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In this paper the processes of admixture convective diffusion in two-phase structures with
periodically located thin channels are investigated with taking into account a natural decay
of migrating substance. With the help of application of appropriate integral transforms
separately in the contacting domains, a solution of the contact initial boundary value prob-
lem of convective diffusion of decaying substance is obtained. The correlations between
these integral transforms are found using the non-ideal contact conditions imposed for the
concentration function. Expressions for decaying particle flows through arbitrary cross-
section of the body are found and investigated, and their numerical analysis is carried out
in the middle of both domains — the thin channel and basic material. It is shown that
the decay intensity of the migrating substance especially affects the flow distribution in
the domain of basic material.

Keywords: diffusion, convection, admixture decay, regular structure, thin channel, mass

flow

2000 MSC: 93А30, 35K20, 42A38, 45K05

UDC: 517.958:532.72

1. Introduction

Forecasting the processes that occur in our environment, many engineering calculations need a math-
ematical description of the processes of diffusion, filtration, etc. in complex media, including space-
regular ones. Such media include, for example, the concrete of linked pores structure, soils, which can
be regarded as a regular two-phase structure containing periodically located thin channels in which the
transfer of particles going on by both diffusive and convective mechanisms. Herewith, the migrating
admixture can decay as a result of either chemical reactions or radioactive decay. Since the construc-
tion of exact solutions of this type of problems even for simple geometric areas cause difficulties, there
usually used approximate analytic [1,2] or numerical [3,4] solutions.

To solve the problems of diffusion in such media, a method has been suggested, which is based on
the use of integral transforms for the spatial variables applied separately in the contacting domains [5].
In [6,7], this method has been generalized to the case when in sublayers of the one type of periodic
structure both diffusive and convective transports are taken into account, while in sublayers of the
other type, only the diffusion mechanism of mass transfer is allowed for. Boundary conditions of the
first kind on the concentration which takes different values on the “top” surface of different structural
elements of the body are considered as well as mixed boundary conditions.

In this paper, for a two-phase layer of regular structure, the non-stationary cases of admixture
diffusion processes with taking into account both the convective mass transfer mechanism in one of the
phases and the decay of the migrating admixture are investigated. Expressions for the concentrations
of decaying substance are written down as well as expressions for the diffusion flow through arbitrary
cross-section of the body are obtained, a numerical analysis is carried out.
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2. Subject of inquiry and formulation of the problem

Let decaying substance of one chemical type is migrating in a layer of the thickness x0, which consists
of periodically located phases of two kinds. The surfaces separating these phases are normal to the
layer boundaries (Fig. 1, a) (the Ox axis is normal to the body surface; the Oy axis is normal to the
lateral phase boundaries). The phases whose diffusion coefficient is D1 have the width 2L and the
phases whose diffusion coefficient is D2 have the width 2l; herewith, in the domains with the diffusion
coefficient D1, the convective mass transport is taken into account with the coefficient of convective
velocity v, which is known and constant. This structure has a family of planes of symmetry (y =
= ±n(L+ l), n = 0, 1, 2, . . .) which divide the contacting phases into two equal parts. Therefore, we
can conventionally separate off an element of the body (Fig. 1, b) on whose vertical surfaces the mass
flow in the direction of the Oy axis is equal to zero.

Fig. 1. Regular structure of the body, where admixture substance is migrating (a); a chosen element of such
structure (b).

In the nonstationary case, the concentration of decaying admixture c1(x, y, t) in the domain Ω1 =
=]0;x0[×]0;L[ is defined from the equation of convective diffusion:

∂c1
∂t

= D1

[

∂2c1
∂x2

+
∂2c1
∂y2

]

− v
∂c1
∂x

− λc1, x, y ∈ Ω1, (1)

where λ is the coefficient of decay intensity of the migrating substance [с−1].
In the domain Ω2 = [0;x0]× [L;L+ l] the concentration of decaying admixture particles c2(x, y, t)

satisfies the diffusion equation

∂c2
∂t

= D2

[

∂2c2
∂x2

+
∂2c2
∂y2

]

− λc2, x, y ∈ Ω2. (2)

In the initial time, we assume the admixture in the body is absent:

c1(x, y, t)| t=0 = c2(x, y, t)| t=0 = 0. (3)

At the upper surface of the layer x = 0, the admixture concentration values are maintained to be
constant and at the lower surface the concentrations are equal to zero:

c1(x, y, t)| x=0 = c
(1)
0 ≡ const, c2(x, y, t)| x=0 = c

(2)
0 ≡ const;

c1(x, y, t)| x=x0 = c2(x, y, t)| x=x0 = 0. (4)
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Simulation of mass flows of decaying substance in layer with periodically located thin channels 19

At the lateral surfaces of the chosen element y = 0, y = L + l, the horizontal components of the
flow are equal to zero, namely

∂c1(x, y, t)

∂y

∣

∣

∣

∣

y=0

= 0,
∂c2(x, y, t)

∂y

∣

∣

∣

∣

y=L+l

= 0. (5)

On the contact interface y = L, we impose the condition of nonideal contact for the concentration
function in the form [8]:

η1c1(x, y, t) |y=L = η2c2(x, y, t) |y=L , D1
∂c1(x, y, t)

∂y

∣

∣

∣

∣

y=L

= D2
∂c2(x, y, t)

∂y

∣

∣

∣

∣

y=L

, (6)

where η1 and η2 (η1 6= η2) are the coefficients of the concentration dependence of the chemical potentials
in each domain.

3. Construction of the solution of the formulated problem

We seek a solution of the contact initial boundary value problem (1)–(6) of the mass transfer with the
use of integral transforms for spatial variables separately in the contacting domains [5–8]. In order
to do this, we have denoted the function ∂c1/∂y on the boundary of the domain Ω1 and ∂c2/∂y on
the boundary of Ω2, taking into account the second contact condition (6), which means that at the
interface y = L the mass flows are equal to each other and, in their turn, are equal to some function
g(x, t), i.e.

D1
∂c1(x, y, t)

∂y

∣

∣

∣

∣

y=L

= D2
∂c2(x, y, t)

∂y

∣

∣

∣

∣

y=L

= g(x, t). (7)

Then, we can perform finite integral cos-transform with respect to the variable y in the do-
main Ω1 [10]: y → yk = kπ/L, c1(x, y, t) → c̄1(x, k, t), and the cos-transform with a shift in the
domain Ω2 [11]: y → yj = jπ/l, c2(x, y, t) → c̄2(x, j, t). With respect to the variable x, in the domain
Ω1 we apply the following integral transform [12]

c̄1(n, k, t) =

x0
∫

0

c̃1(x, k, t)e
−vDx sin(xnx)dx, (8)

c̃1(x, k, t) =
2

x0
evDx

∞
∑

n=1

c̄1(n, k, t) sin(xnx), (9)

where vD = v/2D1, xn = nπ/x0, and in the domain Ω2 we apply finite integral Fourier sin-
transform [10]: x→ xm = mπ/x0, c̃2(x, j, t) → c̄2(m, j, t).

As a result, we obtain a solution of the problem (1)–(6) in the form [13]:

c̄1(n, k, t) = e−[D1(x2n+y2k+v
2
D)+λ] t

t
∫

0

[

D1akc
(1)
0 xn + (−1)kg̃n(t

′)
]

e[D1(x2n+y2k+v
2
D)+λ] t

′

dt′. (10)

c̄2(m, j, t) = e−[D2(x2m+y2j )+λ]t
t
∫

0

[

D2ajc
(2)
0 xm − g̃m(t

′)
]

e[D2(x2m+y2j)+λ]t′dt′. (11)

Note, that for the function g(x, t) we have relatively

g̃n(t) =

x0
∫

0

g(x, t)e−vDx sin(xnx)dx, g̃m(t) =

x0
∫

0

g(x, t) sin(xmx)dx. (12)
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Remark that inverse integral transforms to (12) are the following

g(x, t) = evDx
∞
∑

n=1

g̃n(t) sin(xnx), g(x, t) =
2

x0

∞
∑

m=1

g̃m sin (xmx) . (13)

In the expressions (10) and (11), the functions g̃n(t
′) and g̃m(t

′) remain still undetermined. We seek
these functions using both the first contact condition (6) of the jump of the concentration function at
the interface of the domains Ω1 and Ω2 and the transform (13). To do this, perform the corresponding
inverse integral transforms and substitute the obtained expressions into the first condition (6). As a
result, we get the following integral equation:

t
∫

0

η1e
vDx

∞
∑

n=1

sin(xnx)

([

D1c
(1)
0 xn +

g̃n(t
′)

L

]

e
−[D1(v2D+x2n)+λ](t−t′)

+

+
2

L
g̃n(t

′)

∞
∑

k=1

(−1)ke−[D1(v2D+x2n+y
2
k)+λ](t−t

′)

)

dt′ =

=

t
∫

0

η2

∞
∑

m=1

sin(xmx)

([

D2c
(2)
0 xm − g̃m(t

′)

l

]

e
−[D2x

2
m+λ](t−t′)

−

− 2

l
g̃m(t

′)

∞
∑

j=1

e−[D2(x2m+y2j )+λ](t−t′)



 dt′. (14)

Beside this, we need to find the correlation between the functions g̃n(t
′) and g̃m(t

′). It appeared
that taking into account the decay of migrating substance does not influence this correlation. Thus we
have [7]

g̃m(t
′) =

2

x0

∞
∑

n=1

An,mg̃n(t
′) or g̃n(t

′) =
2

x0

∞
∑

m=1

Bn,mg̃m(t
′), (15)

where the coefficients An,m and Bn,m are determined in the following way

An,m ≡ 2vDπ
2

x20

nm [(−1)n+mevDx0 − 1]
{

v2D +
π2

x20
(n−m)2

}{

v2D +
π2

x20
(n+m)2

} ,

Bn,m ≡ −2vDπ
2

x20

nm [(−1)n+me−vDx0 − 1]
{

v2D +
π2

x20
(n−m)2

}{

v2D +
π2

x20
(n+m)2

} .

Having solved the equation (14), we obtain

g̃n(t
′) =

−η1
η2
D1c

(1)
0 xn +

2

x0
D2c

(2)
0

∞
∑

m=1
xmBn,mEn,m (t− t′)

η1
η2L

Θ0

(

0, e−D1
π2

L2 (t−t
′)

)

+
4

x20l

∞
∑

m=1
Φm (t− t′)An,mBn,me

D1(v2D+x2n)(t−t′)
, (16)

where En,m (t− t′) = exp
{

−
[

D2x
2
m −D1

(

v2D + x2n
)]

(t− t′)
}

, Θ0(υ, x) is the elliptic theta func-

tion [14], Φm (t− t′) = e−D2x2m(t−t′)
{

1 + 2
∞
∑

j=1
e−D2y2j (t−t

′)
}

.
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Finally we obtain equations for the concentration of decaying admixture substance in the domain Ω1

c1(x, y, t) = e−λtevDx

[

c
(1)
0

sinh vD (x0 − x)

sinh (vDx0)
+

2

x0

∞
∑

n=1

sin (xnx)

[

− c
(1)
0 xn

v2D + x2n
e−D1(v2D+x2n)t+

+
1

L

t
∫

0

{

g̃n(t
′)eλt

′

e−D1(v2D+x2n)(t−t′)

(

1 + 2

∞
∑

k=1

(−1)k cos (yky) e
−D1y2k(t−t

′)

)}

dt′

]]

, (17)

and in the domain Ω2

c2(x, y, t) = c
(2)
0

(

1− x

x0

)

− 2

x0

∞
∑

m=1

sin (xmx)

[

c
(2)
0 e−λte−D2x2mt

xm
+

+
1

l

t
∫

0

g̃m(t
′)e−[D2x2m+λ](t−t′)

(

1 + 2

∞
∑

j=1

(−1)j cos (yj (y − L)) e−D2y2j (t−t
′)

)

dt′

]

. (18)

Note, that in order to determine g̃m(t
′), we have used the correlation (15) with the expression (16).

4. Mass flows of the decaying substance

Obtained analytical solutions of the contact initial boundary value problem of the convective diffusion
in regular structures under boundary conditions of the first kind make it possible to find nonstationary
mass flows of decaying particles for this problem trough arbitrary surfaces x = x∗ and y = y∗, which
are determined by the formulae [7]
in the domain Ω1

J
(1)
∗x (y, t) = −D 1

∂c1(x, y, t)

∂x
+ vc1(x, y, t)

∣

∣

∣

∣

x=x∗

; J
(1)
∗y (x, t) = − D1

∂c1(x, y, t)

∂y

∣

∣

∣

∣

y=y∗

; (19)

in the domain Ω2

J
(2)
∗x (y, t) = − D2

∂c2(x, y, t)

∂x

∣

∣

∣

∣

x=x∗

; J
(2)
∗y (x, t) = − D2

∂c2(x, y, t)

∂y

∣

∣

∣

∣

y=y∗

. (20)

Substitute the corresponding expressions (17) and (18) for the concentrations ci(x, y, t) into the
relations (19), (20). Then we obtain
in the domain Ω1

the mass flow J
(1)
∗x (y, t) through the surface x = x∗

J
(1)
∗x (y, t) = − D1

∂c1
∂x

+ vc1

∣

∣

∣

∣

x=x∗

= e−λtevDx∗

[

(v −D1vD)c
(1)
0

sinh vD (x0 − x)

sinh (vDx0)
+

+D1vDc
(1)
0

cos vD(x0 − x)

sinh vDx0
+

2

x0

∞
∑

n=1

{

(v −D1 vD) sin (xnx∗)−D1xn cos(xnx∗)×

×
[

− c
(1)
0 xn

v2D + x2n
e−D1(v2D+x2n)t +

1

L

t
∫

0

{

g̃n(t
′)eλt

′

e−D1(v2D+x2n)(t−t′)
}

×
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×
(

1 + 2

∞
∑

k=1

(−1)k cos (yky) e
−D1y2k(t−t

′)

)

dt′

]}]

;

in particular, the mass flow J
(1)
0x (y, t) through the lower surface x = x0

J
(1)
0x (y, t) = e−λtevDx0

[

D1vDc
(1)
0

sinh (vDx0)
− 2

x0
D1

∞
∑

n=1

(−1)n+1xn×

×
[

− c
(1)
0 xn

v2D + x2n
e−D1(v2D+x2n)t +

1

L

t
∫

0

{

g̃n(t
′)eλt

′

e−D1(v2D+x2n)(t−t′)
}

×

×
(

1 + 2
∞
∑

k=1

(−1)k cos (yky) e
−D1y2k(t−t

′)

)

dt′

]]

;

the mass flow J
(1)
∗y (x, t) through the surface y = y∗

J
(1)
∗y (x, t) = −D1

∂c1
∂y

∣

∣

∣

∣

y=y∗

= e−λtevDx
4D1

Lx0

∞
∑

n=1

sin(xnx)×

×
t
∫

0

{

g̃n(t
′)eλt

′

e−D1(v2D+x2n)(t−t′)

(

1 + 2

∞
∑

k=1

(−1)k cos (yky) e
−D1y2k(t−t

′)

)}

dt′. (21)

In the domain Ω2:
the mass flow J

(2)
∗x (y, t) through the surface x = x∗

J
(2)
∗x (y, t) = − D2

∂c2
∂x

∣

∣

∣

∣

x=x∗

=
D2

x0
c
(2)
0 +

2

x0
D2

∞
∑

m=1

cos (xmx∗)

{

c
(2)
0 e−λte−D2x2mt+

+
1

lxm

t
∫

0

g̃m(t
′)e−[D2x2m+λ](t−t′)

(

1 + 2

∞
∑

j=1

(−1)j cos (yj (y − L)) e−D2y2j (t−t
′)

)

dt′

}

;

in particular, the mass flow J
(2)
0x (y, t) through the lower surface x = x0

J
(2)
0x (y, t) =

D2

x0
c
(2)
0 +

2

x0
D2

∞
∑

m=1

(−1)m+1

{

c
(2)
0 e−λte−D2x2mt+

+
1

lxm

t
∫

0

g̃m(t
′)e−[D2x2m+λ](t−t′)

(

1 + 2

∞
∑

j=1

(−1)j cos (yj (y − L)) e−D2y2j (t−t
′)

)

dt′

}

;

the mass flow J
(2)
∗y (x, t) through the surface y = y∗

J
(2)
∗y (x, t) = −D2

∂c2
∂y

∣

∣

∣

∣

y=y∗

=
4D2

lx0

∞
∑

m=1

sin(xmx)×

×
t
∫

0

g̃m(t
′)e−[D2x2m+λ](t−t′)

∞
∑

j=1

(−1)j+1 sin (yj (y∗ − L)) e−D2y2j (t−t
′)dt′. (22)

Thus, we have obtained the mass flow expressions through any surface of the body.
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5. Numerical analysis of decaying mass flows through a cross-section of the body

In this section, we explore decaying particle flow graphic distributions through the vertical cross-
sections of the body: J

(1)

∗ζ (ξ, τ) in the middle of the domain Ω1 at ζ∗ =0.05 and J
(2)

∗ζ (ξ, τ) in the middle
of the domain Ω2 at ζ∗ =0.55. Numerical calculations are performed according to the formulae (21)
and (22) respectively, in dimensionless variables [8]:

ξ = (k/D1)
1/2 x, ζ = (k/D1)

1/2 y, τ = kt, (23)

where k is the coefficient of the dimension [c−1] [5]. Calculations are accurate to ε = 10−7. Herewith,

the following settings are taken as basic:
⌢
λ= k/λ = 0.1, ξ0 = (k/D1)

1/2x0 = 10, Λ = (k/D1)
1/2L =

= 0.1, γ = (k/D1)
1/2l = 0.9, d = D2/D1 = 0.01, η1/η2 = 0.1, c

(2)
0 /c

(1)
0 = 0.1,

⌢
v= 0.2, τ = 5.

Figs. 2–7 illustrate the distribution of the functions J
(i)

∗ζ (ξ, τ) depending on different values of the

problem parameters. Fig. 2 illustrates the J
(i)

∗ζ (ξ, τ) distributions at different instants of dimensionless
time τ . In Fig. 2, a, the curves 1–3 correspond to the values τ = 1; 5; 50, and in Fig. 2, b, the curves
1–5 correspond to τ = 1; 5; 10; 30; 50 for the convective velocity

⌢
v= 0.2.

Figs. 3–4 show the J
(i)

∗ζ (ξ, τ) distributions depending on the coefficient of convective velocity in the
domain Ω1. Fig. 3 demonstrates the distribution of decaying admixture flows in thin channels, and
Fig. 4 shows it in the domain of basic material. Figs. а are given for the small values of convective veloc-
ity, and Figs. b are for the large ones. Here, the curves 1–5 correspond to

⌢
v= 0.01; 0.02; 0.03; 0.04; 0.05

in Fig. a and
⌢
v= 0.1; 0.2; 0.3; 0.4; 0.5 in Fig. b.

Fig. 5 illustrates the behavior of the function J
(i)

∗ζ (ξ, τ) depending on the value of the coefficient of de-

cay intensity of the migrating substance
⌢
λ . Here, the curves 1–5 correspond to

⌢
λ= 0.01, 0.1, 0.2, 0.5, 1.

Figs. а are given for decaying impurity flow distributions in the domain Ω1, and Fig. b are for the
domain Ω2.

Fig. 2. Decaying particle flows J
(1)
∗ζ (ξ, τ) in the middle of Ω1 (а) and flows J

(2)
∗ζ (ξ, τ) in the middle of Ω2 (b) at

different instants of dimensionless time τ for large values of convective velocity
⌢
v .

Fig. 6 shows the effect of the ratio of the coefficients of the concentration dependence of the chemical
potentials η1/η2, that determines the magnitude of the jump of the admixture concentration at the
interface. Here, the curves 1–5 correspond to the values η1/η2 = 0.17; 0.2; 0.25; 0.27; 0.3. Fig. 7 shows

the behavior of the function J
(i)

∗ζ (ξ, τ) depending on different values of the dimensionless diffusion
coefficient d = D2/D1. Here, the curves 1–5 correspond to the values d = 0.5, 0.6, 0.7, 0.8, 0.9 in
Fig. 7, а and d = 0.1; 0.2; 0.3; 0.4; 0.5 in Fig. 7, b.

Note that in the middle of the domain of thin channels Ω1, the value of the admixture flow changes
its sign, which means that the resulting flow changes its direction, increasing by times in the lower part
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Fig. 3. Charts of decaying particle flows J
(1)

∗ζ (ξ, τ) in the middle of the thin channel depending on small (a)

and large (b) values of the convective velocity
⌢
v .

Fig. 4. Decaying particle flow J
(1)

∗ζ (ξ, τ) distribution in the middle of Ω2 depending on small (а) and large (b)

values of the convective velocity
⌢
v .

Fig. 5. Flow J
(1)

∗ζ (ξ, τ) distribution of the decaying admixture in the domain Ω1 (а) and the flow J
(2)

∗ζ (ξ, τ)
distribution in the domain Ω2 (b) for different values of the coefficient of decay intensity of the migrating

substance
⌢

λ .

of the body (Figs. 5, a, 3, a). In the domain Ω2, where the decaying particles are transferred by diffusion
mechanism only, the flow distributions are symmetric relative to the layer middle (Figs. 2, b–7, b), also
increasing in time until they put into the steady state (curves 4–5, Fig. 5).

The consideration of the convective component in thin channels leads to a substantial redistribution
of decaying mass over the most part of the migration interval. With the increase of values of the
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Fig. 6. Decaying particles flows J
(1)
∗ζ (ξ, τ) in the middle of Ω1 (а) and flows J

(2)
∗ζ (ξ, τ) in the middle of Ω2 (b)

depending on the ratio of the coefficients of the concentration dependence of the chemical potentials η1/η2.

Fig. 7. Decaying particle flows J
(1)
∗ζ (ξ, τ) in the middle of Ω1 (а) and flows J

(2)
∗ζ (ξ, τ) in the middle of Ω2 (b)

depending on the diffusion coefficient d.

convective velocity, there is observed a significant decrease in the admixture flow through the middle
of the thin channel. Thus, for large values of the convective velocity, the 5-times increase of the velocity
leads to the 4-times decrease of the flow (curves 1, 5 in Fig. 4). In the domaine of basic material, the
twice increase of convective velocity in thin channels causes the flow intensity decrease approximately
by half (curves 2, 5 in Fig. 4, b).

The parameter of the decay intensity for the migrating substance
⌢
λ significantly influences the

magnitude of decaying admixture flows J
(1)

∗ζ (ξ, τ) through vertical cross-sections of the domain Ω1 and

J
(2)

∗ζ (ξ, τ) of the domain Ω2. Herewith, the greater the value of the coefficient of the decay intensity of

the migrating substance
⌢
λ is, the smaller the resulting flow J

(i)

∗ζ (ξ, τ) value is (Fig. 5).

Other coefficients of the problem also significantly affect the behavior of the function J
(i)

∗ζ (ξ, τ).
Such parameters of the problem as the ratio of diffusion coefficients d = D2/D1 and the ratio of the

coefficients of mass source powers c
(2
0 )/c

(1)
0 on the surface of domains Ω1 and Ω2 significantly affect

the magnitude of the decaying admixture flow J
(i)

∗ζ (ξ, τ). Herewith, with the increase of d, the value
|J∗ζ(ξ, τ)| decreases (Fig. 7). The admixture flow in thin channel reaches its peaks at small values of
d right from the surface ξ = 0 where the source of decaying admixture mass is acting. Regarding the
dependance of J

(i)

∗ζ (ξ, τ) on the mass source power on the surface ξ = 0, then the more value of the

admixture concentration c
(2)
0 in the domain Ω2 is, then the less the value of the function |J∗ζ(ξ, τ)| in
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the domain Ω1 is. In the domain Ω2, the opposite pattern is observed: with the increase of c
(2)
0 /c

(1)
0 ,

the value of |J (2)

∗ζ (ξ, τ)| also increases.
Note that among all the parameters of the problem, the ratio of the coefficients of the concentration

dependence of the chemical potentials η1/η2, which determines the jump of the concentration function
at the interface, has the most effect on the function of decaying admixture flow in thin channels. A
small change in the value of this parameter leads to significant changes in the flow J

(1)

∗ζ (ξ, τ) distribution
not only quantitatively but also qualitatively. Thus, with increasing values of η1/η2, the resulting flow
changes its direction right from the surface, where there is a source of the admixture mass supply
(curves 3–5, Fig. 6, a). With further increase in the values of η1/η2, we observe the appearance of the

second local maximum of the function J
(1)

∗ζ (ξ, τ) approximately in the middle of the layer, and the
appearance of the third local maximum near the lower boundary surface ξ = ξ∗ of the layer (curves
1–5, Fig. 6, a). In the domain Ω2 this parameter affects the flow only quantitatively – for larger values

of η1/η2 larger absolute values of J
(2)
∗ζ (ξ) correspond (Fig. 6, b).

6. Modelling averaged decaying admixture concentration in the layer of regularly lo-
cated thin channels

We can introduce the function of the total concentration of decaying substance averaged with respect
to the variable y as follows:

〈c(x, y, t)〉 = 1

L+ l

L
∫

0

c1(x, y, t)dy +
1

L+ l

L+l
∫

L

c2(x, y, t)dy. (24)

By substitution of the expressions (20), (21) for the concentration c1(x, y, t) in the domain Ω1 and
c2(x, y, t) in Ω2 into the correlation (24), we obtain

〈c(x, y, t)〉 = 1

L+ l

〈

Le−λtevDxc
(1)
0

sh vD (x0 − x)

sh (vDx0)
+ lc

(2)
0

(

1− x

x0

)

+
2L

x0
e−λtevDx

∞
∑

n=1

sin(xnx)×

×
[

− c
(1)
0 xn

v2D + x2n
e−D1(v2D+x2n)t +

1

L

t
∫

0

g̃n(t
′)eλt

′

e−D1(v2D+x2n)(t−t′)dt′

]

−

− 2l

x0

∞
∑

m=1

sin(xmx)

[

1

xm
c
(2)
0 e−λte−D2x2mt +

1

l

t
∫

0

g̃m(t
′)e−[D2x2m+λ](t−t′)dt′

]〉

. (25)

If we introduce the parameter α = l/L, we will rewrite (25) in the form

〈c(x, y, t)〉 = 1

1 + α
e−λtevDxc

(1)
0

sh(vD(x0 − x))

sh (vDx0)
+

2c
(2)
0

(1 + α)

(

1− x

x0

)

− 2e−λtevDx

x0(1 + α)

∞
∑

n=1

sin(xnx)×

×





c
(1)
0 xn

v2D + x2n
e−D1(v2D+x2n)t − α

l

t
∫

0

g̃αn(t
′)eλt

′

e−D1(v2D+x2n)(t−t′)dt′



− 2

x0

α

1 + α

∞
∑

m

sin(xmx)×

×





c
(2)
0

xm
e−λte−D2x2mt +

1

l

t
∫

0

g̃αm(t
′)e−[D2x2m+λ](t−t′)dt′



 ,
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where

g̃αn(t
′) =

−η1
η2
D1c

(1)
0 xn +

2

x0
D2c

(2)
0

∞
∑

m=1

xmBn,mEn,m
(

t− t′
)

η1
η2

α

l
Θ0

(

0, e−D1
k2π2α2

l2
(t−t′)

)

+
4

x20l

∞
∑

m=1

Φm
(

t− t′
)

An,mBn,me
D1(v2D+x2n)(t−t′)

,

g̃αm(t
′) =

2

x0

∞
∑

n=1

An,mg̃
α
n(t

′),

here Rαn = 1
ψn

cth
(

ψn
l
α

)

+ 1
ψ2
n

(

1− α
l

)

.

Let l tend to 0 with α ≡ const. Then we have to determine

lim
l→0

〈c(x, y, t)〉 = 1

1 + α
c
(1)
0 e−λtevDx

sh(vD(x0 − x))

sh vDx0
+

α

1 + α
c
(2)
0

(

1− x

x0

)

−

− 2e−λtevDx

x0(1 + α)

∞
∑

n=1

sin(xnx)







c
(1)
0 xn

v2D + x2n
e−D1(v2D+x2n)t − α

t
∫

0

eλt
′

e−D1(v2D+x2n)(t−t′) lim
l→0

1

l
g̃αn(t

′)dt′







−

− 2α

(1 + α)x0

∞
∑

m=1

sin(xmx)





c
(2)
0

xm
e−λte−D2x2mt +

t
∫

0

e−(D2x2m+λ)(t−t′) lim
l→0

1

l
g̃αm(t

′)dt′



 . (26)

Since in the equation (26) g0m(t
′) = lim

l→0

1
l g̃
α
m = 2

x0
lim
l→0

∞
∑

m=1

An,m

l g̃αn(t), then we seek lim
l→0

1
l g̃
α
n only.

Thus, we have

lim
l→0

1

l
g̃αn = lim

l→0

−η1
η2
D1c

(1)
0 xn +

2

x0
D2c

(2)
0

∞
∑

m=1

xmBn,mEn,m
(

t− t′
)

α
η1
η2

(

1 + 2

∞
∑

k=1

e−D1
k2π2α2

l2
(t−t′)

)

+
4

x20
Sn,m

,

where Sn,m =
∞
∑

m=1
Φm (t− t′)An,mBn,me

D1(v2D+x2n)(t−t′).

Having obtained the limit at l → 0, we can obtain

g0n(t
′) ≡ lim

l→0

1

l
g̃αn =

−η1
η2
D1c

(1)
0 xn +

2

x0
D2c

(2)
0

∞
∑

m=1

xmBn,mEn,m
(

t− t′
)

α
η1
η2

+

∞
∑

m=1

e−D2x2m(t′t′)An,mBn,me
D1(v2D+x2n)(t−t′)

. (27)

Using (27), we have respectively

lim
l→0

〈c(x, y, t)〉 = 1

1 + α
e−λtevDxc

(1)
0

sh vD(x0 − x)

sh(vDx0)
+
αc

(2)
0

1 + α

(

1− x

x0

)

−

− 2e−λtevDx

x0(1 + α)

∞
∑

n=1

sin(xnx)





c
(1)
0 xn

v2D + x2n
e−D1(v2D+x2n)t − α

t
∫

0

eλt
′

e−D1(v2D+x2n)(t−t′)g0n(t
′)dt′



−
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− 2α

x0(1 + α)

∞
∑

m=1

sin(xmx)

[

c
(2)
0

xm
e−λte−D2x2mt +

t
∫

0

e−[D2x2m+λ](t−t′)g0m(t
′)dt′

]

. (28)

Note that if it is the parameter ᾱ = L/l that is introduced, and L is let tend to 0 with ᾱ ≡const,
then we will obtain the same formula (28).

For example, in Fig. 8 we give typical admixture concentration distributions of decaying substance,
which is averaged over the width of the selected element of the body, and they are calculated according
to the formula (25). Here are shown averaged concentration distributions calculated for different values

of convective velocity
⌢
v= 0.1, 0.2, 0.3; 0.4 (curves 1a-4a) and

⌢
v=0.1, 0.2, 0.3; 0.4 (curves 1b–5b) for

the basic values of the problem parameters.

Fig. 8. Dependence of the function of averaged concentration on small (curves a) and large (curves b) values

of the convective velocity
⌢
v .

Note that the behaviour and values of the function of the total concentration of decaying substance
averaged over the width of the selected element of the body are affected the most by the coefficient of
convective velocity, herewith for small values of

⌢
v , the function 〈c(ξ, τ)〉 is monotonically decreasing,

(curves 1a-3a, Fig. 8); with the increase of the magnitude of values
⌢
v the averaged concentration

values increase over the whole interval, and the function 〈c(ξ, τ)〉 becomes convex (curve 4a, Fig. 8).
Further increase in the coefficient of convective velocity leads to a decrease in the decaying admixture
concentration averaged over the width of the selected element of the body, but the greatest decline
is observed in the middle of the layer, herewith a local maximum of 〈c(ξ, τ)〉 appears near the lower
surface of the body (curve 1b, Fig. 8).

7. Conclusions

In this work the flows of decaying admixture through arbitrary cross-sections of the body of a regular
structure at periodic location of thin channels of fast movement of decaying admixture particles are
investigated. The formulae of these flows are obtained on the basis of exact analytical solutions of
the contact initial boundary value problem of convective diffusion of a decaying substance, in which
there are taken into account the convective mechanism of substance transfer by thin channels. These
solutions are obtained using the method of integral transformations with respect to the spatial variables
separately in each of the contacting domains. The correlations between these integral transformations
are obtained using contact conditions; the Volterra integral equation of the first kind is obtained to
determine the mass flow at the interface. It is shown that the decay of the migrating substance does
not affect the flow rate through the interface of the contacting domains which compose the body.
However, it significantly affects the quantitative flow distribution inside of the contacting domains.
This is particularly true to the domain of basic material, where the twice decrease of the magnitude of
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the coefficient of decay intensity of the migrating substance leads to the same decline of the admixture
flow intensity.

Note also that the applied method of constructing exact solutions of the contact initial boundary
value problem of the nonstationary convective diffusion of decaying substance does not use conditions
on the size of the contacting domains, that means it can be applied to bodies with commensurate
sizes of the contacting domains, as well as in the case when the width of the domain where mass
transfer occurs both diffusive and convective mechanisms is much larger or smaller than the width of
the domain in which the decaying admixture diffusion only is allowed for.

[1] Fisher J. Calculation of diffusion penetration curves for surface and grain boundary diffusion. J. Appl.
Phys. 22, 74 (1951).

[2] Klinger L., Rabkin E. Diffusion along the grain boundaries in crystals with dislocations. Interface Science.
6, 197 (1998).

[3] Savula Y., Koukharskiy V., Chaplia Y. Numerical analysis of advection diffusion in the continuum with thin
canal. Numerical Heat Transfer. Part A. 38, 657 (1998).

[4] Bonelli S. Approximate solution to the diffusion equation and its application to seepage-related problems.
Applied Mathematical Modelling. 33, 110 (2009).

[5] Chaplya Y., Chernukha O, Dmytruk V. Mathematical modeling of stationary processes of convection-
diffusion mass transfer in binary periodic structures. Reports of the National Academy of Sciences of
Ukraine. 7, 44 (2011).

[6] Chaplya Y., Chernukha O., Dmytruk V. Advective-diffusive mass transfer in binary regular structures in
the steady-state regime. Applied Math. Modelling. 37, 6191 (2013).

[7] Goncharuk V., Dmytruk V., Chernukha O. Non-stationary processes of convection-diffusion mass transfer
in a binary regular structures. Visnyk of Lviv Polytechnic National University. Physics and mathematics.
740, 79 (2012).

[8] Dmytruk V. Steady mass flows and distributions of admixture average concentrations in periodic structures
under mixed boundary conditions. Physico-mathematical Modelling and Information Technologies. 14, 51
(2011).

[9] Burak Y., Chaplya Y., Chernukha O. Continuum-thermodynamics models of mechanics of solid solutions.
Naukova Dumka, Kyiv (2006) .

[10] Sneddon I. Fourier transformations. McGraw-Hill, NY, Toronto, London (1951).

[11] Chernukha O. Admixture mass transfer in a body with horizontally periodical structure. International
Journal of Heat and Mass Transfer. 48, 2290 (2005).

[12] Martynenko N. Pustyl’nikov L. Finite integral transforms and their application to the study of systems with
common parameters. Nauka, Moscow (1986).

[13] Kamke E. Handbook of Ordinary Differential Equations. Nauka, Moscow (1985).

[14] Handbook of Mathematical Functions. Ed. M. Abramowitz and placeI. Steagan. Nauka, Moscow (1979).

[15] Chaplya Y., Chernuha A. Physical-mathematical modeling of heterodiffusive mass transfer. SPOLOM,
Lviv (2003).

Mathematical Modeling and Computing, Vol. 1, No. 1, pp. 17–30 (2014)

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



30 ChernukhaO.Yu., Dmytruk V. A., Goncharuk V. Ye.

Комп’ютерне моделювання потокiв розпадної речовини в шарi з
перiодично розташованими тонкими каналами

ЧернухаО.Ю.1, ДмитрукВ.А.1,2, ГончарукВ.Є.1,2
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В роботi дослiджено процеси конвективної дифузiї домiшкової речовини у двофазних
структурах з перiодично розташованими тонкими каналами з урахуванням натураль-
ного розпаду мiгруючої речовини. За допомогою вiдповiдних iнтегральних перетво-
рень окремо в контактуючих областях отримано розв’язок контактно-крайових задач
конвективної дифузiї розпадної речовини. Зв’язок мiж цими iнтегральними перетво-
реннями знайдений з використанням неiдеальних контактних умов, сформульованих
на функцiю концентрацiї. Знайдено та дослiджено вирази для потокiв розпадних
частинок через довiльнi перерiзи тiла та проведено їхнiй числовий аналiз в серединi
тонких каналiв та основного матерiалу. Показано, що iнтенсивнiсть розпаду мiгрую-
чої речовини особливо впливає на розподiли потокiв в областi основного матерiалу.

Ключовi слова: дифузiя, конвекцiя, розпад домiшки, регулярна структура, тон-

кий канал, потiк маси
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