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Two generalizations of the classical Faraday problem on development of parametric res-
onance in mechanical system “reservoir – liquid with free surface”, namely, the effect of
supplementary degree of freedom, i.e., possibility of horizontal motion of reservoir due to
transversal motion of free surface of liquid, and effect of supplementary degree of freedom,
i.e., possibility of angular oscillations of reservoir, which is suspended as pendulum, due
to transversal oscillations of a free surface of liquid. Investigation is done on the basis of
efficient nonlinear multimodal model, which considers combined motion of reservoir and
free surface of the liquid. It was shown that, in contrast to the classical Faraday problem,
dynamical processes in the system are developed as aggregate of parametric and forced
mechanisms of oscillations. For the considered generalizations of the Faraday problem
transition of oscillations of free surface of the liquid into nonlinear range of excitations is
possible for any frequency of external vertical excitation of reservoir
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1. Introduction

Parametric resonance in the mechanical system “reservoir – free surfaced liquid” was investigated for
the first time by Faraday in 1831. Cylindrical reservoir, partially filled by water, was installed on
special laboratory equipment and was capable to perform motion in vertical direction according to the
prescribed law. As the result of the experiment Faraday ascertained that first resonance frequency of
the free surface of liquid is equal to a half of the frequency of perturbation of the reservoir. This result
is known in history of mechanics as the Faraday classical problem about parametric oscillations of free
surface of liquid in reservoir on movable foundation. (Fig. 1).

Fig. 1. Mechanical schematic di-
agram of the classical Faraday
problem.

Starting from discovering this effect great number of investiga-
tions were done dealing with theoretical and applied aspects of the
phenomenon. The most complete survey of these publications pub-
lished before 2005 was stated in monograph [5]. Among recent pub-
lications in this area it is necessary to note art5icles by T.Ikeda, in
particular [6]. Both theoretical results on investigations of condi-
tions of origination of parametric resonance on the basis of the Van
der Pole method and experimental ones, connected with process of
development of oscillations with amplitude and phase modulation
and transition of the system on mode of chaotic oscillations were
adduced.
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Since in the classical Faraday problem, reservoir moves only vertically according to the given law,
liquid oscillations have no effect on on the character of its motion. Actually this means that reservoir
moves in vertical channel or has infinitely great mass. However, in most practical applications (rolling
and pitching of ships on waves, flight of rockets and launchers, etc.) structure with liquid can perform
translational and rotational motions in different planes because of oscillations of liquid with a free
surface and due to external force and moment loading. Here the liquid mass can considerably exceed
the mass of reservoir, therefore, taking into account of combined motion of reservoir and free surfaced
liquid and their interaction is the crucial factor in these problems.

Supplementary effects account in the classical Faraday problem about development of parametric
resonance on a free surface of liquid makes it possible to create the following classification of general-
izatons of the Faraday problem:

— reservoir moves vertically according to the prescribed harmonic law in the field of weak gravity;
under these conditions it is necessary to take into account surface tension forces on a free surface
of liquid;

— reservoir moves vertically according to the prescribed harmonic law and can perform translational
motions in horizontal plane due to antisymmetric oscillations of liquid free surface (introduction
of supplementary degree of freedom into the system, namely, potential of reservoir motion in the
horizontal plane) (Fig. 2);

— reservoir is fixed on pendulum suspension, the point of suspension moves vertically точка according
to the given harmonic law, reservoir can perform angular motion due to antisymmetric oscillations
of a free surface of liquid (introduction of supplementary degree of freedom into the system, namely,
potential of angular motion of reservoir) (Fig. 3);

— reservoir moves vertically, however not according to the given harmonic law, but under action of
harmonic force applied to reservoir (combined statement of the problem);

— reservoir moves vertically under action of harmonic force and can perform translational motion in
horizontal plane due to antisymmetric oscillations of a free surface of liquid;

— reservoir moves vertically under action of harmonic force and can perform angular motion in the
horizontal plane due to antisymmetric oscillations of a free surface of liquid;

Fig. 2. Mechanical schematic diagram of the gener-
alized Faraday problem with potential of horizontal
motion of reservoir.

Fig. 3. Mechanical schematic diagram of the gen-
eralized Faraday problem with potential of angular
motion of reservoir.

For analysis of some common used hypotheses in this problem and determination of validity range
of the developed approach we analyzed all mentioned problems under the presence of liquid viscosity.

In the present article we investigate theoretically generalization of the Faraday problem for two
variants of the stated above classification, namely, 1) reservoir moves vertically according to the given
harmonic law and can perform translation motions in horizontal plane due to antisymmetric oscillations
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of a free surface of liquid (Fig. 2); 2) reservoir is fixed on pendulum suspension, the point of suspen-
sion moves vertically according to harmonic law due to antisymmetric oscillations of a free surface
of liquid (Fig. 3). Moreover, for providing completeness of problem statement we refuse usage of the
hypothesis on potential of elimination of neglecting oscillations on normal frequencies of the system,
which is used by majority of researchers in this field (modern experimental studies showed that account
of oscillations of liquid free surface on normal and combination frequencies is determinative [4,7]); in-
vestigation of dynamics of system on the basis of nonlinear mathematical multimode model (12 normal
modes of oscillations); problem statement for couple motion of reservoir and liquid [2].

2. Mathematical model of the mechanical system

Let us consider a cylindrical reservoir with absolutely rigid walls, partially filled with liquid. We suppose
liquid to be ideal, incompressible, homogeneous and its initial motion is vortex free. Investigation of
peculiarities of parametric resonance in the generalized Faraday problem will be done on the basis of
the mathematical model, developed in [2].

Let us introduce conventionally immovable reference frame O1X1X2X3, reference frame Oxyz fixed
with reservoir and reference frame OY1Y2Y3 with origin at the point O, whose axes are correspondingly
parallel to axes of the reference frame O1X1X2X3 (Fig. 4). Point O is at center of unperturbed free
surface of liquid, axis Oz is directed toward external normal to unperturbed free surface of liquid.
Motion of the point O in reference frame O1X1X2X3 is determined by the radius-vector ε(t), while
rotational motion of reference frame Oxyz relative to O1X1X2X3 is determined by three angles of
turn α1, α2, α3. Here angle α1 is defined as angle of rotation of the reference frame Oxyz about the
axis OY1, angle α2 angle of rotation of the system relative to new position of OY2, and α3 is angle of
rotation of the system relative to new position of OY3.

Fig. 4. Reference frames.

Let us introduce into consideration unit vectors y0
1,y

0
2,y

0
3 of the reference frame OY1Y2Y3, unit

vectors x0,y0,z0 = i1, i2, i3 of the reference frame Oxyz, so transition matrix can be represented as

y0
i = eijij,

where
e11 = cosα1α cosα3,

e12 = − cosα2 sinα3,

e13 = cosα1,

e21 = cosα1 sinα3 + sinα1 sinα2 cosα3,

e22 = cosα1 cosα3 − sinα1 sinα2 sinα3,
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e23 = − sinα1 cosα2,

e31 = sinα1 sinα3 − cosα1 sinα2 cosα3,

e32 = sinα1 cosα3 − cosα1 sinα2 sinα3,

e33 = cosα1 cosα2.

Expressions for components of angular velocity ω in fixed reference frame will be the following
(point above variable means derivative with respect to time t)

ωx = ω1 = α̇1 cosα2 cosα3 + α̇2 sinα3,

ωy = ω2 = −α̇1 cosα2 sinα3 + α̇3 cosα3,

ωz = ω3 = α̇1 sinα2 + α̇3.

Thus, aggregate of parameters εi и αi completely characterizes motion of reservoir in conventionally
immovable reference frame O1X1X2X3.

According to method from [2] mathematical model of the system “reservoir – liquid with a free
surface“ is constructed on the basis of the Hamilton–Osctrogradskiy variational principle

δI = 0, where I =

t2
∫

t1

Ldt,

here the Lagrange function is given in the classical form as difference between kinetic and potential
energies of the system

L =
1

2
ρ

∫

τ

(∇ϕ+∇(ω ·Ω) + ε̇)2dτ +
1

2
MT (ε̇)

2 +
1

2
Iijtankωiωj − (MT +MF )gεz−

− ρg(cosα1 sinα2 cosα3 − sinα1 sinα3)

∫

S0

r cos θ(ξ +H)dS−

− ρg(sinα1 cosα3 + cosα1 sinα2 sinα3)

∫

S0

r sin θ(ξ +H)dS−

− 1

2
ρg cosα1 cosα2

∫

S0

ξ2dS − (MThT +MFhF )g(1 − cosα1 cosα2) + F · ε+M · χ,

here ρ is the liquid density; τ is domain occupied by liquid; dτ = rdrdθdz is volumetric element
in cylindrical coordinates; g is free falling acceleration; ϕ is velocity potential of liquid; Ω is the
Stokes–Zhukovskiy vector potential, which describes liquid motion in reservoir, which performs angular
motion; ξ is elevation of liquid free surface; S is cross-section of cylindrical reservoir; Iijtank is inertia
tensor of reservoir, determined relative to the point J ; MT and MF are masses of reservoir and liquid
respectively; hT and hF are displacements of mass centers of reservoir and unperturbed liquid relative
to plane of unperturbed free surface of liquid S0; ε = {εx, εy, εz} is vector of displacement of reservoir
in translational motion; χ = {α1, α2, α3} is conventional representation of turn angles of the reservoir
relative to conventionally immovable reference frame; F and M are resultant vector and resultant
moment of external forces, which are applied to reservoir relative to the point O.

According to [2], for efficient usage of Hamilton–Ostrogradskiy variational principle, it is necessary
to construct expansions of the unknown variables ξ, ϕ, and Ω, which in advance satisfy kinematical
boundary conditions. As it was suggested in [2], we assume the following expansions of the unknown
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variables
ξ =

∑

n

an(t)ψn(x, y),

ϕ =
∑

n

bn(t)ψn(x, y)
cosh κn(z +H)

κn sinhκnH
,

Ω = Ω0 +
∑

n

qn(t)ψn(x, y)
cosh κn(z +H)

κn sinhκnH
.

Here ψn(x, y) is complete orthogonal system of functions in the domain S0, which can be determined
from the Neumann boundary value problem with parameter κn

∆ψn + κ2nψn = 0 on S0,
∂ψn
∂n

= 0 on Σ,

where the second equation is non-flowing condition of liquid on reservoir wall Σ. Vector-function Ω0

represents the Stokes-Zhukovskiy potential, which is solution of the Neumann boundary value problem
for the Laplace equation

∆Ω0 = 0,
∂Ω0

∂n
= r × n на S0 +Σ,

where n is vector of external normal to reservoir wall Σ and unperturbed free surface of liquid S0.
Since liquid is ideal, homogeneous, incompressible, its motion is vortex-free, then it follows from the

Lagrange theorem that motion of liquid volume is completely defined by motion of its boundaries. This
means that we can suppose variables ξ, ε and χ as independent, while variables ϕ and Ω are dependent
ones. So, system of amplitude parameters an of decomposition of motion of liquid free surface into
series by normal modes of oscillations ψn(x, y) is considered as independent, while the parameters bn
and qn of decompositions of variables ϕ and Ω are considered as dependent on parameters an.

The procedure of elimination of kinematic boundary conditions on rigid walls and liquid free surface
is stated in details in [2]. This procedure makes it possible to satisfy all kinematic boundary conditions
for arbitrary number of considered normal modes of oscillations accurate to given power of smallness
of amplitudes of excitation of normal modes an.

Namely, elimination of kinematic boundary conditions is done in the following way. We substitute
decompositions of unknown variables into kinematic boundary conditions, multiply the obtained ex-
pressions by ψp and integrate the obtained relation over S0. Here we decompose hyperbolic functions
into series with respect ti ξ in a vicinity of ξ = 0 and later perform integration. After implementation
of the mentioned procedure we obtain definite forms of dependence of coefficients of decomposition of
velocity potentials on independent variables ai

bi = ȧi +
∑

n,m

ȧnamγ
w
nmi +

∑

n,m,l

ȧnamalδ
w
nmli +

∑

n,m,l,k

ȧnamalakh
w
nmlki,

qp =
∑

j

ajβ
u
jp +

∑

j,k

ajakγjakγ
u
jkp +

∑

j,k,l

ajakalδ
u
jklp.

The coefficients, entering these expressions, represent quadratures from functions ψi and Ω0 taken
on the domain S0. We succeeded to get these formulae in analytical form for arbitrary number of normal
modes and with accuracy, which corresponds to obtaining final equations with required accuracy,
defined by powers of smallness of the independent variables ai. This step makes it possible to transit
from constrained variational problem to variational problem for free mechanical system and write the
Lagrange system of equations of the second kind.

According to [2] we write the following system of nonlinear ordinary differential equations relative
to independent parameters ai (coefficients of decomposition of perturbations of liquid free surface ξ into

Mathematical Modeling and Computing, Vol. 1, No. 1, pp. 45–60 (2014)

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



50 LimarchenkoO. S., KonstantinovO.V.

series by normal modes ψi), parameters of translational ε and rotational motion of reservoir relative
to conventionally immovable reference frame {α1, α2, α3}

∑

i

äi ·
{

δir +
∑

j

ajA
3
rij +

∑

j,k

ajakA
4
rijk

}

+ (1)

+ε̈ · 1

αvr

{

B1
r +

∑

i

aiB
2
ri +

∑

i,j

aiajB
3
rij +

∑

i,j,k

aiajakB
4
rijk

}

+

+
1

2αvr

3
∑

s=1

α̈s

{ 3
∑

p=1

∂ωp
∂α̇s

[

E1∗
pr +

∑

i

aiE
2∗
pri +

∑

i,j

aiajE
3∗
prij

]}

=
∑

i,j

ȧiȧjC
3
ijr+

+
∑

i,j,k

ȧiȧjakC
4
ijkr +

1

2αvr

3
∑

p=1

ωp

[

∑

i

ȧi(E
2∗
pir − E2∗

pri) +
∑

i,j

ȧiaj(E
3∗
pijr + E3∗

pirj − E3∗
prij − E3∗

prji)

]

+

+
1

2αvr

3
∑

p,s=1

ωpωs

[

E2
psr +

∑

i

ai(E
3
psir + E3

psri)

]

+
1

2αvr

3
∑

p=1

ω(k)
p

[

E1∗
pr +

∑

i

aiE
2∗
pri +

∑

i,j

aiajE
3∗
prij

]

+

+
1

2αvr
ε̇ ·

3
∑

p=1

ωp

[

F 2
pr +

∑

i

ai(F
3
pir + F 3

pri) +
∑

i,j

aiaj(F
4
pijr + F 4

pirj + F 4
prij)

]

+

+ε̇ ·
[

∑

i

aiD
2
ir +

∑

i,j

ȧiajD
3
ijr +

∑

i,j,k

ȧiajakD
4
ijkr

]

− g
Nr

αvr
cosα1 cosα2ar+

+g
αcr
αvr

(cosα1 sinα2 cosα3 − sinα1 sinα3) + g
αsr
αvr

(sinα1 cosα3 + cosα1 sinα2 sinα3);

ρ

MT +MF

∑

i

äi

[

B1
i +

∑

i,j

ajB
2
ij +

∑

i,j,k

ajakB
3
ijk

]

+ ε̈+ (2)

+
ρ

MT +MF

3
∑

s=1

α̈s

[ 3
∑

p=1

∂ωp
∂α̇s

(

F 1
p +

∑

i

aiF
2
pi +

∑

i,j

aiajF
3
pij

)]

=
F

MT +MF
− g · z0−

− ρ

MT +MF

[

∑

i,j

ȧiȧjB
2
ij + 2

∑

i,j,k

ȧiȧjakB
3
ijk +

3
∑

p=1

ωp

(

∑

i

ȧiF
2
pi +

∑

i,j

ȧiaj(F
3
pij + F 3

pji)

)]

−

− ρ

MT +MF

3
∑

p=1

ω(k)
p

[

F 1
p +

∑

i

aiF
2
pi +

∑

i,j

aiajF
3
pij

]

;

∑

i

äi

[ 3
∑

p=1

∂ωp
∂α̇r

(

E1∗
pi +

∑

j

ajE
2∗
pij +

∑

j,k

ajakE
3∗
pijk

)]

+ (3)

+2ε̈ ·
3
∑

p=1

∂ωp
∂α̇r

[

F 1
p +

∑

i

aiF
2
pi +

∑

i,j

aiajF
3
pij +

∑

i,j,k

aiajakF
4
pijk

]

+

+

3
∑

n=1

α̈n

[

2

3
∑

p,s=1

∂ωp
∂α̇r

∂ωp
∂α̇n

(

1

ρ
Jpstank +A2

ps +
∑

i

aiE
2
psi +

∑

i,j

aiajE
3
psij

)]

=
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= 2
3
∑

p,s=1

(

ω∗
p,rωs + ω(k)

p

∂ωs
∂α̇r

)(

1

ρ
Jpstank +A2

ps +
∑

i

aiE
2
psi +

∑

i,j

aiajE
3
psij

)

+

+
3
∑

p=1

ω∗
p,r

(

∑

i

ȧiE
1∗
pi +

∑

i,j

ȧiajE
2∗
pij +

∑

i,j,k

ȧiajakE
3∗
pijk

)

−2ε̇ ·
3
∑

p=1

ω∗
p,r

(

F 1
p +

∑

i

aiF
2
pi +

∑

i,j

aiajF
3
pij

)

−

−2

3
∑

p,s=1

∂ωp
∂α̇r

ωs

(

∑

i

ȧiE
2
psi + 2

∑

i,j

ȧiajE
3
psij

)

−
3
∑

p=1

∂ωp
∂α̇r

(

∑

i,j

ȧiȧjE
2∗
pij + 2

∑

i,j,k

ȧiȧjakE
3∗
pijk

)

−

−2ε̇ ·
3
∑

p=1

∂ωp
∂α̇r

(

∑

i

ȧiF
2
pi + 2

∑

i,j

ȧiajF
3
pij

)

+
2g

ρ
(MThT +MFhF )

∂

∂αr
(cosα1 cosα2)+

2g
∂

∂αr

[

(cosα1 sinα2 cosα3 − sinα1 sinα3)(
∑

i

aiα
c
i +Hlc)

]

+

+2g
∂

∂αr

[

(cosα1 sinα2 sinα3 + sinα1 cosα3)(
∑

i

aiα
s
i +Hls)

]

,

here we introduced denotations

ω(k)
p = −

3
∑

n=1

α̇n
∂ωp
∂αn

, ω∗
p,k =

∂ωp
∂αk

− d

dt

(

∂ωp
∂α̇k

)

.

The system of equations (1)–(3) completely describes nonlinear dynamics of combined motion
of reservoir and liquid, which partially filled it, under action of external forces and moments. The
system (1)–(3) consists of N + 6 equations of the second order, where N is the number of considered
normal modes of oscillations of liquid free surface. Here the equations (1) describe oscillations of liquid
free surface, equations (2) describe translational motion of reservoir, and equations (3) are connected
with angular motion of reservoir. In aggregate these equations describe combined motion of reservoir
with free surfaced liquid for arbitrary number of normal modes of oscillations. All coefficients of the
system of equations are computed as quadratures from ϕn(x, y) and Ω0 and some simple mathematical
expressions of these coefficients. This system has specific property, namely, it is linear relative to
second derivatives of unknown functions. This property predetermines potential of simple integration
of these equations by numerical procedures.

3. Construction of domains of instability and conditions of transition of system on the
mode of parametric resonance

The equations (1)–(3) describe the process of development of parametric oscillations in mechanical
system “reservoir – liquid with a free surface”, when reservoir moves vertically by the given harmonic
law εz = Hz cos(pt). As it is known from theory of parametric oscillations [1], there are domains in the
plane of parameters (p,Hz), when solutions of the equations (1)–(3) infinitely increase, i.e., domains of
dynamical instability. Construction of domains of instability will make it possible to ascertain for what
values of parameters of external kinematic excitation of the reservoir (p,Hz) the system “reservoir –
liquid with a free surface” will pass into the mode of parametric resonance under the presence of small
initial perturbation of liquid free surface.
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Let us find initially equations of boundaries of instability domain for the system of equations (1),
or, in other words, for the Faraday classical system. As it is known from theoretical investigations [1,3]
in this case investigation of instability can be done on the basis of linearized motion equations in a
vicinity of the first (lower) resonance. We write linearized equation for the amplitude a1 of normal
mode with the lowest frequency, i.e., the first antisymmetric mode ψ1, under the presence of external
vertical excitation of the reservoir εz = Hz cos(pt) as

ä1α
v
1 +B2z

11 ε̈za1 + gN1a1 = 0,

and rewrite it in the form of the classical Mathieu equation, namely

ä1 + ω2
1(1− νHzp

2 cos pt)a1 = 0, (4)

where the following denotations are introduced ν =
B2z

11
gN1

, ω1 = gN1

αv
1

is normal frequency of the first

antisymmetric normal mode ψ1. Domain of real eigenvalues of the equation (4) coincides with domain
of solutions, which increase infinitely. On the other hand, domain of imaginary eigenvalues corresponds
to bounded (almost periodical) solutions. Multiple roots, which have values 1 or −1 correspond to
boundaries, which separate domains of real and imaginary roots. In the case of eigenvalue 1 solution
of the differential equation will be periodic with period T = 2π

ω1
, and in the case of eigenvalue −1 it

will have period 2T .
Thus, domains of infinitely increasing solutions are separated from domains of stable periodic

solutions with periods T or 2T . Namely, two solutions of the same period bound the domain of
instability, two solutions of different periods bound the domain of stability. Strict proof of this theorem
is given in [3]. It follows from the mentioned theorem that determination of boundaries of instability
can be reduced to determination of conditions, under which the differential equation (4) has periodic
solution with period T or 2T .

Since existence of periodic solutions and potential of their decomposition into the Fourier series is
well-known, we look for periodic solution of the problem in the form

a1 = B0 +
∞
∑

k=1

(

Ak cos
kpt

2
+Bk sin

kpt

2

)

, (5)

where periodic solutions of period T are associated with even values of k = 2, 4, ..., and periodic
solutions of period 2T are associated with odd values of k = 1, 3, .., moreover, the number k, by
which we restrict ourselves in the decomposition (5), means the number of zone of the corresponding
parametric resonance (zones of instability).

For determination of boundary of the first parametric resonance (k = 1) we look for periodic
solution in the form

a1 = B1 cos
pt

2
+A1 sin

pt

2
, (6)

Let us substitute (6) into the equations (4) and use the Galerkin method, namely, we multiply the
equation (4) initially by cos pt2 and later by sin pt

2 , then we integrate the obtained expressions on period
2T . As the result we obtain a system of linear homogeneous algebraic equations relative to values
of amplitudes A1 and B1, which, as it is known from linear algebra, has nonzero solutions only then
determinant, composed from coefficients of this system, is equal to zero. If we expand determinant
we obtain equation for boundaries of domain of the first parametric resonance in the classical Faraday
problem

p =
2ω1

√

1− 2ω2
1νHz

та p =
2ω1

√

1 + 2ω2
1νHz
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For construction boundaries of zone of the second parametric resonance we look for periodic solu-
tions of period T as

a1 =
B0

2
+B2 cos pt+A2 sin pt+A4 sin 2pt,

and using again the Galerkin method we obtain equations of boundaries as

p =

√

−1 +
√

1 + 2ω4
1ν2H

2
z

ω1νHz

and

p = ω1

√

2(5 +
√

9 + ω4
1ν

2H2
z )

16− ω4
1ν

2H2
z

.

Position of zones of the first and second parametric resonance in the classical Faraday problem
in the plane ( ωω1

, Hz
R ) is shown in Fig. 5. As it is seen from figure, in zone of the first parametric

resonance every small amplitude of oscillations of reservoir in time leads the system into the mode of
parametric resonance. On the other hand, it is practically impossible to adjust the system into the
second parametric resonance, since this occurs in very narrow range of frequencies for large amplitudes
of excitation of reservoir motion Hz.

Fig. 5. Zones of the first (1) and second (2) resonance for the classical Faraday problem.

For construction of zones of parametric resonance in the generalized Faraday problem with potential
of horizontal motion of the reservoir (εx = 0; εz = Hz cos pt; αi = 0, i = 1, 2, 3) we linearize the
equations (1), (2) and rewrite them only for the first antisymmetric mode ψ1 with amplitude a1 with
potential of horizontal motion of the reservoir by coordinate εy

ä1α
v
1 +B1y

1 ε̈+B2z
11 ε̈za1 + gN1a1 = 0,y

ρ

MT +MF
B1y

1 ä1 + ε̈y = 0,
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and, taking into account the denotations ν =
B2z

11
gN1

, λ1 =
B1y

1
αv
1

, λ2 =
ρB1y

1
MT+MF

, we represent them further

in canonic form
ä1 + λ1ε̈y + ω2

1(1− νHzp
2 cos pt)a1 = 0, (7)

λ2ä1 + ε̈y = 0. (8)

For construction of boundaries of zone of the first parametric resonance we look for periodic solutions
of period 2T of the system of equations (7)–(8) as

a1 = A1
cos pt

2
+B1

sin pt

2
, εy = A2

cos pt

2
+B2

sin pt

2

and by means of the Galerkin method we obtain the corresponding equations of boundaries in the form

p =
2ω1

√

1− 2ω2
1νHz − λ1λ2

(9)

and

p =
2ω1

√

1 + 2ω2
1νHz − λ1λ2

. (10)

For construction of boundaries of zone of the second parametric resonance we look for the periodic
solution of period T in the form

a1 = B10 +B11 cos pt+A11 sin pt+A12 sin 2pt,

εy = B21 cos pt+A21 sin pt+A22 sin 2pt,

and again by means of the Galerkin we obtain the corresponding equations of boundaries as

p =

√

λ1λ2 − 1 +
√

(λ1λ2 − 1)2 + 2ω4
1ν

2H2
z

ω1νHz

and

p =
√
2ω1

√

5(1− λ1λ2) +
√

(λ1λ2 − 1)2 + ω4
1ν

2H2
z

16(λ1λ2 − 1)2 − ω4
1ν

2H2
z

.

Distribution of the first and second zones of parametric resonance in the generalized Faraday
problem in the plane ( ωω1

, Hz
R ) for different ratio of masses (1 − MF = 100MT , 2 − MF = 10MT ,

3 − MF = MT , 4 − MF = 0.1MT , 5 − MF = 0.01MT ) is shown in Fig. 6 and Fig. 7. Domains of
instability are bounded by curves with the same numbers.

As it is seen from figures the presence of supplementary degree of freedom results in increase of
frequency of parametric resonance, moreover, the greater is mass of liquid relative to mass of reservoir
(the greater is influence of liquid mobility), the greater is frequency of parametric resonance. Moreover,
the greater is mass of reservoir relative to mass of liquid, the narrower is zone of parametric resonance
on increase of amplitude of external excitation Hz (actually the case (1 −MF = 100MT ) coincides
with results the classical Faraday problem, which corresponds to infinite mass of reservoir.

For construction of zones of parametric resonance in the generalized Faraday problem with potential
angular motion of reservoir, fixed on pendulum suspension, (Fig. 3) (εx = εy = 0; εz = Hz cos pt;
αi = 0, i = 2, 3) we linearize the equations (1), (2) and rewrite them for the first antisymmetric mode
ψ1 with amplitude a1 and angular motion α1 as

ä+ λF α̈F + ω2
F (1− νHzp

2 cos pt)a = 0, (11)

λT ä+ α̈+ ω2
Tα = 0, (12)
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Fig. 6. Zones of the first resonance in the generalized
Faraday problem with potential of horizontal motion
of reservoir.

Fig. 7. Zones of the second resonance in the gener-
alized Faraday problem with potential of horizontal
motion of reservoir.

where ν =
B2z

11
N1g

. Zones of instability for the first resonance are bounded by periodic solutions with

frequencies p
2 , therefore, we represent periodic solutions for the system (11)–(12) in the form

a = A1 cos

(

pt

2

)

+B1 sin

(

pt

2

)

,

α = A2 cos

(

pt

2

)

+B2 sin

(

pt

2

)

,

and with usage of the Galerkin method with the described above details we obtain characteristic
equation for determination of zones of instability for the first resonance

(

1 + 2ω2
F νHz − λ1λ2

)

p4 +
(

−4(ω2
R + ω2

F )− 8ω2
Fω

2
RνHz

)

p2 + 16ω2
Fω

2
R = 0,

(

1− 2ω2
F νHz − λ1λ2

)

p4 +
(

−4(ω2
R + ω2

F ) + 8ω2
Fω

2
RνHz

)

p2 + 16ω2
Fω

2
R = 0.

Explicit expressions for solutions of these equations are not adduced here due to their awkwardness.
Domains of instability for the first and second normal frequencies for different lengths of pendulum
suspension (1 – l = 100 m, 2 – l = 10 m, 3 – l = 1 m) are shown in Fig. 8 and Fig. 9 in the plane
“frequency of external excitation p – amplitude of external excitation Hz”. Domains of instability
are bounded by curves with the same numbers. As it is seen from graphs, increase of suspension
length of pendulum promotes frequencies lowering and behavior of the system similar to translational
motion of the reservoir. Moreover, increase of suspension length of pendulum marrows instability
domains for both normal frequencies. Location of instability domain for the second normal frequency
depends considerably on suspension length, but this dependence is weaker for the first normal frequency.
Overlapping of this domains occurs only in the range of large amplitudes of external excitation.

4. Peculiarities of development of parametric mechanism of oscillations of liquid free
surface

Previous stage of investigations was done on the basis of linear model and makes it possible to give
preliminary information of development of oscillations for classical and modified Faraday problem.
Actually these information gives prediction of behavior of the system ”reservoir – free surfaced liquid”
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Fig. 8. Zones of the first resonance relative to the first
normal frequency in the generalized Faraday problem
with potential of angular motion of reservoir.

Fig. 9. Zones of the first resonance relative to the
second normal frequency in the generalized Faraday
problem with potential of angular motion of reservoir.

from point of view of system stability and main tendencies of manifestation of parametric mechanism in
such problems. However, it is well-known that the system ”reservoir – free surfaced liquid” is a system
with strong manifestation of nonlinear effects and mechanisms, so, complete investigation of the system
behavior should be done on the basis of nonlinear model. In this case processes will form as aggregate
of corrected version of development of parametric mechanism and concurrent nonlinear processes of
different nature, which originate in the system due to nonlinear properties.

Let us consider peculiarities of development of transient processes in the system “reservoir – liquid
with a free surface“ in the generalized Faraday problem. Actually this problem will answer the question
of existence of steady modes of system behavior and forms of installation of such modes, coupled with
over nonlinear mechanisms

We consider circular cylindrical reservoir with vertical longitudinal axis Oz, which performs vertical
motions according to the given harmonic law εz = Hz cos pt, and can additionally perform displace-
ments εy in the horizontal plane along the axis Oy due to combined motion of the system caused by
transversal oscillations of liquid free surface. Let us consider for numerical example reservoir of radius
R = 0.3 m of MT mass, which is partially filled by liquid of MF mass with H = R depth. For all
variants we consider that initial perturbation of liquid free surface is equal to a1(0) = 0, 01R.

The nonlinear system of equations (1)–(2) is reduced numerically to the Cauchy normal form and
later it is integrated numerically by the standard procedure of Runge–Kutta. On investigation of
dynamics of the system reservoir – liquid we took into account in decompositions n1 = n2 = 12
coordinate functions accurate to squares of amplitudes and n3 = 6 coordinate functions accurate ti
cubic terms. Coordinate functions are distributed in ascending order of the corresponding normal
frequencies except the second axisymmetric mode ψ6, which amplitude is considered accurate to cubic
terms. Step of numerical integration was selected as ∆t = 0, 1πω12 s, where ω12 is the highest normal
frequency in the system. On analysis of results and construction of graphs amplitudes were reduced
to dimensionless form relative to characteristic size of the system, i.e., radius R of reservoir and time
was normalized relative to period of oscillations of the first antisymmetric normal mode ψ1.

Let us consider peculiarities of system transition into the mode of parametric resonance, predicted
by investigation done on the basis of linear model, for the system with mass ratio MT = 0.01MF and
parameters of motion of the reservoir according to harmonic law p = 2.6ω1 and Hz = 0.01R. Graph of
variation in time of amplitude of excitation of liquid free surface on tank wall ξ(R)R are shown in Fig. 10,
Fig. 11 shows frequency spectrum of this excitation.

Mathematical Modeling and Computing, Vol. 1, No. 1, pp. 45–60 (2014)

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Generalizations of the Faraday problem 57

As it is seen from the graph (Fig. 10), for the given value of external parametric excitation p =
= 2.6ω1, which is determined according to formulae of instability boundaries (9)–(10), the system
transits to the mode of parametric resonance and amplitude of excitations on reservoir walls increases
more than 20 times. Here transition to steady mode of oscillations is not manifested, excitation ξ(R)

R
is characterized by amplitude modulation, which law permanently varies in time. The presence of
harmonica on zero or close to zero frequencies means existence of trend (drift, nonzero mean value),
which vary in wide range. We see in frequency spectrum of liquid excitations on walls dominated peak
of harmonics with frequency ω = 1.2ω1 =

p
2 , which is confirmation system transition to the mode close

to parametric resonance (when dominating frequency of oscillations is twice lower than frequency of
external excitation). Typical harmonics of spectrum on combined frequencies for multimodal nonlinear
systems are grouped in a vicinity of dominating frequency, which is supplementary manifestation of
development of parametric mechanism in the system.

For other ratio of masses of reservoir MT and liquid MF , shown in Fig. 6 (when relative mass of
reservoir increases), in frequency spectrum of ξ(R) the number of harmonics on combined frequencies
close to ω = p

2 considerable decreases, which reflect decrease of influence of liquid mobility on horizontal
motion of reservoir, and in the case MT = 100MF these combined frequencies are absent at all. So,
in this case we observe pure parametric resonance as in the classical Faraday problem (oscillations of
liquid have no influence on oscillations of reservoir).

Fig. 10. Amplitudes of waves on reservoir walls on
system excitation in zone of parametric resonance.

Fig. 11. Frequency spectrum of amplitudes of waves
on reservoir walls on system excitation in zone of para-
metric resonance.

Boundaries of stability domain, specified by the equations (9)–(10) were verified also in the case,
when for small amplitudes of motion of reservoir Hz = 0.01R external frequency of excitation is in zone
of stability, for example, below resonant frequency p = 2ω1 and above resonant frequency p = 2.9ω1 for
mass ratio MT = 0.01MF . For below resonant zone of excitation contribution of parametric mechanism
is insignificant (excitations of a free surface of liquid on walls are ξ(R) ≈ 0.01R, so, they are in linear
range of oscillations. For above resonant zone on the contrary considerable contribution of mechanism
of parametric resonance manifests, (Fig. 12, 13), moreover, as it is seen from graphs of amplitudes and
frequency spectrum on system transition to the mode of parametric resonance only transient process
occurs, for which effect of high modes of oscillations is manifested considerably.

For large amplitudes and high frequencies of reservoir excitation in contrast to the classical Faraday
problem dynamical processes in the system develop as aggregate of mechanisms of parametric and
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Fig. 12. Amplitude of free surface on reservoir wall
on system excitation in above resonant zone.

Fig. 13. Frequency spectrum of amplitude of free sur-
face on reservoir wall on system excitation in above
resonant.

forced oscillations, therefore in this case transition into nonlinear mode is possible. In Fig. 14, 15 we
show results of investigation of oscillations in the system “reservoir – liquid with a free surface“ for
amplitude of motion of the reservoir Hz = 0.1R, frequency p = 1.9ω1 (below resonant zone) and mass
ratio MT = 0.01MF .

In spite of the fact that frequency of external excitation is in the stability domain, mechanical
system approaches to nonlinear range of perturbations. As it is seen from graph of frequency spectrum,
dominating harmonic has frequency ω ≈ p, which means prevalence of mechanism of forced oscillations
in comparison with mechanism of parametric resonance. For excitation frequency located in above
resonant zone p = 4.26ω1 considerable increase of oscillations occurs during one period oscillations,
here mechanism of forced oscillations dominates (amplitude of harmonic on frequency ω ≈ p is twice
greater than amplitude of harmonic of frequency ω ≈ 0.5p). Mechanism of forced oscillations promote
great increase of amplitudes of oscillations of free surface of liquid even when frequency of external
excitation differs from resonant one. Therefore, in contrast to the classical Faraday problem under the
presence of horizontal motion of reservoir it is possible to increase oscillations of liquid considerably
by vertical oscillations of reservoir.

Similar qualitative effects are observed in the generalized Faraday problem for reservoir, which
is fixed on pendulum suspension and can perform angular oscillations due to transversal oscillations
on free surface of liquid. Transition to the mode of parametric oscillations manifests if frequency of
external excitation is from zone of instability, and initial excitation in the system can be inserted as both
small excitation of a free surface of liquid and small inclination of reservoir (physical pendulum) from
undisturbed position. Increase of frequency or amplitude of external excitation results in considerable
increase of amplitudes of oscillations even if these parameters of external excitation are from domain
of stability. Here frequency spectrum contains harmonics peculiar for both mechanism of parametric
oscillations and for mechanism of forced oscillations. So, oscillations will occur on frequencies equal
to frequency of external excitation or multiple to it, on normal frequencies and multiple to them ones
and on combined frequencies.

We note also that insertion of supplementary degree of freedom (transversal translational or angular
motion of the reservoir) in this system has different character. Translational motion does not result
in increase of the number of potential resonances, while in the case of angular motion of reservoir
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Fig. 14. Amplitude of free surface on reservoir wall
for large amplitudes of excitation in below resonant
zone.

Fig. 15. Frequency spectrum for amplitude of free
surface on reservoir wall for large amplitudes of exci-
tation in below resonant zone.

supplementary frequency is generated. One potential resonance can happen for domination of angular
motion of pendulum, another one corresponds to domination of liquid sloshing.

5. Conclusions

Several directions of generalization of statements of the classical Faraday problem, which are caused
by the agreement of this problem with existing engineering systems, are suggested. We investigate
peculiarities transient phenomena of mechanical system “reservoir – liquid with a free surface” steady
mode of oscillations for the generalized Faraday problem with potential of transversal translational
or angular motion of the reservoir. We investigate the classical Faraday problem with introduced
supplementary degrees of freedom with considering combined character of motion of reservoir with free
surfaced liquid. Study of system behavior was done on the basis of method of modal decomposition
under the condition of refusal of hypothesis of possibility of neglect of oscillations on natural and
combined frequencies. Introduction of supplementary degree of freedom into the system (potential
of translational or rotational motion of reservoir) results in the increase in frequencies of parametric
resonance, moreover, it increases with the decrease of relative mass of the reservoir in comparison with
liquid mass and with the decrease of the length of the pendulum suspension. In vertical excitation of
reservoir motion under the presence of supplementary degree of freedom in the system, in contrast to
the classical Faraday problem, dynamical process in the system is developed as aggregate of mechanisms
of parametric and forced oscillations, transition to nonlinear mode of motion with considerable increase
of amplitudes of oscillations is possible for any frequency. At the same time transition to steady mode
of oscillations in nonlinear multifrequency systems of “reservoir – liquid with a free surface“ type on
vertical harmonic excitation of motion of reservoir does not occur, i.e. spectrum of oscillations of a
free surface of liquid a;ways contain harmonics on frequency of external loading, normal frequencies of
oscillations and combined frequencies, which are not multiple.

Revision of initial statement of the classical Faraday problem by considering combined character
of motion of the system ”reservoir – liquid” (which better corresponds to such practical applications
as rockets and launchers) and refuse form some hypothesis of linear theory of oscillations on solving
nonlinear problems (which is unreasonably used in this class of problems) makes it possible to state
that the classical Faraday problem is ideally academic problem, which is very narrow particular case of
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behavior of real systems under such types of excitations. Real behavior of reservoir with liquid under
vertical kinematic excitation is much more complicated than the classical Faraday problem.
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Узагальнення задачi Фарадея в механiчнiй системi “резервуар –
рiдина з вiльною поверхнею“
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В роботi розглянуто два узагальнення класичної задачi Фарадея про розвиток пара-
метричного резонансу в механiчнiй системi “резервуар – рiдина з вiльною поверхнею“:
1) вплив додаткового ступеня вiльностi – можливостi горизонтального руху резерву-
ару за рахунок поперечних коливань вiльної поверхнi рiдини; 2) вплив додаткового
ступеня вiльностi – можливостi кутових коливань резервуару, що висить на маятни-
ковому пiдвiсi, за рахунок коливань вiльної поверхнi рiдини. Дослiдження виконано
на основi ефективної нелiнiйної багатомодової моделi, яка враховує сумiсний рух ре-
зервуару та вiльної поверхнi рiдини. Показано, що на вiдмiну вiд класичної задачi
Фарадея, динамiчнi процеси в системi розвиваються як сукупнiсть механiзмiв пара-
метричних та вимушених коливань. Для розглянутих узагальнень задачi Фарадея
можливий вихiд коливань вiльної поверхнi рiдини у нелiнiйний дiапазон амплiтуд
при будь-якiй частотi зовнiшнього вертикального збурення.

Ключовi слова: нелiнiйна динамiка рiдини, вiльна поверхня, параметричний ре-

зонанс, задача Фарадея, вихiд на усталений режим
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