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Виконана числова перевірка того, що невизначеністю у кінцевому положенні 
фронту нагнітання, зумовленою невизначеністю у виборі методу інтерполювання 
фронту нагнітання на кожному часовому шарі, можна знехтувати, оцінюючи похибку 
методу розрахунку цього положення у моделі промислової цементації ґрунту. Результати 
числових експериментів вказують на те, що криволінійна сітка, на якій виконується 
розрахунок, має хаотичні розміщення своїх вузлів на деяких часових шарах і що це не 
призводить до істотного спотворення кінцевого положення фронту нагнітання. 

Ключові слова: фронт нагнітання, інтерполювання, цементація ґрунту. 
 
It is checked numerically that the uncertainty in the final injection front position due to 

uncertainty in the choice of the method of the injection front interpolation on every time layer 
can be neglected in the estimation of the truncation error of the calculation of this position in 
the framework of the real scale grouting model. Results of numerical experiments indicate that 
the curvilinear grid this calculation is performed on has chaotic dispositions of its nodes in 
space on some time layers and that it does not give rise to significant final injection front 
position distortion. 
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Introduction 
Strengthening a soft ground must precede the tunnel construction in it to have enough time for 

installing needed support. Permeation grouting is a technique widely used for this soil reinforcement [1]. It 
consists in injecting into a soil a cement grout at a constant pressure or a constant pumping rate. Grouting 
is rather costly and time consuming. Its regime is determined by cement concentration distribution 
evolution [2]. Therefore, a calculation of this evolution using mathematical modeling is important.  

There are a lot of papers, for instance [2–4], in which a standard laboratory test is modeled to shed 
light on various issues of the mathematical description of cement grout propagation in a porous medium. In 
this test a cement grout is injected at a constant pumping rate in the base of a vertical tube opened at the 
top and filled with water saturated sand. The problem set ups [5–7] correspond to in situ grouting. The 
continuum grouting models [2–7] can be referred to the class of problems about pollution propagation, and 
the formulations of these models take advantage of different sets of assumptions that simplify the system 
containing the porous medium and the infiltrate. Specifically, in [3, 4, 6, 7] the ground skeleton is regarded 
as absolutely rigid while in [2, 5] it is assumed to be deformable. In [7] the hydromechanical dispersion 
and diffusion are neglected. In [3, 6] it is assumed that cement particles are large enough to be trapped by 
small pore throats; conversely in [2, 5, 7] it is assumed and that they are much smaller than pore throats 
and that they deposit over pore throats and pore bodies. Demchuk [4] assumes that cement particles can not 
be trapped by pore throats and that they do not deposit over pore throats and pore bodies. Demchuk [8, 9] 
neglects peculiarities of grout propagation in a porous medium and describes the real scale grouting by the 
model that belongs to the class of problems with free moving boundaries. In [8, 10] the continuum real 
scale grouting models of this type are presented. However, Demchuk [11] shows that the continuum 
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approach was not properly adopted in them and modifies numerical modeling [8], [10] to guarantee the 
appropriateness of applying this approach. A comparison of model calculations with measurements verifies 
the set of assumptions used in the model formulation. The amount of information it provides depends on 
values of uncertainties in the compared quantities [4]. In the models [2–7] the sought functions contain 
high gradient regions which positions change as time goes and are not known in advance. Therefore, to 
estimate truncation errors of calculations in the frameworks of these models one is supposed to conduct the 
analysis of numerical solutions [4]. The main drawback of the models [2, 3, 5–7] is that calculations in 
their frameworks require significant computer resources. Demchuk [4] explains this by the fact that each 
one of these models is a system of differential equations in partial derivatives with initial and boundary 
conditions that do not conform to each other and presents the standard laboratory test model that does not 
have this drawback. Demchuk and Saiyouri [12] describe the method of a realization of the uncertainty 
uniformity principle in calculations in the framework of the model [4]. It should be noted that the 
curvilinear grid Demchuk [11] performs calculations on can have chaotic disposition of its nodes in space 
on some time layers [9]. However, Demchuk [11] checks numerically that this fact does not give rise to 
inconsistencies between results of these calculations. Hence, the finite difference schemes according to 
which Demchuk [11] performs calculations are conditionally stable. Therefore, round off errors of these 
calculations are negligible. Demchuk [11] estimates the truncation errors of the final injection front 
position calculations using the assumption that contributions of uncertainties in these positions due to 
uncertainties in the choices of methods of injection front interpolations on every time layer to these errors 
are negligible. The goal of this work is to check this assumption numerically.  

Numerical modeling of a real scale cement grout injection in a dry soil 
In this work we consider four problem set ups [11]. In the cases of set ups # 1 and # 3, we assume 

that a long trench is made under an injector foundation. Its width is 0r2 ⋅ , and its depth is 0h . The 

astringent infiltrate is injected in this trench at the constant pressure 0p  (see Figure 1 (a)). In set ups # 2 

and # 4 we have a round bore-hole instead of the trench and assume that other conditions are the same. Its 

radius is 0r , and its depth is 0h . In the first two set ups the ground skeleton is regarded as absolutely rigid, 

while in the last two ones it is assumed to be deformable. In each case, the injection front (the curve 4Γ  on 

Figure 1 (a)) is a free surface and its evolution in time and space needs to be found.  
Demchuk [11] divides continuum real scale grouting models that belong to the class of problems 

with free moving boundaries into two types. In the models of the first type at each moment of time t  

Demchuk [11] performs numerical modeling in the curvilinear quadrangle [13] ( )tG  bounded on Figure 1 

(a) by iΓ  where 4,1i = . In this modeling on every time layer the domain G  is covered with the scanty 

curvilinear grid and the truncation error of the numerical calculation of the final injection front position is 
estimated on the basis of the analysis of the numerical solutions. In this analysis the measure of a difference 

between two splines ( )yf1  and ( )yf2  that interpolate final injection front positions is estimated as  

[ ]
( ) ( ) ( )( )2

1
2

21
L ,0y

yfyyfyfmax +−=ε
∈

.                                        (1) 

In Eq. (1) { }max
2

max
1 y ,ymaxL =  where max

1y  and max
2y  are the smallest positive ordinates that satisfy 

( ) 0yf max
11 =  and ( ) 0yf max

22 = . In the models of this type that correspond to set ups # 3 and # 4 the 

truncation error is approximately equal to the uncertainty in the final injection front position due to 
finiteness of increments of the above mentioned curvilinear grid. Each model of the second type 
corresponds either to set up # 3 or to set up # 4. Since information about injection front motion spreads 
with the aid of sound waves quickly faded due to the friction between the soil and the infiltrate, in models 

of this type Demchuk [8] assumes that the curve 3
~Γ  in the domain G  and the moment of time 0t  starting 

from which piezometric head in points of this curve does not depend upon time can be chosen. In models 
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of this type numerical modeling is performed in ( )tG  if 0tt ≤ . However, if 0tt > , it is performed in the 

curvilinear quadrangle ( )tG
~

 bounded on Figure 1 (a) by i
~Γ  where 3,1i =  and the curve 4Γ . In each one 

of these models, the curve 3
~Γ  divides the respective domain ( )0tG  approximately in half; and Demchuk 

[11] chooses the moment of time 0t  to make the uncertainty in the final injection front position due to 

finiteness of increments of the curvilinear grid and the measure of the difference between the final 
injection front position and the one calculated in the framework of the respective model of the first type 
calculated according to Eq. (1) to be as small as possible. Since Demchuk [11] assumes that contributions 
of uncertainties in final free surface positions due to uncertainties in the choices of methods of injection 
front interpolations on every time layer to the truncation errors are negligible, the fact that the moment of 

time 0t  can be chosen as described in each case Demchuk [11] considers verifies this assumption. The 

shapes of ( )tG  and ( )tG
~

 are complicated. Therefore, Demchuk [11] seeks the numerical solutions 

employing the finite difference method with a usage of numerical conformal mapping. In this method on 
every time layer the algorithm of numerical finding of the conformal change of variables  

( ) ( ) t, ,yy  , t, ,xx ηξ=ηξ=                                                        (2) 

that maps the curvilinear quadrangle in which the numerical modeling is performed on the parametric 
rectangle ( )tR  depicted on Figure 1 (b) is used [9]. In this algorithm it is assumed that on every time layer 

( )tR  is covered with a uniform grid. The transformation defined by Eqs. (2) maps the nodes of this grid 

into the nodes of the curvilinear grid. The above mentioned finding consists in the determination of 
positions of these curvilinear grid nodes in space. Demchuk [9] finds the Cartesian coordinates of these 
positions solving the algebraic equation system that in the general case has the infinite number of solutions. 
Therefore, on some time layers this algorithm can generate the curvilinear grids with chaotic node 
dispositions. Demchuk [11] performs calculations on scanty grids. Therefore, approximation errors of the final 
injection front position calculations in the frameworks of the models [11] are significant. For each one of these 
models Demchuk [11] checks numerically the following assumptions. On every time layer within the 

 

                                                       а                                                                                                   b 

Fig. 1 (a): The curvilinear quadrangles ( )tG  and ( )tG
~

; (b) The parametric rectangle R(t) 

limits of the approximation error the injection front can be treated as a plot of the single-valued function 
( )yfx =  which all derivatives up to the second order are continuous (hypothesis # 1). All angles at the 

apices of the curvilinear quadrangle in which the numerical modeling is performed are right within the 
limits of the approximation error (hypothesis # 2). The chaos in space dispositions of nodes of this grid on some 
time layers does not cause a significant distortion of the final injection front position (hypothesis # 3).  

Free surface interpolation 
Let us assume that we know the values of the interpolated function ( )pyf  in the nodal points py  

where n,0p =  lying on the segment [ ]b ,a  on which the injection front is interpolated. In what follows 
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[ ]A , [ ]B , [ ]A
~

, and [ ]B
~

 denote such the vectors [ ] ( )n10 y,,y,yA = , [ ] ( ) ( ) ( )( )n10 yf, ,yf ,yfB = , 

[ ] ( )n10 y~,,y~,y~A
~

=  where inn0i yyyy~ −−+= , n,0i = , [ ] ( ) ( ) ( )( )01-nn yf , ,yf ,yfB
~

= . 

According to hypothesis # 2 ( ) 0af =′ , ( ) Nbf −=′  where N  is a sufficiently large positive number. 

Remark 1. According to hypothesis # 2 the derivative of the function ( )yf  at 0y =  equals zero 

within the approximation error limits (see Figure 1 (a)). From the symmetry considerations we can 

conclude that the values of the function ( )yf  in the vicinity of the point 0y =  are distorted due to gravity.  

If k  and m  are non-negative integers such that mnk0 −≤≤ , then we can introduce such the 

notations [ ] ( ) ( ) ( )( )mk1kk
)m(

k yf , ,yf ,yfF ++=  , [ ] ( )mk1kk
)m(

k y, ,y ,yY ++=  , 

[ ] ( ) ( ) ( )( )mkn1knkn
)m(

k yf ,,yf ,yfF
~

−−−−−=  , [ ] ( )mk1kk
)m(

k y~,,y~ ,y~Y
~

++=   where 

inn0i yyyy~ −−+= , and n,0i = . In what follows [ ] [ ]( )(m)
k

(m)
km Y ,F ,yP  denotes the interpolation 

polynomial [14] constructed using the values of the interpolation function ( )kyf , ( )1kyf + ,  , ( )mkyf +  

in the nodes ky , 1ky + ,  , mky + . Noting that Demchuk [11] calculates the unit vector normal to the free 

surface at every nodal point on every time layer and that [ ] [ ]AY )n(
0 = , in what follows we assume that 

1ns0 −≤< . If interpolation nodes are arranged in the order of increasing 

( )by.yya n10 =<<<=  , then we determine the piece-wise polynomial local spline 

[ ] [ ]( )B ,A j, s, ,yϕ  where j  is an integer and sj0 ≤≤  which all derivatives up to the order s  are 

continuous on the segment [ ]b ,a  as follows 

[ ] [ ]( )

[ ] [ ]( )
[ ] [ ]( ) [ ]

[ ] [ ]( )












≤≤

−−++=

∈

≤≤

=ϕ

−+−−

+
+

−
+

−+

nsjn
(s)

sn
(s)

sns

1kk
1)(s
jk

1)(s
jkj,1s2

j0
(s)
0

(s)
0s

yyy when Y ,F ,yP

,1sjn , 1,j j,k where

 y ,yy when Y ,F ,yQ

,yyy when Y ,F ,yP 

B ,A ,j ,s ,y


,                        (3) 

where [ ] [ ]( ))1s(
jk

1)(s
jkj,1s2 Y ,F ,yQ +

−
+

−+  is a polynomial of a degree not greater than 1s2 +⋅  determined by the 

following equations  

[ ] [ ]( ) [ ] [ ]( )
kk yy

m

(s)
jk

)s(
jks

m

yy

m

1)(s
jk

1)(s
jkj,1s2

m

dy

Y ,F ,yPd

dy

Y ,F ,yQd

=

−−

=

+
−

+
−+

= ,                        (4) 

[ ] [ ]( ) [ ] [ ]( )
1k1k yy

m

(s)
1jk

)s(
1jks

m

yy

m

1)(s
jk

1)(s
jkj,1s2

m

dy

Y ,F ,yPd

dy

Y ,F ,yQd

++ =

+−+−

=

+
−

+
−+

= ,                       (5) 

where 1sjn,jk −−+= , s,0m = .  

Theorem 1. There is one and only one polynomial of degree not greater than 1s2 +⋅  that satisfies 
Eqs. (4) and (5). 

Proof. Rabenkii [14] proves this theorem assuming that 1s,0j −= . The fact that sj ≠  is not used 

in that proof. Therefore, this theorem also holds if sj = .  
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Theorem 2. If )y(f  is a polynomial of a degree not greater than s , then the function 

[ ] [ ]( )B ,A ,j,s ,yϕ  determined by Eq. (3) coincides with this polynomial.  

Proof. If 0j >  and j0 yyy ≤≤ , then due to the uniqueness of the interpolation polynomial 

[ ] [ ]( ) [ ] [ ]( ) ( )yfY ,F ,yPB ,A ,j s, ,y (s)
0

(s)
0s ==ϕ . If sj <  and nsjn yyy ≤≤−+ , then due to the uniqueness 

of the interpolation polynomial [ ] [ ]( ) [ ] [ ]( ) ( )yfY ,F ,yPB ,A ,j s, ,y (s)
sn

(s)
sns ==ϕ −− . Let us prove that 

[ ] [ ]( ) ( )yfB ,A j, s, ,y =ϕ  when 1kk yyy +≤≤  where 1sjn , 1,j ,jk −−++=  . Due to the 

uniqueness of the interpolation polynomial [ ] [ ]( ) [ ] [ ]( ) ( )yfY ,F ,yPY ,F ,yP (s)
1jk

)s(
1jks

(s)
jk

)s(
jks == +−+−−− . If we 

substitute ( )yf  for [ ] [ ]( ))1s(
jk

1)(s
jkj,1s2 Y ,F ,yQ +

−
+

−+  in Eqs. (4) and (5), then these equations will hold. 

Therefore, according to Theorem 1 [ ] [ ]( ) ( )yfY ,F ,yQ )1s(
jk

)1s(
jkj ,1s2 =+

−
+

−+ . The theorem is proved.  

Theorem 3. If the function [ ] [ ]( )B ,A j, s, ,yϕ  is determined by Eq. (3), then its value in the 

interpolation node py  coincides with the value of the interpolated function in this node ( )pyf  where 

n,0p =  and [ ] [ ]( ) ss yB ,A ,j,s,y ∂ϕ∂  is continuous on the segment [ ]b ,a .  

Proof. Since 1ns0 −≤< , sj0 ≤≤ , the theorem will be proven if we prove it for such the values 

of j: 0j = , sj0 << , and sj = . Firstly, we consider the case 0j = . In this case, according to Eq. (3) if 

[ ]1kk y ,yy +∈  where 1sn,0k −−= , then [ ] [ ]( ) [ ](  , F ,yQB ,A 0, ,s ,y 1)(s
k0,1s2

+
+=ϕ  [ ])1)(s

kY + ; and if 

[ ]nsn y ,yy −∈ , then [ ] [ ]( ) [ ] [ ]( )(s)
sn

(s)
sns Y ,F ,yPB ,A 0, s, ,y −−=ϕ . Therefore, ( 0, s, ,ysϕ∂  [ ] [ ]) syB ,A ∂  is 

continues on the segment [ ]nsn y ,y − ; and if pyy =  where ns,np −= , then 

[ ] [ ]( ) ( )pp yfB ,A ,0 ,s ,y =ϕ . If 1sn,0k −−= , then from Eqs. (4), (5) it follows that 

[ ] [ ]( ) ( )kk yfB ,A ,0 ,s ,y =ϕ  and that [ ] [ ]( ) ss yB ,A ,0,s,y ∂ϕ∂  is continues on the segment [ ]b ,a . In the 

case sj0 << , according to Eq. (3) if [ ]j0 y ,yy ∈ , then [ ] [ ]( ) [ ] [ ]( )(s)
0

(s)
0s Y ,F ,yPB ,A j, s, ,y =ϕ ; if 

[ ]1kk y ,yy +∈  where 1sjn,jk −−+= , then [ ] [ ]( ) [ ] [ ]( ))1s(
jk

1)(s
jkj,1s2 Y ,F ,yQB ,A j, s, ,y +

−
+

−+=ϕ ; and if 

[ ]nsjn y ,yy −+∈ , then [ ] [ ]( ) [ ] [ ]( )(s)
sn

(s)
sns Y ,F ,yPB ,A j, s, ,y −−=ϕ . Therefore, [ ] [ ]( ) ss yB ,A ,j,s,y ∂ϕ∂  is 

continuous on [ ) ( ]nsjnj0 y ,yy ,y −+∪  and if pyy =  where ns,-jn ,j,0p += , then 

[ ] [ ]( ) ( )pp yfB ,A ,j ,s ,y =ϕ . If 1sjn ,jk −−+= , then from Eqs. (4), (5) it follows that (  j, s, ,ykϕ  

[ ] [ ]) ( )kyfB ,A =  and that [ ] [ ]( ) ss yB ,A j,,s,y ∂ϕ∂  is continuous on the segment [ ]b ,a . In the case 

sj = , according to Eq. (3) if [ ]s0 y ,yy ∈ , then [ ] [ ]( ) [ ] [ ]( )(s)
0

(s)
0s Y ,F ,yPB ,A s, s, ,y =ϕ ; and if 

[ ]1kk y ,yy +∈  where 1n,sk −= , then [ ] [ ]( ) [ ] [ ]( ))1s(
jk

1)(s
jk0,1s2 Y ,F ,yQB ,A s, s, ,y +

−
+

−+=ϕ . Therefore, 

[ ] [ ]( ) ss yB ,A ,s,s,y ∂ϕ∂  is continues on [ ]s0 y ,y  and if pyy =  where s,0p = , then 

[ ] [ ]( ) ( )pp yfB ,A s, s, ,y =ϕ . If 1n,sk −= , then from Eqs. (4), (5) it follows that [ ]( ,A s, s, ,ykϕ  

[ ]) ( )kyfB = , [ ]( ,A s, s, ,ynϕ [ ]) ( )nyfB = , and that [ ] [ ]( ) ss yB ,A ,s,s,y ∂ϕ∂  is continues on the 

segment [ ]b ,a . The theorem is proved.  
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In what follows unless otherwise specified we assume that 5n > .  

Definition 1. The spline [ ] [ ]( )B ,A j, s, ,yϕ  is strongly local in the vicinity of the point ay =  (the 

point by = ) if the following holds. If [ ]s0 y ,yy ∈  [ ]( )nsn y ,yy −∈ , then [ ] [ ]( )B ,A j, s, ,yϕ  does not 

depend on 1isy ++  and ( )1isyf ++  ( iy  and ( )iyf ) where 1sn,0i −−= . 

Remark 2. From Eq. (3) it follows that if [ ]30 y ,yy ∈  [ ]( )n3n y ,yy −∈ , then for each integer j such 

that 3j0 ≤≤  [ ] [ ]( )B ,A j, 3, ,yϕ  depends only on y , iy , and ( )iyf  where j6,0i −=  ( )n,j3ni −−= . 

Thus, according to Definition 1 the spline [ ] [ ]( )B ,A 3, 3, ,yϕ  is strongly local in the vicinity of the point 

ay =  while the spline [ ] [ ]( )B ,A 0, 3, ,yϕ  is strongly local in the vicinity of the point by = . From 

Definition 1 and Theorem 2 it follows that in the general case the splines [ ] [ ]( )B ,A j, 3, ,yϕ  where 

2,0j =  are not strongly local in the vicinity of the point ay =  while the splines [ ] [ ]( )B ,A j, 3, ,yϕ  where 

3,1j =  are not strongly local in the vicinity of the point by = . 

It is convenient to introduce such the change of variables 

ybay~ −+=                                                                      (6) 

and such the numbering of the points in which the interpolation nodes are mapped by it 

pnp ybay~ −−+= ,                                                             (7) 

where n,0p = . We determine the function ( )y~f
~

 in the following way 

( ) ( )y~bafy~f
~ −+= .                                                             (8) 

Theorem 4. The following equalities hold 

[ ] [ ]( ) [ ] [ ]( )B
~

 ,A
~

 0, 1, ,y~B ,A 1, 1, ,y ϕ=ϕ ,                                                   (9) 

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )B
~

 ,A
~

 1, 2, ,y~B ,A 1, 2, y,    ,B
~

 ,A
~

 0, 2, ,y~B ,A 2, 2, ,y ϕ=ϕϕ=ϕ .              (10) 

Proof. If 1kk yyy +≤≤  where 1n,0k −= , then according to Eqs. (6) and (7) 

kn1kn y~y~y~ −−− ≤≤ . From Eqs. (6) and (7) it follows that y~y~yy pnp −=− −  where n,0p = . From Eqs. 

(7) and (8) it follows that ( ) ( )pnp yfy~f
~

−=  where n,0p = . From Eq. (7) it follows that 

knrnrk yyy~y~ −− −=−  where n,0k = , n,0r = . Therefore, from the explicit form of an interpolation 
polynomial [14] it follows that  

[ ] [ ]( ) [ ] [ ]( ))s(
1kn

)s(
1kns

(s)
1sk

)s(
1sks Y

~
 ,F

~
 ,ybaPY ,F ,yP −−−−+−+− −+=                                 (11) 

where 1n,1sk −−=  and 2,1s = .  

From Eqs. (4)–(7) it follows that 

[ ] [ ]( ) [ ] [ ]( )
p

ss

p

sss

y~y~
m

)s(
jp

(s)
jps

m

y~y~
m

1)(s
jp

1)(s
jpj,1s2

m

y~d

Y
~

 ,F
~

 ,y~Pd

y~d

Y
~

 ,F
~

 ,y~Qd

=

−−

=

+
−

+
−+

= ,                     (12) 

[ ] [ ]( ) [ ] [ ]( )
1p

ss

1p

sss

y~y~
m

)s(
1jp

(s)
1jps

m

y~y~
m

1)(s
jp

1)(s
jpj,1s2

m

y~d

Y
~

 ,F
~

 ,y~Pd

y~d

Y
~

 ,F
~

 ,y~Qd

++ =

+−+−

=

+
−

+
−+

=                     (13) 
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where 2,1s = , s,0m = , 0j1 = , 1,0j2 = , s1jn,jp ss −−+= . [ ] [ ]( )1)(s
jp

)1s(
jpj ,1s2 sss

Y
~

 ,F
~

 ,y~Q +
−

+
−+  is a 

polynomial of degree not greater than 1s2 +⋅  with respect to y~  and the change of variables determined 

by Eq. (6) is linear. Therefore, [ ] [ ]( )1)(s
jp

)1s(
jpj,1s2 sss

Y
~

 ,F
~

 ,ybaQ +
−

+
−+ −+  is a polynomial of degree not greater 

than 1s2 +⋅  with respect to y. If 1pnk −−= , then from Eqs. (11)–(13) it follows that  

[ ] [ ]( ) [ ] [ ]( )
k

ss

k

sss

yy

m

)s(
jsk

(s)
jsks

m

yy

m

)1s(
j1kn

)1s(
j1knj,1s2

m

dy

Y ,F ,yPd

dy

Y
~

 ,F
~

 ,y~Qd

=

+−+−

=

+
−−−

+
−−−+

= ,              (14) 

[ ] [ ]( ) [ ] [ ]( )
1k

ss

1k

sss

yy

m

)s(
1jsk

(s)
1jsks

m

yy

m

)1s(
j1kn

)1s(
j1knj,1s2

m

dy

Y ,F ,yPd

dy

Y
~

 ,F
~

 ,y~Qd

++ =

++−++−

=

+
−−−

+
−−−+

= ,              (15) 

where y~  is calculated according to Eq. (6), 2,1s = , s,0m = , 0j1 = , 1,0j2 = , ss j1n,jsk −−−= . 

From Eqs. (4)–(6), (14), (15), and Theorem 1 it follows that  

[ ] [ ]( ) [ ] [ ]( ))1s(
j1kn

)1s(
j1knj,1s2

)1s(
sjk

)1s(
sjkjs,1s2 ssssss

Y
~

 ,F
~

,ybaQY ,F,yQ +
−−−

+
−−−+

+
−+

+
−+−+ −+= ,                 (16) 

where 2,1s = , s,0m = , 0j1 = , 1,0j2 = , ss j1n,jsk −−−= . From Eqs. (3), (11), and (16) it follows 

that Eqs. (9) and (10) hold. The theorem is proved. 

If [ ] y ,yy p1p−∈  where n,1p = , then the non-local spline [ ] [ ]( )B ,A m, ,yg  where 4,1m =  is a 

cubic polynomial 

[ ] [ ]( ) ( ) ( ) ( )31p
m
p

2
1p

m
p1p

m
pp yydyycyybaB ,A m, ,yg −−− −+−+−+= ,                (17) 

where 

( )1pp yfa −= ,  
( ) ( ) ( ) ( )

3

yyc

3

yyc2

yy

yfyf
b

1pp
m

1p1pp
m
p

1pp

1ppm
p

−+−

−

− −
−

−⋅
−

−
−

= ,       (18) 

( )
( ) ( )( )

2

D
c

2

yy

yy

yfyf

2

3
b   ,

yy3

cc
d mm

n
1nn

1nn

1nnm
n

1pp

m
p

m
1pm

p −−−
−
−=

−⋅
−

= −

−

−

−

+
,                (19) 

( ) ( )( ) ( ) ( ) ( )1nn
m
n

2
1nn

m
n

3
1nn1nn

m
n yycyybyyyfyfd −−−− −−−−−−= .              (20) 

In the second equation of Eqs. (19) [ ] [ ]( )
nyy

)m(
mn

)m(
mnmm dyY ,F ,ydPD

=−−= . In Eqs. (18) and in the first 

equation of Eqs. (19) n,1p = . m
pc  where n,1p =  that enter Eq. (17) satisfy the following equation system 

( ) ( )( ) m101
m
21

m
11 C3hyfyf3chch2 ⋅−−⋅=+ ,                                 (21) 

( ) ( ) ( ) ( ) ( )







 −
−

−
=⋅+⋅+⋅+⋅ −

+

+
++++

i

1ii

1i

i1im
2i1i

m
1i1ii

m
ii h

yfyf

h

yfyf
3chchh2ch ,      (22) 

( ) ( ) ( ) ( )
2

D

h

yfyf

h

yfyf

2

3
c

2

h
h

3

2
c

3

h m

1n

2n1n

n

1nnm
n

n
1n

m
1n

1n −
−

−
−

⋅=⋅





 ++⋅

−

−−−
−−

− ,    (23) 
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which solution can be found by the Thomas algorithm. In Eq. (22) 2n,1i −=  and in Eq. (21) 

[ ] [ ]( )
0yy

(m)
0

(m)
0mm dyY ,F ,ydPC

=
= . In the reference [15] it is shown that 

[ ] [ ]( ) [ ] [ ]( ) myymyy
DyB ,A m, ,yg  ,CyB ,A m, ,yg

n0
=∂∂=∂∂ == ,                     (24) 

[ ] [ ]( ) ( )pp yfB ,A m, ,yg =  where n,0p = ; if [ ]b ,ay ∈ , then [ ] [ ]( ) 22 yB ,A m, ,yg ∂∂  is continuous.  

Remark 3. On every time layer Demchuk [11] covers the parametric rectangle ( )tR  depicted on 

Figure 1 (b) with a uniform grid. Substituting coordinates of nodes of this grid for ξ  and η  in Eqs. (2), we 

obtain the coordinates of curvilinear grid nodes. The ratio of sides a curvilinear grid cell is the conformal 
mapping invariant (the parameter ( )tM  on Figure 1 (b)) [13], and the above mentioned number N  is 

rather large. Therefore, injection front interpolation nodes are situated in the vicinity of the point E  
depicted on Figure 1 (a) more compactly than in the rest of the segment OE . Hence, the probability of a 
chaotic disposition of nodes situated in the vicinity of the point E is higher than that of other interpolation 
nodes. It results in possible distortion of the injection front stronger in the vicinity of the point E than in 
other parts of the segment OE. For simplicity, in what follows we assume that this possible distortion is not 
negligible only in the vicinity of the point E.  

In what follows if i1i yy <+  where 1ni0 −≤≤ , then [ ] oy ,y 1ii /=+ . We interpolate the free 

surface on every time layer by functions determined in the following way. Under condition nyy ≥  or 

under conditions [ ]n1n y ,yy −∈  and [ ]1kk y ,yy +∉  where 2n,0k −=  

[ ] [ ]( ) [ ] [ ]( )(1)
1n

)1(
1n1 Y ,F ,yPB ,A 0, 1, ,y −−=ϕ  otherwise if [ ]1kk minmin

y ,yy +∈  where mink  is the smallest 

between integer numbers k  such that 2nk0 −≤≤  and [ ]1kk y ,yy +∈ , then 

[ ] [ ]( ) [ ] [ ]( )(2)
k

(2)
k0 ,3 minmin

Y ,F ,yQB ,A 0, 1, ,y =ϕ  otherwise [ ] [ ]( ) [ ] [ ]( )(2)
0

(2)
00 ,3 Y ,F ,yQB ,A 0, 1, ,y =ϕ . 

Under condition nyy ≥  or under conditions [ ]n1n y ,yy −∈  and [ ]1kk y ,yy +∉  where 2n,0k −=  

[ ] [ ]( ) [ ] [ ]( )(2)
2n

)2(
2n2 Y ,F ,yPB ,A 1, 2, ,y −−=ϕ  otherwise if [ ]10 y ,yy ∉  and [ ]1kk minmin

y ,yy +∈  where 

mink  is the smallest between integer numbers k  such that 2nk1 −≤≤  and [ ]1kk y ,yy +∈ , then 

[ ] [ ]( ) [ ] [ ]( )(3)
1k

(3)
1k1 ,5 minmin

Y ,F ,yQB ,A 1, 2, ,y −−=ϕ  otherwise  

[ ] [ ]( ) [ ] [ ]( )(2)
0

)2(
02 Y ,F ,yPB ,A 1, 2, ,y =ϕ .                                      (25) 

If nyy ≥  or if for any integer k  such that 3nk0 −≤≤  [ ]1kk y ,yy +∉  and [ ]1n2n y ,yy −−∈  or if for 

any integer k  such that 2nk0 −≤≤  [ ]1kk y ,yy +∉  and [ ]n1n y ,yy −∈ , then 

[ ] [ ]( ) [ ] [ ]( )(2)
2n

)2(
2n Y ,F ,yPB ,A 0, 2, ,y −−=ϕ  otherwise if nyy <  and [ ]1kk minmin

y ,yy +∈  where mink  is 

the smallest between the integer numbers k  such that 3nk0 −≤≤  and [ ]1kk y ,yy +∈ , then 

[ ] [ ]( ) [ ] [ ]( )(3)
k

(3)
k0,5 minmin

Y ,F ,yQB ,A 0, 2, ,y =ϕ  otherwise [ ] [ ]( ) [ ] [ ]( )(3)
0

(3)
00,5 Y ,F ,yQB ,A 0, 2, ,y =ϕ .  

From Eqs. (3), (9), (10) and these definitions of the functions [ ] [ ]( )B ,A 0, 1, ,yϕ  and 

[ ] [ ]( )B ,A j, 2, ,yϕ  where 1,0j =  it follows that if the interpolation nodes are arranged in the increasing 
order, then  

[ ] [ ]( ) [ ] [ ]( )B ,A 1, 1, ,yB
~

 ,A
~

 0, 1, ,yba ϕ=−+ϕ ,                                 (26) 

[ ] [ ]( ) [ ] [ ]( )B ,A 0, 1, ,yB ,A 0, 1, ,y ϕ=ϕ ,                                      (27) 
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[ ] [ ]( ) [ ] [ ]( )B ,A 2, 2, ,yB
~

 ,A
~

 0, 2, ,yba ϕ=−+ϕ ,                                 (28) 

[ ] [ ]( ) [ ] [ ]( )B ,A 1, 2, ,yB
~

 ,A
~

 1, 2, ,yba ϕ=−+ϕ ,                                 (29) 

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )B ,A 0, 2, ,yB ,A 0, 2, ,y  ,B ,A 1, 2, ,yB ,A 1, 2, ,y ϕ=ϕϕ=ϕ 
,       (30) 

Theorem 5. If interpolation nodes are distributed chaotically, then in the general case 

[ ] [ ]( ) [ ] [ ]( )B
~

 ,A
~

 1, 2, ,ybaB ,A 1, 2, ,y −+ϕ≠ϕ 
.  

Proof. To prove the theorem let us consider the following example. Let us assume that 5n = , 

0a = , 2b = , 4.0h = , 0y0 = , ( ) h1iyi ⋅+= , 3,1i = , hy4 = , 2y5 = , ( ) ( ) y2 ee2yyf −+−=  

where 2y0 ≤≤ . According to Eq. (7) 0y~0 = , h2y~1 −= , ( ) hi62y~i ⋅−−=  where 4,2i = , 2y~5 = . 

If 2h3y = , then according to Eq. (6) 2h32y~ −= . Since 10 yyy ≤≤  and 10 y~y~y~ ≤≤ , from Eq. 

(25) and an explicit form of an interpolation polynomial [14] it follows that  

[ ] [ ]( ) [ ] [ ]( ) 19.4Y ,F ,yPB ,A 1, 2, ,y (2)
0

(2)
02 ≈=ϕ ,                                  (31) 

[ ] [ ]( ) [ ] [ ]( ) 32.4Y
~

 ,F
~

 ,y~PB
~

 ,A
~

 1, 2, ,y~ (2)
0

(2)
02 ≈=ϕ ,                                 (32) 

From Eqs. (31) and (32) it follows that in the general case [ ] [ ]( ) [ ] [ ]( )B
~

 ,A
~

 1, 2, ,ybaB ,A 1, 2, ,y −+ϕ≠ϕ 
. 

The theorem is proved. 

Remark 4. Here we assume that the interpolation nodes are arranged in the order of increasing. From 
Eq. (3) it follows that if [ ]20 y ,yy ∈  [ ]( )n2n y ,yy −∈ , then for each integer j  such that 2j0 ≤≤  

[ ] [ ]( )B ,A j, 2, ,yϕ  depends only on y , iy , and ( )iyf  where j4,0i −=  ( )n,j2ni −−= . Thus, 

according to Definition 1 [ ] [ ]( )B ,A 2, 2, ,yϕ  is strongly local in the vicinity of the point ay =  while 

[ ] [ ]( )B ,A 0, 2, ,yϕ  is strongly local in the vicinity of the point by = . From Definition 1 and Theorem 2 it 

follows that in the general case [ ] [ ]( )B ,A j, 2, ,yϕ  where 1,0j =  are not strongly local in the vicinity of the 

point ay =  while [ ] [ ]( )B ,A j, 2, ,yϕ  where 2,1j =  are not strongly local in the vicinity of the point by = . 

Remark 5. Here we assume that the interpolation nodes are arranged in the order of increasing. From 
Eq. (3) it follows that if [ ]10 y ,yy ∈  [ ]( )n1n y ,yy −∈ , then for each integer j  such that 1j0 ≤≤  

[ ] [ ]( )B ,A j, 1, ,yϕ  depends only on y , iy , and ( )iyf  where j2,0i −=  ( )n,j1ni −−= . Thus, 

according to Definition 1 [ ] [ ]( )B ,A 1, 1, ,yϕ  is strongly local in the vicinity of the point ay =  while 

[ ] [ ]( )B ,A 0, 1, ,yϕ  is strongly local in the vicinity of the point by = . From Definition 1 and Theorem 2 it 

follows that in the general case [ ] [ ]( )B ,A 1, 1, ,yϕ  is not strongly local in the vicinity of the point by =  

while [ ] [ ]( )B ,A 0, 1, ,yϕ  is not strongly local in the vicinity of the point ay = .  

Remark 6. It follows from Eqs. (4)–(6) and Theorem 1 that the splines [ ] [ ]( )B ,A j, s, ,yϕ  where 

1n,1s −=  and s,0j =  at any point of the interpolation segment depend on values of the interpolated 

function in no more than 2s +  nodes. As for the splines [ ] [ ]( )B ,A m, ,yg  where 4,1m = , from Eqs. 
(17)–(23) it follows that in the general case at any point of the interpolation segment these splines depend 
on values of the interpolated function in all nodal points.  

Assuming that pa , m
pb , m

pc , and m
pd  where n,1p =  and 4,1m =  are calculated according to Eqs. 

(18)–(23), we can interpolate the free surface on every time layer by functions defined as follows. 
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Under condition nyy >  or under conditions [ ]n1n y ,yy −∈  and [ ]1kk y ,yy +∉  where 

2n,0k −=  [ ] [ ]( ) ( ) ( ) ( )3
1n

m
n

2
1n

m
n1n

m
nn yydyycyybaB ,A m, ,yg −−− −+−+−+=

 otherwise if 

nyy ≤  and [ ]k
~

1k
~ y ,yy −∈  where k

~
 is the smallest between such the integer numbers k  that 

1nk1 −≤≤  and [ ]k1k y ,yy −∈ , then [ ] [ ]( ) ( ) ( ) +−+−+= −−
2

1k
~m

k
~

1k
~m

k
~

k
~ yycyybaB ,A m, ,yg


 

( )31k
~m

k
~ yyd −−+  otherwise [ ] [ ]( ) ( ) ( ) ( )3

0
m
1

2
0

m
10

m
11 yydyycyybaB ,A m, ,yg −+−+−+=

. If 

1nyy −≥ , then [ ] [ ]( ) [ ] [ ]( ))3(
3n

)3(
3n3 Y ,F ,yPB ,A 2, 3, ,y −−=ϕ  otherwise if 2yy >  and [ ]1k

~
k
~ y ,yy +∈  where 

k
~

 is the smallest between such the integer numbers k  that 2nk2 −≤≤  and [ ]1kk y ,yy +∈ , then 

[ ] [ ]( ) [ ] [ ]( ))4(
2k

~
)4(
2k

~2,7 Y ,F ,yQB ,A 2, 3, ,y
−−

=ϕ  otherwise [ ] [ ]( ) [ ] [ ]( ))3(
0

)3(
03 Y ,F ,yPB ,A 2, 3, ,y =ϕ . 

From Eqs. (3), (17), and the definitions of the functions [ ] [ ]( )B ,A 2, 3, ,yϕ  and [ ] [ ]( )B ,A m, ,yg


 

given above where 4,1m =  it follows that if the interpolation nodes are arranged in the order of increasing 

( )byyya n10 =<<<=  , then the following equalities hold 

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )B ,A m, ,ygB ,A m, ,yg    ,B ,A 2, 3, ,yB ,A 2, 3, ,y =ϕ=ϕ 
.              (33) 

Results of numerical experiments. We take the values of input parameters from [10], [11] for the 
first two set ups and from [8], [11] for the last two ones. They correspond to real scale grouting. In what 
follows analyzing numerical solutions we estimate the value of the measure of a difference between two 
splines ( )yf1  and ( )yf2  that interpolate final injection front positions according to Eq. (1). Demchuk [11] 

presents results of 10 calculations of final injection front positions. Calculations # 1 and # 2 are performed 
in the frameworks of models of the first type and correspond to set ups # 1 and # 2 respectively. 
Calculations # 3 and # 4 are performed in the frameworks of models of the first type and correspond to set 
up # 3 as well as to respectively the cases of the most rigid deformable soil and the softest one. 
Calculations # 5 and # 6 are performed in the frameworks of models of the first type and correspond to set 
up # 4 as well as to respectively the cases of the most rigid deformable soil and the softest one. In their 
turn, calculations # 7 and # 8 are performed in the framework of models of the second type and correspond 
to set up # 3 and respectively the cases of the most rigid deformable soil and the softest one. Finally, 
calculations # 9 and # 10 are performed in the frameworks of models of the second type and correspond to 
set up # 4 and respectively the cases of the most rigid soil and the softest one. In Table 1 iε  is the 

estimation of the truncation error of calculation # i where 10,1i =  Demchuk [11] obtains neglecting the 

contributions of the uncertainties in the final injection front position due to uncertainties in the choice of 
the method of free surface interpolation on every time layer. Performing calculations Demchuk [11] uses 
the function [ ] [ ]( )B ,A 1, 2, ,yϕ  to interpolate the free surface on every time layer. 

Table 1 
Measures of the difference between the final injection front position we obtain interpolating the free 

surface on every time layer by different functions and the respective ones Demchuk [11] obtains  
i 

iε , % )0,1(
iδ , % 

)1,1(
iδ , % ( )7.0iδ , % ( )002.0iδ , % ( )002.0~

iε , % 

1 3.2 25.5 15.0 2.98 0.05 3.20 
2 5.5 19.7 9.94 5.02 0.02 5.50 
3 5.4 36.8 31.5 12.00 0.66 5.44 
4 5.5 36.3 30.7 11.26 0.59 5.53 
5 7.4 28.19 36.93 2.57 0.10 7.40 
6 7.1 28.43 36.71 2.28 0.08 7.10 
7 4.2 31.89 18.43 6.16 0.28 4.21 
8 4.2 31.87 18.23 3.67 0.15 4.20 
9 4.7 20.8 25.9 4.43 0.01 4.70 

10 4.3 21.8 26.6 3.58 0.01 4.30 
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Numerical verification of the assumption that we can neglect the uncertainty in the final injection 
front position due to the uncertainty in the choice of the method of free surface interpolation on every time 

layer, estimating the truncation error of calculation # i where 10,1i = , is presented in section 2. To find 

additional one in what follows we will conduct an analysis of numerical solutions having in mind that this 
assumption is correct. If we do not arrive at any inconsistency, we will have the new numerical verification 
of this assumption. The aim of this analysis is to find the function for the interpolation of the free surface 

on every time layer as good as the one that coincides with [ ] [ ]( )B ,A 1, 2, ,yϕ  when nodes are arranged in 

the increasing order. As candidates we consider functions using which we can obtain final injection front 
position in all ten cases we consider. Results of numerical calculations indicate that we can not obtain the 
final injection front position in at least 5 out of ten calculations defined above interpolating the free surface 

on every time layer by one of the following functions: [ ] [ ]( )B ,A 0, 2, ,yϕ , [ ] [ ]( )B
~

 ,A
~

 0, 2, ,yba −+ϕ , 

[ ] [ ]( )B ,A 2, 3, ,yϕ , [ ] [ ]( )B ,A m, ,yg


 where 4,2m =  and in calculations # 1 and # 2 interpolating the 

injection front on every time layer by the function [ ] [ ]( )B ,A 1, ,yg


. It can be explained by the following: 

1. According to Remark 4 the spline [ ] [ ]( )B ,A 0, 2, ,yϕ  is strongly local in the vicinity of the point E 

and in the general case the spline [ ] [ ]( )B ,A 1, 2, ,yϕ  is not strongly local in this vicinity. 

Therefore, from Eqs. (30) it follows that our failure to obtain the final injection front position in at 
least 5 out of ten calculations defined above interpolating the free surface on every time layer by 

[ ] [ ]( )B ,A 0, 2, ,yϕ  indicate that the possible distortions of the free surface mentioned in Remark 3 

do occur. Hence, the curvilinear grids these calculations performed on do have chaotic dispositions 
of their nodes on some time layers. It provides the possible explanation of our numerical result 

regarding not considering the function [ ] [ ]( )B ,A 0, 2, ,yϕ  as the candidate to be the needed 

function. In what follows we assume that the possible distortion of the free surface mentioned in 
Remark 3 occurs in each calculation we perform. 

2. According to Remark 1 the function which plot is the free surface is distorted in the vicinity of the 

point O. The spline [ ] [ ]( )B ,A 2, 2, ,yϕ  is strongly local in this vicinity while in the general case 

the spline [ ] [ ]( )B ,A 1, 2, ,yϕ  is not (see Remark 4). It follows from Eq. (28) and the first equation 

of Eqs. (30) that the distortion of the function which plot is the free surface in the vicinity of the 

point O is stronger when the injection front is interpolated by [ ] [ ]( )B
~

 ,A
~

 0, 2, ,yba −+ϕ  than 

when it is interpolated by [ ] [ ]( )B ,A 1, 2, ,yϕ . This observation verifies the validity of our 

numerical result regarding not considering the function [ ] [ ]( )B
~

 ,A
~

 0, 2, ,yba −+ϕ  as the candidate 

to be the needed function.  

3. According to Remark # 2 the spline [ ] [ ]( )B ,A 2, 3, ,yϕ  is not strongly local in the vicinities of the 

points O and E. Therefore, it is unlikely that the distortions of the free surface in the vicinities of 
the points O and E cause our failure to obtain the final injection front positions in some of above 
mentioned 10 cases when we interpolate the free surface on every time layer by the function 

[ ] [ ]( )B ,A 2, 3, ,yϕ . It follows from Eqs. (3)–(5) and Theorem 1 that the spline [ ] [ ]( )B ,A j, s, ,yϕ  

where 1ns0 −≤<  and sj0 ≤≤  is fully determined by interpolation polynomials of the order 

s . The sensitivity of an interpolation polynomial to the errors in the values of the interpolated 
function in the interpolation nodes increases with the increase in its degree. Riabenkii [14] states 
that the interpolation polynomials of degree greater than 3 are really used in practice due to this 
effect. Therefore, the first equation of Eqs. (33), the first equation of Eqs. (30), and the fact that the 

sensitivities of the splines [ ] [ ]( )B ,A j, 3, ,yϕ  where 3,0j =  to the errors in the values of the 

interpolated function in interpolation nodes are likely to be higher than that of the spline 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 

 176 

[ ] [ ]( )B ,A 1, 2, ,yϕ  suggest ignoring the consideration of not only the function [ ] [ ]( )B ,A 2, 3, ,yϕ  

but also any function that in the case of the interpolation node arrangement in the increasing order 

coincides with one of splines [ ] [ ]( )B ,A j, s, ,yϕ  where 3s ≥  and s,0j =  as candidates to be the 

needed function.  

4. From Remarks 1, 3, and 6, the second equation of Eqs. (33), and the first equation of Eqs. (30) it 

follows that it is likely that the function [ ] [ ]( )B ,A 1, 2, ,yϕ  better interpolates the injection front 

on parts of the interpolation segment not situated in the vicinity of the point O or in the vicinity of 

the point E than [ ] [ ]( )B ,A m, ,yg


 where 4,1m =  do. This observation verifies the validity of our 

numerical results regarding not considering the functions [ ] [ ]( )B ,A m, ,yg


 where 4,1m =  as 

candidates to be the needed function. 

As mentioned above the function [ ] [ ]( )B ,A 1, ,yg


 performs better interpolating the free surface on every 

time layer than each one of the functions: [ ] [ ]( )B ,A 0, 2, ,yϕ , [ ] [ ]( )B
~

 ,A
~

 0, 2, ,yba −+ϕ , 

[ ] [ ]( )B ,A 2, 3, ,yϕ , [ ] [ ]( )B ,A m, ,yg


 where 4,2m = . Since according to Riabenkii [14] the spline 

[ ] [ ]( )B ,A 1, 2, ,yϕ  is the most interesting for practical applications, there is a temptation to consider the 

function [ ] [ ]( ) ( ) [ ] [ ]( )B ,A 1, 2, ,y1B ,A 1, ,yg ϕ⋅α−+⋅α 
 where 10 ≤α≤  as the candidate to be the 

needed function. If we perform calculation # i of the final injection front positions, interpolating the free 

surface on every time layer by the functions [ ] [ ]( )B ,A 0, 1, ,yϕ , [ ] [ ]( )B
~

 ,A
~

 0, 1, ,yba −+ϕ , 

[ ] [ ]( )B
~

 ,A
~

 1, 2, ,yba −+ϕ , and [ ] [ ]( ) ( ) [ ]{ ,A 1, 2, ,y1B ,A 1, ,yg ϕ⋅α−+⋅α 
 [ ])B , then the measure of the 

difference between each one of these positions and the respective position Demchuk [11] obtains we 

respectively denote as ( )0,1
iδ , ( )1,1

iδ , ( )1,2
iδ , and ( )αδi  where 10,1i = . In calculation # 1 we can not obtain 

the final injection front position interpolating the free surface on every time layer by the function 

[ ] [ ]( ) [ ] [ ]( )B ,A 1, 2, ,y2.0B ,A 1, ,yg8.0 ϕ⋅+⋅ 
. We obtain that % 01.0)1,2(

i ≤δ  where 10,1i =  and the 

values of )0,1(
iδ , )1,1(

iδ , and ( )αδi  where 10,1i =  presented in Table 1. Since on every time layer 

Demchuk [11] interpolates the free surface by the function [ ] [ ]( )B ,A 1, 2, ,yϕ , from Eq. (29) and the first 

equation of Eqs. (30) it follows that we can not estimate the uncertainty in the final injection front position 
obtained in calculation # i due to the uncertainty in the choice of the method of free surface interpolation 

on every time layer as ( )1 ,2
iδ  where 10,1i = . Since ( ) ( )1 ,1

ii 7.0 δ<δ  and ( ) ( )0 ,1
ii 7.0 δ<δ  where 10,1i = , 

we can assert that it is better to use the function [ ] [ ]( ) [ ] [ ]( )B ,A 1, 2, ,y3.0B ,A 1, ,yg7.0 ϕ⋅+⋅ 
 than either 

[ ] [ ]( )B ,A 0, 1, ,yϕ  or [ ] [ ]( )B
~

 ,A
~

 0, 1, ,yba −+ϕ  to interpolate the free surface on every time layer. Using 

Eqs. (26), (27), Remarks # 1, 3, and 5 we conclude that it is likely that the free surface is more distorted in 

the vicinities of the points O and E when it is interpolated by the function [ ] [ ]( )B ,A 0, 1, ,yϕ  or 

[ ] [ ]( )B
~

 ,A
~

 0, 1, ,yba −+ϕ  than when it is interpolated by the function 

[ ] [ ]( ) [ ] [ ]( )B ,A 1, 2, ,y3.0B ,A 1, ,yg7.0 ϕ⋅+⋅ 
. This conclusion verifies the validity of our numerical 

results regarding not considering functions [ ] [ ]( )B ,A 0, 1, ,yϕ  and [ ] [ ]( )B
~

 ,A
~

 0, 1, ,yba −+ϕ  as candidates 

to be the needed function. From Table 1 it follows that ( ) ( )7.07.0 43 δ≈δ , ( ) ( )7.027.0 i3 δ>δ , and 

( ) ( )7.027.0 i4 δ>δ  where 10,5,2,1i = . Total truncation error of the numerical calculation is estimated 

as square root of the sum of squares of errors from different sources [16]. Therefore, to find the needed 
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function on the segment [ ]0.7 ,0  we will find the value of α  at which ( ) 1.0~
ii <ε−αε  where 

( ) ( )( ) ( )2
i

2
ii

~ ε+αδ=αε  and 4,3i = . In Table 2 we present values of ( )αδi  and ( )αεi
~  where 4,3i =  

at different values of α  from the segment [ ]0.7 ,0 . It follows from Table 2 that the function 

[ ] [ ]( ) ( ) [ ] [ ]( )B ,A 1, 2, ,y1B ,A 1, ,yg ϕ⋅α−+⋅α 
 can be used for the interpolation of the free surface on 

every time layer only if 002.00 ≤α≤ . Since ( ) ( )7.027.0 i3 δ>δ  and ( ) ( )7.027.0 i4 δ>δ  where 

10,5,2,1i = , we should expect that ( ) 1.0002.0~
ii <ε−ε  where ( ) ( )( ) ( )2

i
2

ii 002.0002.0~ ε+δ=ε  and 

10,5,2,1i = . In Table 1 we present the values of ( )002.0iδ  and ( )002.0~
iε  where 10,1i = . It follows 

from Table 1 that ( ) 1.0002.0~
ii <ε−ε  where 10,1i = . Since there is no inconsistency in the presented 

analysis, ( )002.0~
iε  can be used as an estimation of the truncation error of calculation # i where 10,1i = . 

Demchuk [11] checks numerically hypothesis # 3 formulated in section 2 for all ten calculations. 

From the data presented in Table 1 it follows that ( )002.0~
i

)1,2(
i ε<<δ  where 10,1i = . From Eq. (29), the 

first equation of Eqs. (30), and Theorem 5 it follows that this fact gives the new numerical verification of 
hypothesis # 3 (see section 2). 

Table 2 

Determination of the value of α  at which ( ) ii
~ ε≈αε  where 4,3i =   

α  ( )αδ3 , % ( )αδ4 , % ( )αε3
~ , % ( )αε4

~ , % 

0.5 14.17 13.44 15.16 14.52 
0.3 14.77 14.06 15.73 15.10 

0.03 6.36 5.87 8.34 8.04 
0.01 2.83 2.56 6.10 6.07 

0.007 2.09 1.88 5.79 5.81 
0.005 1.55 1.39 5.62 5.67 
0.002 0.66 0.59 5.44 5.53 

 

Conclusion. In this work we conduct the analysis of the results of the final injection front position 
calculations in the frameworks of real scale grouting models in which the injection front is the free surface, 
using the assumption that we can neglect the uncertainty in the final injection front position due to the 
uncertainty in the choice of the method of free surface interpolation on every time layer estimating the 
truncation error of each one of these calculations. Since we have not arrived at any inconsistency, this 
analysis provides numerical verification of this assumption. We perform calculations on curvilinear grids 
that on some time layers can have chaotic dispositions of their nodes. We show that if such the dispositions 
of the nodes occur, then they give rise to the distortion of the injection front in the vicinity of the point E 
shown on Figure 1 (a). Two important numerical observations are the following  

1. Demchuk [11] obtains the final injection front position in ten different cases interpolating the 

injection front on every time layer by the function [ ] [ ]( )B ,A 1, 2, ,yϕ .  

2. Between these cases there are the ones in which we can not obtain the final injection front position 

interpolating the free surface on every time layer by the function [ ] [ ]( )B
~

 ,A
~

 0, 2, ,yba −+ϕ .  

From Eqs. (30) and Remarks 3 and 4 it follows that these numerical observations indicate that the chaotic 
dispositions of the curvilinear grid nodes do occur on some time layers in some of these cases. In the above 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 

 178 

mentioned analysis we estimate the measure of the difference between two final injection front positions 
according to Eq. (1). In each calculation considered in this paper if we interpolate the free surface on every 
time layer by functions that in the case of arrangement of interpolation nodes in the increasing orders 
coincide, then the measure of the difference between respective final injection front positions is much 
smaller than the respective truncation error. This fact provides the verification of the hypothesis that the 
chaos in a space distribution of nodes of the curvilinear grid on some time layers does not cause a 
significant distortion of the final injection front position. 

We will compare results of real scale permeation grouting model calculations with field observations.   

1. Moretrench. Grouting methods. New York, 2010. 2. Bouchelaghem F., Vulliet L. Mathematical 
and numerical filtration-advection-dispersion model of miscible grout propagation in saturated porous 
media // Int. J. Numer. Anal. Geomech. – 2001. – 25(12). – P. 1195–1227. 3. Chupin O., Saiyouri N., and 
Hicher P.-Y. The effects of filtration on the injection of cement-based grouts in sand columns // Trans. 
Porous. Med. – 2008. – 72(2). – P. 227–240. 4. Demchuk M. B. A model of a cement grout injection in a 
saturated porous medium with boundary conditions conforming to initial ones // Scientific notes of 
NaUKMA. – 2011. –  125. – P. 46–51. 5. Bouchelaghem F. Two large scale injection experiments and 
assessment of the advection-dispersion-filtration model // Géotechnque. – 2002. –  52(9). – P. 667–682.  
6. Chupin O., Saiyouri N., and Hicher P.-Y. Modeling of a semi-real injection test in sand // Computers 
and Geotechniques. – 2009. –  36(6). – P. 1039–1048. 7. Maghous S., Saada Z., Dormieux L., Canou J., 
and Dupla J. C. A model for in situ grouting with account for particle filtration // Computers and 
Geotechnics. – 2007. – 34(3). – P. 164–174. 8. Demchuk M. B. Mathematical modeling of the process of 
injection of an astringent grout in a porous medium // Math. and Comp. Modeling: Collected Research 
Papers. Series of Phys & Math Sciences. – 2010. – 4. – P. 61–75. 9. Demchuk M. B. About real scale 
models of a cement grout injection at a constant pressure in a dry soil // Artif. Intellig. – 2011. – 2. –  
P. 122–130. 10. Vlasyuk A. P. and Demchuk M. B. Numerical solution of a problem of giving waterside 
structure foundation strength // Scientific Bulletin of Chelm, Section of Mathematics and Computer 
Science. – 2007. – 1. – P. 211–222. 11. Demchuk M. B. Adoption of the continuum approach in real scale 
grouting models // J. “Math. Mach. Syst.” – 2013. – 3. – P. 170–177. 12. Demchuk M. B., Saiyouri N. A 
realization of the uncertainty uniformity principle in a grouting model // Math. and Comp. Modeling: 
Collected Research Papers. Series of Phys & Math Sciences. – 2012. – 7. –  P. 77–92. 13. Godunov S. K., 
Prokopov G. P. About calculations of conformal mappings and construction of finite difference grids //  
J. Comp. Math. Math. Phys. – 1967. – 7(5). – P. 1031–1059. 14. Riabenkii V. S. Introduction into 
computational mathematics. M., 2000. 15. Bahvalov N. S., Zhydkov N. P., and Kobelkov G. M. Numerical 
methods. – M., 1987. 16. Taylor, J. R. Errors in indirect measurements. – M., 1985. 

 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua


