural non-homogeneity ξ−1 and we denote it with ζ−1. So we take

dσm = −ξ−2ms(ρa − ρ∗) exp(−ζx), (32)

and second equation of (29) has the form

d2(ρ − ρ∗)

dx2
− ξ2 (ρ− ρ∗) = ms(ρa − ρ∗) exp(−ζx).

The solution of this equation that satisfies conditions (30), (31) is

ρ = ρ∗ + (ρa − ρ∗)
ζ exp(−ξx)− ξ exp(−ζx)

ζ − ξ
,

and ms = −ξ(ζ + ξ).
The solution of the last equation in (29) that satisfies (30) and (21) is

ϕ =
ρa − ρ∗
ζ − ξ

αmω
χε0

(
ζξ(ζ2 − ξ2) exp(−χx)
(ξ2 − χ2)(ζ2 − χ2)

+
χζ exp(−ξx)
χ2 − ξ2

+
ξχ exp(−ζx)
ζ2 − χ2

)
,
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and charge distribution within the accepted assumptions is

ω = (ρa − ρ∗)αmω
ζξ

ζ − ξ

(
χ(ζ2 − ξ2) exp(−χx)
(ξ2 − χ2)(ζ2 − χ2)

+
ξ exp(−ξx)
χ2 − ξ2

+
ζ exp(−ζx)
ζ2 − χ2

)
.

The stresses are

σxx = 0, σyy = σzz = a0
ρa − ρ∗
ζ − ξ

(
a
ζξ

χ

(ζ2 − ξ2) exp(−χx)
(ξ2 − χ2)(ζ2 − χ2)

+

+

(
1 +

a

χ2 − ζ2

)
ζ exp(−ξx)−

(
1 +

a

χ2 − ξ2

)
ξ exp(−ζx)

)
.

Here a = aω0
αmω
ε0

.

Results of numerical analysis are shown in Fig. 1, 2. In the first figure the density ρ/ρ∗ is plotted
for ζ/ξ = 0, 5; 1, 25; 3 (graphs 1–3 respectively). In the second one can see charge ω/ω0 (ω0 = ρ∗αmω)
distribution. Graph 1 is drawn for ζ/ξ = 1.25, χ/ξ = 45, graph 2 is drawn for ζ/ξ = 0.5, χ/ξ = 15
and graph 3 is drawn for ζ/ξ = 1.25, χ/ξ = 15.
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Fig. 1. Density in local non-homogeneous half-space
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Fig. 2. Charge in local non-homogeneous half-space 
Fig. 1. Density in local non-homogeneous half-space. Fig. 2. Charge in local non-homogeneous half-space.

From analysis of these plots one can see that model parameters ξ−1, ζ−1, χ−1 are the characteristic
sizes of structural, surface and charge-related non-homogeneities. The non-homogeneities are associated
with surface and exponentially reduce to zero with withdrawal from the surface. The charge distribution
demonstrates the double electric layer that exists near surface of the body. On this base one could
argue that for parameter αmω the following inequality is held: αmω < 0.

5. Conclusion

Using the methods of irreversible thermodynamics there are formulated the systems of equations de-
scribing the steady state of electroconductive non-ferromagnetic thermoelastic solid. The model takes
into account the structure of the material and the heterogeneity of the near-surface density that sud-
denly arose at the initial time. The emergence of the structure of the material is taken into account
by postulating appropriate component of the mass flux vector. The introduced sources of mass allow
considering the “near-surface mass defect” that is inherent to the known models being built within the
local gradient approach. If the influence of strain and stress on thermodynamical electric potential is
neglected then the study of steady state of non-ferromagnetic electroconductive elastic body is reduced
to a sequential finding of density and thermodynamic electric potential through interconnected system
of equations with the following study of the stress-strain state of the body. The density, charge and
stresses distributions in the free half-space are non-homogeneous and feature three characteristic sizes.
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Розглянуто ключовi системи рiвнянь, що описують рiвноважний стан локально не-
однорiдного електропровiдного неферомагнiтного термопружного тiла у рамках ло-
кально градiєнтного пiдходу у термомеханiцi. Довiльно видiлена пiд область тiла
розглядається як термодинамiчно вiдкрита система, що може обмiнюватись масою з
оточенням. Припускається, що такий обмiн вiдбувається миттєво у початковий мо-
мент часу при встановленнi структури тiла. У розгляд введено джерела маси, що доз-
волило узгодити актуальний та вiдлiковий стани у моделi. Джерела маси пов’язано
iз способом формування поверхнi тiла.

Ключовi слова: локально градiєнтний пiдхiд, приповерхнева неоднорiднiсть, роз-
мiрний ефект, електропровiдне неферомагнiтне термопружне тiло, подвiйний елек-
тричний шар
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