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Two generalizations of the classical Faraday problem on development of parametric res-
onance in mechanical system “reservoir — liquid with free surface”’, namely, the effect of
supplementary degree of freedom, i.e., possibility of horizontal motion of reservoir due to
transversal motion of free surface of liquid, and effect of supplementary degree of freedom,
i.e., possibility of angular oscillations of reservoir, which is suspended as pendulum, due
to transversal oscillations of a free surface of liquid. Investigation is done on the basis of
efficient nonlinear multimodal model, which considers combined motion of reservoir and
free surface of the liquid. It was shown that, in contrast to the classical Faraday problem,
dynamical processes in the system are developed as aggregate of parametric and forced
mechanisms of oscillations. For the considered generalizations of the Faraday problem
transition of oscillations of free surface of the liquid into nonlinear range of excitations is
possible for any frequency of external vertical excitation of reservoir
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1. Introduction

Parametric resonance in the mechanical system ‘reservoir — free surfaced liquid” was investigated for
the first time by Faraday in 1831. Cylindrical reservoir, partially filled by water, was installed on
special laboratory equipment and was capable to perform motion in vertical direction according to the
prescribed law. As the result of the experiment Faraday ascertained that first resonance frequency of
the free surface of liquid is equal to a half of the frequency of perturbation of the reservoir. This result
is known in history of mechanics as the Faraday classical problem about parametric oscillations of free
surface of liquid in reservoir on movable foundation. (Fig. 1).
Starting from discovering this effect great number of investiga-
tions were done dealing with theoretical and applied aspects of the
phenomenon. The most complete survey of these publications pub- __
lished before 2005 was stated in monograph [5|. Among recent pub- }/
lications in this area it is necessary to note artbicles by T.Ikeda, in
particular [6]. Both theoretical results on investigations of condi-

Zi

T~

tions of origination of parametric resonance on the basis of the Van
der Pole method and experimental ones, connected with process of g, =H cos(pt)
development of oscillations with amplitude and phase modulation  Fig, 1. Mechanical schematic di-
and transition of the system on mode of chaotic oscillations were  agram of the classical Faraday
adduced. problem.
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Since in the classical Faraday problem, reservoir moves only vertically according to the given law,
liquid oscillations have no effect on on the character of its motion. Actually this means that reservoir
moves in vertical channel or has infinitely great mass. However, in most practical applications (rolling
and pitching of ships on waves, flight of rockets and launchers, etc.) structure with liquid can perform
translational and rotational motions in different planes because of oscillations of liquid with a free
surface and due to external force and moment loading. Here the liquid mass can considerably exceed
the mass of reservoir, therefore, taking into account of combined motion of reservoir and free surfaced
liquid and their interaction is the crucial factor in these problems.

Supplementary effects account in the classical Faraday problem about development of parametric
resonance on a free surface of liquid makes it possible to create the following classification of general-
izatons of the Faraday problem:

— reservoir moves vertically according to the prescribed harmonic law in the field of weak gravity;
under these conditions it is necessary to take into account surface tension forces on a free surface
of liquid;

— reservoir moves vertically according to the prescribed harmonic law and can perform translational
motions in horizontal plane due to antisymmetric oscillations of liquid free surface (introduction
of supplementary degree of freedom into the system, namely, potential of reservoir motion in the
horizontal plane) (Fig. 2);

— reservoir is fixed on pendulum suspension, the point of suspension moves vertically Touka according
to the given harmonic law, reservoir can perform angular motion due to antisymmetric oscillations
of a free surface of liquid (introduction of supplementary degree of freedom into the system, namely,
potential of angular motion of reservoir) (Fig. 3);

— reservoir moves vertically, however not according to the given harmonic law, but under action of
harmonic force applied to reservoir (combined statement of the problem);

— reservoir moves vertically under action of harmonic force and can perform translational motion in
horizontal plane due to antisymmetric oscillations of a free surface of liquid;

— reservoir moves vertically under action of harmonic force and can perform angular motion in the
horizontal plane due to antisymmetric oscillations of a free surface of liquid;

¥ e

&, =H cos(pt)

Fig. 2. Mechanical schematic diagram of the gener- Fig. 3. Mechanical schematic diagram of the gen-
alized Faraday problem with potential of horizontal eralized Faraday problem with potential of angular
motion of reservoir. motion of reservoir.

For analysis of some common used hypotheses in this problem and determination of validity range
of the developed approach we analyzed all mentioned problems under the presence of liquid viscosity.
In the present article we investigate theoretically generalization of the Faraday problem for two
variants of the stated above classification, namely, 1) reservoir moves vertically according to the given
harmonic law and can perform translation motions in horizontal plane due to antisymmetric oscillations
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of a free surface of liquid (Fig.2); 2) reservoir is fixed on pendulum suspension, the point of suspen-
sion moves vertically according to harmonic law due to antisymmetric oscillations of a free surface
of liquid (Fig.3). Moreover, for providing completeness of problem statement we refuse usage of the
hypothesis on potential of elimination of neglecting oscillations on normal frequencies of the system,
which is used by majority of researchers in this field (modern experimental studies showed that account
of oscillations of liquid free surface on normal and combination frequencies is determinative [4,7]); in-
vestigation of dynamics of system on the basis of nonlinear mathematical multimode model (12 normal
modes of oscillations); problem statement for couple motion of reservoir and liquid |2].

2. Mathematical model of the mechanical system

Let us consider a cylindrical reservoir with absolutely rigid walls, partially filled with liquid. We suppose
liquid to be ideal, incompressible, homogeneous and its initial motion is vortex free. Investigation of
peculiarities of parametric resonance in the generalized Faraday problem will be done on the basis of
the mathematical model, developed in [2].

Let us introduce conventionally immovable reference frame O X1 X9 X3, reference frame Ozyz fixed
with reservoir and reference frame OY7Y2Y3 with origin at the point O, whose axes are correspondingly
parallel to axes of the reference frame O; X;X2X3 (Fig. 4). Point O is at center of unperturbed free
surface of liquid, axis Oz is directed toward external normal to unperturbed free surface of liquid.
Motion of the point O in reference frame 07X X2X3 is determined by the radius-vector e(t), while
rotational motion of reference frame Ozyz relative to O1 X7 X9 X3 is determined by three angles of
turn aq, g, 3. Here angle a7 is defined as angle of rotation of the reference frame Oxyz about the
axis OY7, angle g angle of rotation of the system relative to new position of OYs, and ag is angle of
rotation of the system relative to new position of OY3.

X;

O,

.,-”"’J
--//
— X

X,

Fig. 4. Reference frames.

Let us introduce into consideration unit vectors y?,yg,yg of the reference frame OY7Y5Y3, unit
vectors Y, yo, 20 = 41,49, 13 of the reference frame Oxyz, so transition matrix can be represented as
0_ . 7.
Yi = €ijly,
where
€11 = COS (X1 (X COS (3,
e12 = — Ccos o Sin ag,
€13 — COos (v1,
€91 = COS (1 Sin a3 + sin o sin o €os a3,

€99 = COS (¥1 COS (xg — Sin vy sin g sin ag,
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€23 — — sin Q1 COS (g,
e31 = sin a;q sin ag — cos o sin g oS a3,
e39 = sin ar cos aig — €Oos vy sin g sin ag,
€33 — COS (¥ COS (x9.

Expressions for components of angular velocity w in fixed reference frame will be the following
(point above variable means derivative with respect to time t)

Wy = W] = (/] COS iy COS (g3 + ig Sin g,

Wy = Wg = —@/1 COS (g SIN (3 + (i3 COS 13,
w, = wg = aq Sin ag + as.

Thus, aggregate of parameters ; u «; completely characterizes motion of reservoir in conventionally
immovable reference frame O7 X7 X2X3.

According to method from [2] mathematical model of the system “reservoir — liquid with a free
surface” is constructed on the basis of the Hamilton—Osctrogradskiy variational principle

to
0l=0, where [= /Ldt,

t1

here the Lagrange function is given in the classical form as difference between kinetic and potential
energies of the system
L=gp [(Ve+V(w-Q)+&)7dr + 5 Mr(€)” + 5l wiv; — (Mr + Mr)ge:—

T

— pg(cos ay sin ag cos aig — sin g sin aig) /7“ cosO(¢ + H)dS—
So

— pg(sin aq cos az + cos ay sin ag sin ag) /7“ sinf(¢ + H)dS—

So

1
— §pgcos (1 COS vy /§2d5 — (Mrhr + Mphp)g(l —cosajcosay) + F -e + M - x,

So

here p is the liquid density; 7 is domain occupied by liquid; dr = rdrdfdz is volumetric element
in cylindrical coordinates; g is free falling acceleration; ¢ is velocity potential of liquid; €2 is the
Stokes—Zhukovskiy vector potential, which describes liquid motion in reservoir, which performs angular
motion; £ is elevation of liquid free surface; S is cross-section of cylindrical reservoir; Izgmk is inertia
tensor of reservoir, determined relative to the point J; M7y and Mg are masses of reservoir and liquid
respectively; hp and hp are displacements of mass centers of reservoir and unperturbed liquid relative
to plane of unperturbed free surface of liquid Sp; € = {e5,€,,¢.} is vector of displacement of reservoir
in translational motion; x = {a1, a9, a3} is conventional representation of turn angles of the reservoir
relative to conventionally immovable reference frame; F' and M are resultant vector and resultant
moment of external forces, which are applied to reservoir relative to the point O.

According to [2], for efficient usage of Hamilton—Ostrogradskiy variational principle, it is necessary
to construct expansions of the unknown variables £, ¢, and €2, which in advance satisfy kinematical
boundary conditions. As it was suggested in |2], we assume the following expansions of the unknown
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variables

§= Z an(t)n (2, y),

cosh kn(z + H)
by ( it N
= Z (@) = e

cosh ky(z 4+ H)
kpsinh k, H

Q=90+ 3 g, (n(r.y)

Here 1, (x,y) is complete orthogonal system of functions in the domain Sy, which can be determined
from the Neumann boundary value problem with parameter s,

Awn-i—linwn—oonso,aaw =0on X,

where the second equation is non-flowing condition of liquid on reservoir wall 3. Vector-function g
represents the Stokes-Zhukovskiy potential, which is solution of the Neumann boundary value problem
for the Laplace equation

&:rxn Ha Sy + X,
on
where mn is vector of external normal to reservoir wall ¥ and unperturbed free surface of liquid Sp.

Since liquid is ideal, homogeneous, incompressible, its motion is vortex-free, then it follows from the
Lagrange theorem that motion of liquid volume is completely defined by motion of its boundaries. This
means that we can suppose variables £, € and x as independent, while variables ¢ and €2 are dependent
ones. So, system of amplitude parameters a, of decomposition of motion of liquid free surface into
series by normal modes of oscillations 1, (x,y) is considered as independent, while the parameters by,
and gq,, of decompositions of variables ¢ and €2 are considered as dependent on parameters a,.

The procedure of elimination of kinematic boundary conditions on rigid walls and liquid free surface
is stated in details in [2]. This procedure makes it possible to satisfy all kinematic boundary conditions
for arbitrary number of considered normal modes of oscillations accurate to given power of smallness
of amplitudes of excitation of normal modes a,,.

Namely, elimination of kinematic boundary conditions is done in the following way. We substitute
decompositions of unknown variables into kinematic boundary conditions, multiply the obtained ex-
pressions by v, and integrate the obtained relation over Sp. Here we decompose hyperbolic functions
into series with respect ti £ in a vicinity of £ = 0 and later perform integration. After implementation
of the mentioned procedure we obtain definite forms of dependence of coefficients of decomposition of
velocity potentials on independent variables a;

. ) w ) w ) w
b =a; + E Qo Yyomi + E @10y + E QG ak Py

AQp = 0,

n,m n,m,l n,m,l,k
g a; 35, + 5 aj Ak OkY jrp + E a;jag a0y,
7.k 7.kl

The coefficients, entering these expressions, represent quadratures from functions ¢; and g taken
on the domain Sy. We succeeded to get these formulae in analytical form for arbitrary number of normal
modes and with accuracy, which corresponds to obtaining final equations with required accuracy,
defined by powers of smallness of the independent variables a;. This step makes it possible to transit
from constrained variational problem to variational problem for free mechanical system and write the
Lagrange system of equations of the second kind.

According to |2] we write the following system of nonlinear ordinary differential equations relative
to independent parameters a; (coefficients of decomposition of perturbations of liquid free surface £ into
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series by normal modes 1);), parameters of translational € and rotational motion of reservoir relative
to conventionally immovable reference frame {ay, g, a3}

S {5”, N Zaj 3 ZajakA;gjk}+ 1)
7 j,k
+E— {Bl i Z a; B, + Z aia; Bl + ) alaja,.cBm,g}Jr

7‘

i,J 1,5,k
1 3 Wy
. 1% 2% 3%
o o\ 2 g B + B+ oy | | = Sl
T s=1 = i,j
1 3
+ ) didjarCijp, Qavz% [Z i(Boh — Epys) +Z“z% (Epijr + Epirj = Epyij — ES:JZ)]-'—
i,5,k T p=1 i
1 < 1<
3 1x 2% 3%
g 20 s Bl B+ Bl 4 507 3| B+ S Sl |+
T ps=1 T =1 i

3
Wp |:F12)r + Zal szr + F?)rz + Z a’ia’j( pijr + anr] + F?)rz]):| +
p=1 % 5]

N,
[ E a;D? + E ala]DW + E alajakDUkr] — gy CO8 0¥ COS Qo+
i,k "

C S

. . . (0% . . .
+g9—(cos a sin ag cos az — sin ag sin ag) + g—(sin oy cos a3 + cos o sin ag sin ag);
« o

r r

P Z .. [ 1 2 3 -
Mr + Mp 5 ij ijk

3
P - awp 1 F 0
F = —qg-29—
+MT+MF;%L ( +Zaz +Zala] p”)} My+ My 9

i (S 2 Y B+ 3ok + (6 + £ -

1,3,k p=1 % ,J

m Zw(k [Fl + Z a,ZFpZ + Z a;a; pw]

i,J

3
Sal> (E1*+Z%Eg;+zw )|+ ®

% p:l

3
. %
v 2 Flt DR+ ) atiFyy+ 3 o s +
p=1

1,J 1,9,k

3
Lol B st B
%)

n=1 p,s=1
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3
0w,
=23 (gt o022 (T, 4 St Do B )+

p,s=1

3
+ Z Wy (Z a; EL + Z dia; B2y + Z diajarE wk>
p=1 i

.9,k

3
2 S, (P S+ Y e ) -
p=1 i 0,
6wp ﬁwp
-2 Z Zal psi —i—QZala] psij | — Zala] pij —i—QZala]ak wk
p=

p,s=1 .9,k

3
9. p;l g_gi’ (; ciZ-F 12 Z dia; m]) g(MThT + MFhF)(?(Zr (cos g cos ag)+

0 . . . c c
298ar [(cos a sin ag cos aig — sin g sin ag ) ( % a;of + Hi )] +
+2g 0 (cos aq sin ag sin aig + sin ay cos ) ( g a;a + HI?)

8@7« 3 3 1821 5

i

here we introduced denotations

Z Owy, % _d 8wp
o 8C¥n p,k 8% 8% ’

The system of equations (1)—(3) completely describes nonlinear dynamics of combined motion
of reservoir and liquid, which partially filled it, under action of external forces and moments. The
system (1)—(3) consists of IV + 6 equations of the second order, where N is the number of considered
normal modes of oscillations of liquid free surface. Here the equations (1) describe oscillations of liquid
free surface, equations (2) describe translational motion of reservoir, and equations (3) are connected
with angular motion of reservoir. In aggregate these equations describe combined motion of reservoir
with free surfaced liquid for arbitrary number of normal modes of oscillations. All coefficients of the
system of equations are computed as quadratures from ¢, (x,y) and £y and some simple mathematical
expressions of these coefficients. This system has specific property, namely, it is linear relative to
second derivatives of unknown functions. This property predetermines potential of simple integration
of these equations by numerical procedures.

3. Construction of domains of instability and conditions of transition of system on the
mode of parametric resonance

The equations (1)—(3) describe the process of development of parametric oscillations in mechanical
system ‘reservoir — liquid with a free surface”, when reservoir moves vertically by the given harmonic
law £, = H, cos(pt). As it is known from theory of parametric oscillations [1], there are domains in the
plane of parameters (p, H,), when solutions of the equations (1)—(3) infinitely increase, i.e., domains of
dynamical instability. Construction of domains of instability will make it possible to ascertain for what
values of parameters of external kinematic excitation of the reservoir (p, H,) the system ‘“reservoir —
liquid with a free surface” will pass into the mode of parametric resonance under the presence of small
initial perturbation of liquid free surface.
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Let us find initially equations of boundaries of instability domain for the system of equations (1),
or, in other words, for the Faraday classical system. As it is known from theoretical investigations [1,3]
in this case investigation of instability can be done on the basis of linearized motion equations in a
vicinity of the first (lower) resonance. We write linearized equation for the amplitude a; of normal
mode with the lowest frequency, i.e., the first antisymmetric mode 1, under the presence of external
vertical excitation of the reservoir e, = H, cos(pt) as

ci'lo/f + B%f&?"zal + gNia; =0,
and rewrite it in the form of the classical Mathieu equation, namely
dy 4+ wi(1 — vH,p* cos pt)a; = 0, (4)

where the following denotations are introduced v = f—]@fl, wp = % is normal frequency of the first
antisymmetric normal mode ;. Domain of real eigenvalues of the equation (4) coincides with domain
of solutions, which increase infinitely. On the other hand, domain of imaginary eigenvalues corresponds
to bounded (almost periodical) solutions. Multiple roots, which have values 1 or —1 correspond to
boundaries, which separate domains of real and imaginary roots. In the case of eigenvalue 1 solution
of the differential equation will be periodic with period T = i—’lr, and in the case of eigenvalue —1 it
will have period 27

Thus, domains of infinitely increasing solutions are separated from domains of stable periodic
solutions with periods T or 27. Namely, two solutions of the same period bound the domain of
instability, two solutions of different periods bound the domain of stability. Strict proof of this theorem
is given in [3]. It follows from the mentioned theorem that determination of boundaries of instability
can be reduced to determination of conditions, under which the differential equation (4) has periodic
solution with period T or 2T

Since existence of periodic solutions and potential of their decomposition into the Fourier series is

well-known, we look for periodic solution of the problem in the form

kpt
=B A —+ B —_— 5
0+Z<k008 + ksm2), (5)
where periodic solutions of period T are associated with even values of k = 2,4,..., and periodic
solutions of period 27T are associated with odd values of K = 1,3,.., moreover, the number k, by

which we restrict ourselves in the decomposition (5), means the number of zone of the corresponding
parametric resonance (zones of instability).

For determination of boundary of the first parametric resonance (k = 1) we look for periodic
solution in the form

t
=D cos 5 —|— Ay smp2 (6)

Let us substitute (6) into the equations (4) and use the Galerkin method, namely, we multiply the
equation (4) initially by cos & ! and later by sin 2, then we integrate the obtained expressions on period
2T. As the result we obtain a system of hnear homogeneous algebraic equations relative to values
of amplitudes A; and Bj, which, as it is known from linear algebra, has nonzero solutions only then
determinant, composed from coefficients of this system, is equal to zero. If we expand determinant
we obtain equation for boundaries of domain of the first parametric resonance in the classical Faraday

problem
2w1 2w

P=—F———Tap=—F———=
\/1—2w%yHZ \/1—|—2w%1/HZ
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For construction boundaries of zone of the second parametric resonance we look for periodic solu-
tions of period T as

B
a; = 70 + By cos pt + Ag sin pt + A4 sin 2pt,

and using again the Galerkin method we obtain equations of boundaries as

\/—1 + /1 + 2wivy H2

wivH,

p:

and

2(5+ /9 +wiv?H?2)
p=uwi 122
16 — wiv-H:

Position of zones of the first and second parametric resonance in the classical Faraday problem
in the plane (w%’ %) is shown in Fig.5. As it is seen from figure, in zone of the first parametric
resonance every small amplitude of oscillations of reservoir in time leads the system into the mode of
parametric resonance. On the other hand, it is practically impossible to adjust the system into the
second parametric resonance, since this occurs in very narrow range of frequencies for large amplitudes

of excitation of reservoir motion H,.

H

£ 0.2 —
R
0.16 —
0.12 —

0.08 —

0.04 —

0.5 1 15 2 25 3 35
Fig. 5. Zones of the first (1) and second (2) resonance for the classical Faraday problem.

For construction of zones of parametric resonance in the generalized Faraday problem with potential
of horizontal motion of the reservoir (¢, = 0; e, = H,cospt; oy = 0, i = 1,2,3) we linearize the
equations (1), (2) and rewrite them only for the first antisymmetric mode v with amplitude a; with
potential of horizontal motion of the reservoir by coordinate &,

dlai} + Bllyé + B%fézal +gNia; = 07y

p

Mrpr+ Mp ! Gty ’
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L . _ B __ B _ pBY
and, taking into account the denotations v = R A= v Ay = A, T We represent them further

in canonic form
i1+ Méy +wi(l — vH,p? cospt)a; = 0, (7)

For construction of boundaries of zone of the first parametric resonance we look for periodic solutions
of period 2T of the system of equations (7)—(8) as
cos pt sin pt

5 +BlT,€y = A,

cos pt sin pt
B
y TP

CL1:A1

and by means of the Galerkin method we obtain the corresponding equations of boundaries in the form

2w1
p =
V1—2w2vH, — A2

9)

and
2(4)1

B \/1 +2w%1/HZ — )\1)\2.

For construction of boundaries of zone of the second parametric resonance we look for the periodic

p (10)

solution of period T in the form
a1 = Big + Bi1 cos pt + Aqq sin pt + Ao sin 2pt,

gy = Boy cos pt + Aoy sin pt + Agg sin 2pt,

and again by means of the Galerkin we obtain the corresponding equations of boundaries as

\/)\1)\2 -1+ \/()\1)\2 — 1)2 + QW%VQHZQ

wivH,

p

and

1—MA Mg —1)2 + wiv2H?2
D = Vo 5(1 = Aido) + v/ (AMido 4) +w v H7
16()\1)\2 - 1)2 - wlyzHg

Distribution of the first and second zones of parametric resonance in the generalized Faraday
problem in the plane (w%’ %) for different ratio of masses (1 — Mp = 100Mp, 2 — Mp = 10Mry,
3—Mp = Mp, 4 — Mp = 01Mp, 5 — Mp = 0.01M7) is shown in Fig.6 and Fig.7. Domains of
instability are bounded by curves with the same numbers.

As it is seen from figures the presence of supplementary degree of freedom results in increase of
frequency of parametric resonance, moreover, the greater is mass of liquid relative to mass of reservoir
(the greater is influence of liquid mobility), the greater is frequency of parametric resonance. Moreover,
the greater is mass of reservoir relative to mass of liquid, the narrower is zone of parametric resonance
on increase of amplitude of external excitation H, (actually the case (1 — Mp = 100M7) coincides
with results the classical Faraday problem, which corresponds to infinite mass of reservoir.

For construction of zones of parametric resonance in the generalized Faraday problem with potential
angular motion of reservoir, fixed on pendulum suspension, (Fig. 3) (e, = ¢y = 0; e, = H cospt;
a; =0, i = 2,3) we linearize the equations (1), (2) and rewrite them for the first antisymmetric mode
11 with amplitude a; and angular motion «; as

a4 A\pdp + wi(1 — vH,p? cos pt)a = 0, (11)
Ari + é 4+ wha = 0, (12)
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H
=92 — 1234512 3 4 5 H, ., 12123 345 45
4 R |
016 — 0.16 —
012 — 012 —
008 — 008 —
0.04 — 0.04 —
0 L e £ 0 | I L L B ‘E
a a,
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Fig. 6. Zones of the first resonance in the generalized Fig. 7. Zones of the second resonance in the gener-
Faraday problem with potential of horizontal motion alized Faraday problem with potential of horizontal
of reservoir. motion of reservoir.

2z
where v = f[—iq. Zones of instability for the first resonance are bounded by periodic solutions with
frequencies £, therefore, we represent periodic solutions for the system (11)-(12) in the form

t t

a = Aj cos (%) + Bj sin (%) ,
t t

o = Agcos (%) + By sin <%) ,

and with usage of the Galerkin method with the described above details we obtain characteristic
equation for determination of zones of instability for the first resonance

(14 2wivH, — MA2) p* + (—4(wh + w}) — SwiwkrH,) p* + 16wiw} = 0,

(1 - 2wivH, — M A2) pt+ (—4(w} + wi) + 8wiwhrH,) p* + 16wiwy, = 0.

Explicit expressions for solutions of these equations are not adduced here due to their awkwardness.
Domains of instability for the first and second normal frequencies for different lengths of pendulum
suspension (1 =7 =100 m, 2 -1 =10 m, 3 — [ = 1 m) are shown in Fig.8 and Fig.9 in the plane
“frequency of external excitation p — amplitude of external excitation H,”. Domains of instability
are bounded by curves with the same numbers. As it is seen from graphs, increase of suspension
length of pendulum promotes frequencies lowering and behavior of the system similar to translational
motion of the reservoir. Moreover, increase of suspension length of pendulum marrows instability
domains for both normal frequencies. Location of instability domain for the second normal frequency
depends considerably on suspension length, but this dependence is weaker for the first normal frequency.
Overlapping of this domains occurs only in the range of large amplitudes of external excitation.

4. Peculiarities of development of parametric mechanism of oscillations of liquid free
surface

Previous stage of investigations was done on the basis of linear model and makes it possible to give
preliminary information of development of oscillations for classical and modified Faraday problem.
Actually these information gives prediction of behavior of the system "reservoir — free surfaced liquid”
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0.12 0.12
0.08 0.08
0.04 0.04
0 0
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Fig. 8. Zones of the first resonance relative to the first Fig. 9. Zones of the first resonance relative to the
normal frequency in the generalized Faraday problem second normal frequency in the generalized Faraday
with potential of angular motion of reservoir. problem with potential of angular motion of reservoir.

from point of view of system stability and main tendencies of manifestation of parametric mechanism in
such problems. However, it is well-known that the system "reservoir — free surfaced liquid” is a system
with strong manifestation of nonlinear effects and mechanisms, so, complete investigation of the system
behavior should be done on the basis of nonlinear model. In this case processes will form as aggregate
of corrected version of development of parametric mechanism and concurrent nonlinear processes of
different nature, which originate in the system due to nonlinear properties.

Let us consider peculiarities of development of transient processes in the system “reservoir — liquid
with a free surface” in the generalized Faraday problem. Actually this problem will answer the question
of existence of steady modes of system behavior and forms of installation of such modes, coupled with
over nonlinear mechanisms

We consider circular cylindrical reservoir with vertical longitudinal axis Oz, which performs vertical
motions according to the given harmonic law €, = H, cos pt, and can additionally perform displace-
ments €, in the horizontal plane along the axis Oy due to combined motion of the system caused by
transversal oscillations of liquid free surface. Let us consider for numerical example reservoir of radius
R = 0.3 m of Mp mass, which is partially filled by liquid of Mg mass with H = R depth. For all
variants we consider that initial perturbation of liquid free surface is equal to a1(0) = 0,01R.

The nonlinear system of equations (1)—(2) is reduced numerically to the Cauchy normal form and
later it is integrated numerically by the standard procedure of Runge-Kutta. On investigation of
dynamics of the system reservoir — liquid we took into account in decompositions ny = ng = 12
coordinate functions accurate to squares of amplitudes and n3 = 6 coordinate functions accurate ti
cubic terms. Coordinate functions are distributed in ascending order of the corresponding normal
frequencies except the second axisymmetric mode g, which amplitude is considered accurate to cubic
terms. Step of numerical integration was selected as At = 0, 1mwis s, where wyo is the highest normal
frequency in the system. On analysis of results and construction of graphs amplitudes were reduced
to dimensionless form relative to characteristic size of the system, i.e., radius R of reservoir and time
was normalized relative to period of oscillations of the first antisymmetric normal mode ;.

Let us consider peculiarities of system transition into the mode of parametric resonance, predicted
by investigation done on the basis of linear model, for the system with mass ratio My = 0.01Mp and
parameters of motion of the reservoir according to harmonic law p = 2.6w; and H, = 0.01R. Graph of
variation in time of amplitude of excitation of liquid free surface on tank wall L}? are shown in Fig. 10,
Fig. 11 shows frequency spectrum of this excitation.
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As it is seen from the graph (Fig.10), for the given value of external parametric excitation p =
= 2.6w;, which is determined according to formulae of instability boundaries (9)—(10), the system
transits to the mode of parametric resonance and amplitude of excitations on reservoir walls increases
more than 20 times. Here transition to steady mode of oscillations is not manifested, excitation @
is characterized by amplitude modulation, which law permanently varies in time. The presence of
harmonica on zero or close to zero frequencies means existence of trend (drift, nonzero mean value),
which vary in wide range. We see in frequency spectrum of liquid excitations on walls dominated peak
of harmonics with frequency w = 1.2w; = £, which is confirmation system transition to the mode close
to parametric resonance (when dominating frequency of oscillations is twice lower than frequency of
external excitation). Typical harmonics of spectrum on combined frequencies for multimodal nonlinear
systems are grouped in a vicinity of dominating frequency, which is supplementary manifestation of
development of parametric mechanism in the system.

For other ratio of masses of reservoir My and liquid Mp, shown in Fig.6 (when relative mass of
reservoir increases), in frequency spectrum of £(R) the number of harmonics on combined frequencies
close to w = § considerable decreases, which reflect decrease of influence of liquid mobility on horizontal
motion of reservoir, and in the case My = 100Mpg these combined frequencies are absent at all. So,
in this case we observe pure parametric resonance as in the classical Faraday problem (oscillations of
liquid have no influence on oscillations of reservoir).

$(R)

03 R

02 —

01 —

0.1 —

02 —

03 | | | T

Fig. 10. Amplitudes of waves on reservoir walls on Fig. 11. Frequency spectrum of amplitudes of waves
system excitation in zone of parametric resonance. on reservoir walls on system excitation in zone of para-
metric resonance.

Boundaries of stability domain, specified by the equations (9)—(10) were verified also in the case,
when for small amplitudes of motion of reservoir H, = 0.01R external frequency of excitation is in zone
of stability, for example, below resonant frequency p = 2w; and above resonant frequency p = 2.9w; for
mass ratio Mp = 0.01Mpg. For below resonant zone of excitation contribution of parametric mechanism
is insignificant (excitations of a free surface of liquid on walls are £(R) ~ 0.01R, so, they are in linear
range of oscillations. For above resonant zone on the contrary considerable contribution of mechanism
of parametric resonance manifests, (Fig. 12, 13), moreover, as it is seen from graphs of amplitudes and
frequency spectrum on system transition to the mode of parametric resonance only transient process
occurs, for which effect of high modes of oscillations is manifested considerably.

For large amplitudes and high frequencies of reservoir excitation in contrast to the classical Faraday
problem dynamical processes in the system develop as aggregate of mechanisms of parametric and
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Fig. 12. Amplitude of free surface on reservoir wall Fig. 13. Frequency spectrum of amplitude of free sur-
on system excitation in above resonant zone. face on reservoir wall on system excitation in above

resonant.

forced oscillations, therefore in this case transition into nonlinear mode is possible. In Fig. 14,15 we
show results of investigation of oscillations in the system ‘reservoir — liquid with a free surface” for
amplitude of motion of the reservoir H, = 0.1R, frequency p = 1.9w; (below resonant zone) and mass
ratio Mp = 0.01Mp.

In spite of the fact that frequency of external excitation is in the stability domain, mechanical
system approaches to nonlinear range of perturbations. As it is seen from graph of frequency spectrum,
dominating harmonic has frequency w ~ p, which means prevalence of mechanism of forced oscillations
in comparison with mechanism of parametric resonance. For excitation frequency located in above
resonant zone p = 4.26w; considerable increase of oscillations occurs during one period oscillations,
here mechanism of forced oscillations dominates (amplitude of harmonic on frequency w = p is twice
greater than amplitude of harmonic of frequency w ~ 0.5p). Mechanism of forced oscillations promote
great increase of amplitudes of oscillations of free surface of liquid even when frequency of external
excitation differs from resonant one. Therefore, in contrast to the classical Faraday problem under the
presence of horizontal motion of reservoir it is possible to increase oscillations of liquid considerably
by vertical oscillations of reservoir.

Similar qualitative effects are observed in the generalized Faraday problem for reservoir, which
is fixed on pendulum suspension and can perform angular oscillations due to transversal oscillations
on free surface of liquid. Transition to the mode of parametric oscillations manifests if frequency of
external excitation is from zone of instability, and initial excitation in the system can be inserted as both
small excitation of a free surface of liquid and small inclination of reservoir (physical pendulum) from
undisturbed position. Increase of frequency or amplitude of external excitation results in considerable
increase of amplitudes of oscillations even if these parameters of external excitation are from domain
of stability. Here frequency spectrum contains harmonics peculiar for both mechanism of parametric
oscillations and for mechanism of forced oscillations. So, oscillations will occur on frequencies equal
to frequency of external excitation or multiple to it, on normal frequencies and multiple to them ones
and on combined frequencies.

We note also that insertion of supplementary degree of freedom (transversal translational or angular
motion of the reservoir) in this system has different character. Translational motion does not result
in increase of the number of potential resonances, while in the case of angular motion of reservoir
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Fig. 14. Amplitude of free surface on reservoir wall Fig. 15. Frequency spectrum for amplitude of free
for large amplitudes of excitation in below resonant surface on reservoir wall for large amplitudes of exci-
zone. tation in below resonant zone.

supplementary frequency is generated. One potential resonance can happen for domination of angular
motion of pendulum, another one corresponds to domination of liquid sloshing.

5. Conclusions

Several directions of generalization of statements of the classical Faraday problem, which are caused
by the agreement of this problem with existing engineering systems, are suggested. We investigate
peculiarities transient phenomena of mechanical system “reservoir — liquid with a free surface” steady
mode of oscillations for the generalized Faraday problem with potential of transversal translational
or angular motion of the reservoir. We investigate the classical Faraday problem with introduced
supplementary degrees of freedom with considering combined character of motion of reservoir with free
surfaced liquid. Study of system behavior was done on the basis of method of modal decomposition
under the condition of refusal of hypothesis of possibility of neglect of oscillations on natural and
combined frequencies. Introduction of supplementary degree of freedom into the system (potential
of translational or rotational motion of reservoir) results in the increase in frequencies of parametric
resonance, moreover, it increases with the decrease of relative mass of the reservoir in comparison with
liquid mass and with the decrease of the length of the pendulum suspension. In vertical excitation of
reservoir motion under the presence of supplementary degree of freedom in the system, in contrast to
the classical Faraday problem, dynamical process in the system is developed as aggregate of mechanisms
of parametric and forced oscillations, transition to nonlinear mode of motion with considerable increase
of amplitudes of oscillations is possible for any frequency. At the same time transition to steady mode
of oscillations in nonlinear multifrequency systems of “reservoir — liquid with a free surface” type on
vertical harmonic excitation of motion of reservoir does not occur, i.e. spectrum of oscillations of a
free surface of liquid a;ways contain harmonics on frequency of external loading, normal frequencies of
oscillations and combined frequencies, which are not multiple.

Revision of initial statement of the classical Faraday problem by considering combined character
of motion of the system "reservoir — liquid” (which better corresponds to such practical applications
as rockets and launchers) and refuse form some hypothesis of linear theory of oscillations on solving
nonlinear problems (which is unreasonably used in this class of problems) makes it possible to state
that the classical Faraday problem is ideally academic problem, which is very narrow particular case of
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behavior of real systems under such types of excitations. Real behavior of reservoir with liquid under
vertical kinematic excitation is much more complicated than the classical Faraday problem.
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V3aranbHeHHA 3aga4di Papages B mexaHiyHii cucrtemi “‘pesepByap —
piavHa 3 BiJIbHOIO NOBepxHer'

JInmapuenxo O. C.', Koncrantinos O. B.2

L Kuiscoxuti nayionanrvruti ynisepcumem imeni Tapaca Ilesvwernka
npocnexm axademixa Iaywxosa, 4-F, 01033, Kuis, Yxpaina
2 Inemumym mamemamuxuy HAH Ypainu

eys. Tepewenriecora, 3, 01601, Kuis, Ykpaira

B poboti posriisinyTo 1Ba y3arajabnenHs kiacuaaol 3agadi Papajiest Ipo PO3BUTOK Mapa-
METPUYIHOIO PE30HAHCY B MEXaHIdHil cucTeMi “pe3epByap — piinHa 3 BiIIBHOIO IIOBEPXHEIO™:
1) BILIUB JOJATKOBOIO CTYIEHS BLILHOCTI — MOXKJIMBOCTI TOPU3OHTAILHOTO PYXYy PE3epBY-
apy 3a paxyHOK INOIEPEeYHUX KOJMBAHD BIJIBHOI NOBEPXHI PiuHM; 2) BILIMB J0JATKOBOIO
CTYTEHS BLIBHOCTI — MOXKJIUBOCTI KyTOBUX KOJIMBAHb PE3EPBYAPY, IO BUCUTDH HA MASITHU-
KOBOMY TifBici, 33 paxXyHOK KOJIMBaHb BIJIbHOI OBepxHi pimunan. JLOCITiyKeHHsS BUKOHAHO
Ha OCHOBI edekTHBHOI HesTHIITHOT 6araToMOI0BOI MO, sIKa BPAXOBY€E CyMiCHUIT PyX pe-
3epByapy Ta BiibHOI noBepxHi pijuau. I[lokazamo, mo Ha BiaMiHy Bifl KjaacuaHOl 3a/1a49i
QPapajiest, TUHAMIYHI TTPOIECH B CUCTEMi PO3BUBAIOTHCS K CYKYIHICTH MEXaHI3MiB Iapa-
METPUIHUX Ta BUMYIIEHUX KOJUBaHb. [l po3risgHyTnx y3arajbHenb 3ajadi Papajes
MOKJINBUAY BUXiJT KOJMBAHb BLIBHOI MOBEPXHI DIWMHN y HEJIHIHUN mialla30H aMILIITYZ,
pu Oyab-AKiil 9ACTOTI 30BHIITHHOIO BEPTUKAJIBLHOTO 30y PEHHS.

Knwu4osi cnosa: neainiting dunamixa piounu, 6iAbHA NOGEPTHA, NAPAMEMPUNHUT pe-
3onanc, 3adavwa DPapades, 6uTid HA YCMANEHUT PEHCUM
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