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Запропоновано методику in-situ калібрування 3D-зонтів магнітного поля з 
лінійними вихідними характеристиками давачів за відомих параметрів кутового розсу-
міщення їхніх площин з гранями підкладки зонта. Одержані аналітичні вирази для 
розрахунку лінійних коефіцієнтів. Експериментально підтверджено ефективність запро-
понованої методики. 

Ключові слова: 3D-зонд магнітного поля, методика калібрування, in-situ калібру-
вання, давачі Холла. 

 
This work presents a method of in-situ calibrating 3D magnetic sensors based on Hall 

devices that have linear field characteristics and are non-orthogonal, with known position of 
each Hall device in relation to the 3D sensor’s substrate. Formulas for calculation of Hall 
devices linear coefficients are obtained. The method’s efficiency is proved experimentally.  

Key words: 3D magnetic sensors, calibration method, in-situ calibration, Hall devices 
 

Introduction 
Hall devices are widely used as magnetic sensors. They have a number of advantages including a 

wide measurement range (10-5…102 Т), low power consumption (<10 mW) and small size (1..3 mm). The 
output signal of an ordinary Hall device is linearly dependent on the projection of the magnetic-field vector 
B onto the normal N to its sensitive semiconductor layer. So, in order to obtain a measurement device for 
measuring three orthogonal projections xB , yB , zB  of the magnetic-field vector simultaneously, one 
integrates three Hall devices into a 3D-sensor placing them on the adjacent sides of the sensor’s cubic 
substrate [1, 2]. At best three Hall devices in a 3D sensor are completely orthogonal, so in that case 3D-
sensor’s calibration comes to finding of the linear coefficient of each Hall device included in this sensor. 
However, the condition of the Hall devices complete perpendicularity is not practically met because of 
processing limits of 3D sensor’s manufacturing. In case if the condition of strict perpendicularity is not 
fulfilled, calibration gets more complicated: in this case the parameters of Hall devices angular 
displacements are to found in addition to the above-mentioned linear coefficients. 

A number of important magnetometry problems set requirements that sensors have to be stable when 
working for a long time in a harsh environment. Such problems include magnetic field measurement in 
magnetic deflection systems of charged particle accelerators, magnetic confinement systems of 
thermonuclear reactors, systems of magnetic diagnostics of hardware and pipelines etc. The main difficulty 
of producing magnetic field measurement devices in such a harsh environment is thermal and radiation 
instability of a Hall device sensitive layer. The described problem can be solved in two ways: using very 
stable semiconductors and recalibrating sensors. 

Problems of improving stability of semiconductors used in Hall devices intended for operation in a 
harsh environment including radiation conditions of charged particle accelerators and thermonuclear 
reactors are covered in a number of publications [3, 4, 5]. A number of publications [6] cover in-situ 
calibration of semiconductor Hall devices by means of a miniature coil integrated into a magnetometric 
sensor. The coil periodically establishes a test magnetic field. The drift of Hall coefficient can be 
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determined by measuring the change of the Hall device output signal caused by test magnetic field 
established by the coil. 

However in some cases test coils are not applicable. First reason for it is the fact that test coils can be 
impacted by low or high temperatures, so the field that they produce should be considered unstable. The second 
reason is that the magnitude of test magnetic flux density is rather small (does not exceed several mT), so at 
high outside magnetic or electromagnetic fields the Hall coefficients cannot be defined with sufficient accuracy. 
The third reason is the fact that test coils increase the magnetic sensor size significantly. This hamper Hall 
devices to be placed tightly thus restricting the spatial resolution of a 3D sensor.  

That’s why ordinary periodical calibration of 3D sensors in a magnetic measure or an electromagnet 
is still urgent in a number of magnetometry problems. The first calibration may be done by the 
manufacturer using high-precision mechanical devices for exact positioning the calibrated sensors in the 
uniform magnetic field. However, in-situ calibration (calibration in work environment) sets the condition 
of involving few if any additional devices, so use of expensive high-precision positioning devices is 
undesirable for in-situ calibration. 

 
Problem statement and the work purpose 

In this work we introduce a new method of periodical refinement of linear coefficients in the output 
signals of Hall devices included in the 3D sensor being calibrated in the case if the strict perpendicularity 
condition is not met and the parameters of angular displacements are known. The problem of finding the 
angular displacements is solved in [7] using numerical methods with high computational complexity. The 
same solution can be used for refinement of the linear coefficients. 

However, the growing significance of intelligent sensors cause the problem of finding such a 3d-
sensor’s in-situ calibration method that would possess the minimal computational complexity and thus can 
be implemented by microconverters included in intelligent sensors based on magnetometric 3D-sensors. 

We’ve obtained analytic formulas for the linear coefficients of Hall devices combined into a 
magnetic 3D-sensor. The derived formulas use the parameters of the mentioned angular displacements that 
are defined once during the first calibration process and sets of Hall devices output signals measured when 
rotating a 3D sensor in a uniform magnetic field in arbitrary manner. The proposed method requires no 
high-precision mechanisms that are usually used for positioning 3D-probes in a magnetic field. 

 
Method description 

The set problem has concern to in-situ calibrating magnetometric 3D-sencors, but the mathematical 
tool for its solution can be used for solving the problems of measuring vector quantities in general. That’s 
why all analytic dependencies given below are formulated abstractedly with undisclosed physical meaning 
of the formulas terms. 

Let the vector quantity ( )M x y z=  being measured have the invariant module: 

2 2 2M x y z= + +                                                               (1) 
Let’s suppose that the vector quantuty is to be measured by a 3D-probe with three sensors on 

adjacent sides of its cubic substrate and each sensor’s output signal linearly depends on the vector 
quantity’s projection normal to its plane: 

1 1 1NS R M=  

2 2 2NS R M=                                                                        (2) 

3 3 3NS R M=  
there 1S , 2S , 3S  are output signals, 1R , 2R , 3R  are the linear coefficients of three sensors in a 3D-probe, 

1NM , 2NM , 3NM  are the projections of the vector M  which are normal to the planes of three sensors. 
If the planes of all sensors combined into a 3D-probe are completely perpendicular then one can 

calibrate such a 3D-probe (and thus find the linear coefficients 1R , 2R , 3R ) rotating it arbitrarily in a 
uniform test vector field and reading its output signals. This calibration method is given in [8]. 
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Let the condition of strict perpendicularity be broken. Having the direction cosines of the 
perpendiculars to the planes of sensors combined into a 3D-probe marked as ( 11t , 12t , 13t ), ( 21t , 22t , 23t ), 
( 31t , 32t , 33t ) in some Cartesian coordinates xyz  assigned to this 3D-probe, we obtain the equations: 

1 11 1 12 1 13 1R t x R t y R t z S+ + =  

2 21 2 22 2 23 2R t x R t y R t z S+ + =                                                         (3) 

3 31 3 32 3 33 3R t x R t y R t z S+ + =  
The work [7] introduces the method of calibrating magnetic 3D-sensor with output signals that are 

described by equations (3). The parameters of sensor’s angular displacements (i.e. the direction cosines ijt , 

1,3i = , 1,3j = ) remain invariant during sensor’s operation but the linear coefficients 1R , 2R , 3R  can change. 
Let’s find the linear coefficients 1R , 2R , 3R  by arbitrary rotation of a 3D-sensor in a space where 

the vector quantity has the invariant module M  (values ijt  ( 1,3i = , 1,3j = ) are assumed to be known). 
If the set of equations (3) possesses a solution then its matrix A  has an inverse matrix C : 

1 11 1 12 1 13

2 21 2 22 2 23

3 31 3 32 3 33

R t R t R t
A R t R t R t

R t R t R t

 
 =  
 
 

;            
11 12 13

1
21 22 23

31 32 33

c c c
C A c c c

c c c

−
 
 = =  
 
 

                        (4) 

where ijc  are some unknown coefficients. 

Using the inverse matrix (4) we can write unknown components of the vector M  in the way: 
11 12 13 1

21 22 23 2

31 32 33 3

x c c c S
y c c c S
z c c c S

    
     = ⋅    

     
     

                                               (5) 

So, the components of the vector being measured can be written in the following way: 
11 1 12 2 13 3x c S c S c S= ⋅ + ⋅ + ⋅ , 21 1 22 2 23 3y c S c S c S= ⋅ + ⋅ + ⋅ , 31 1 32 2 33 3z c S c S c S= ⋅ + ⋅ + ⋅ . 

Since the measured vector’s module (1) is invariant in a uniform field, for each 3D-sensor’s position 
in this field we can write: 

( ) ( ) ( )2 2 2 2
11 1 12 2 13 3 21 1 22 2 23 3 31 1 32 2 33 3c S c S c S c S c S c S c S c S c S M+ + + + + + + + =                   (6) 

Having opened the brackets and combined similar terms we obtain: 

( ) ( ) ( )
( ) ( )

( )

2 2 2 2 2 2 2 2 2 2 2 2
11 21 31 1 12 22 32 2 13 23 33 3

11 12 21 22 31 32 1 2 11 13 21 23 31 33 1 3
2

12 13 22 23 32 33 2 3

2 2

2

c c c S c c c S c c c S

c c c c c c S S c c c c c c S S

c c c c c c S S M

+ + + + + + + + +

+ + + + + +

+ + + =

                          (7) 

Having measured the output signals 1S , 2S , 3S  for different sensor’s position in a uniform field (the 
measured vector’s components x , y , z  are unknown) we compose a set of equations of form (7). This set is a set 

of linear algebraic equations in 6 unknowns: ( )2 2 2
11 21 31c c c+ + , ( )2 2 2

12 22 32c c c+ + , ( )2 2 2
13 23 33c c c+ + , 

( )11 12 21 22 31 32c c c c c c+ + , ( )11 13 21 23 31 33c c c c c c+ + , ( )12 13 22 23 32 33c c c c c c+ + . The least number of the output 
signals set is 6, as follows from the amount of unknowns. The solutions of the set of at least 6 equations of form (7) 
are some numbers 1c , 2c , 3c , 1v , 2v , 3v  which are connected with the matrix C’s elements by the relationship: 

2 2 2 2
11 21 31 1c c c c+ + = ; 
2 2 2 2
12 22 32 2c c c c+ + = ; 
2 2 2 2
13 23 33 3c c c c+ + = ; 

11 21 12 22 13 23 12 2 2c c c c c c v+ + =                                                          (8) 

11 31 12 32 13 33 22 2 2c c c c c c v+ + =  

21 31 22 32 23 33 32 2 2c c c c c c v+ + =  
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The matrix 1A C− =  can be written using the matrix A  elements: 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 3 22 33 23 32 1 3 13 32 12 33 1 2 12 23 13 22 11 12 13
1

2 3 23 31 21 33 1 3 11 33 13 31 1 2 13 21 11 23 21 22 23

2 3 21 32 22 31 1 3 12 31 11 32 1 2 11 22 12 21 31 32 33

1
det

R R t t t t R R t t t t R R t t t t c c c
A R R t t t t R R t t t t R R t t t t c c c

A
R R t t t t R R t t t t R R t t t t c c c

−
 − − −
 = − − − = 
 − − − 

 
 
 
 
 

    (9) 

Substituting ijc  expressed through relevant elements of the matrix 1A−  we obtain: 

( )( ) ( )( )
( )( ) ( )

2 2
1 2 3 22 33 23 32 13 32 12 33 1 2 3 23 31 21 33 11 33 13 31

22
1 2 3 21 32 22 31 12 31 11 32 1

2 2

2 det

R R R t t t t t t t t R R R t t t t t t t t

R R R t t t t t t t t v A

− − + − − +

+ − − =
 

( )( ) ( )( )
( )( ) ( )

2 2
1 2 3 22 33 23 32 12 23 13 22 1 2 3 23 31 21 33 13 21 11 23

22
1 2 3 21 32 22 31 11 22 12 21 2

2 2

2 det

R R R t t t t t t t t R R R t t t t t t t t

R R R t t t t t t t t v A

− − + − − +

+ − − =
              (10) 

( )( ) ( )( )
( )( ) ( )

2 2
1 2 3 13 32 12 33 12 23 13 22 1 2 3 11 33 13 31 13 21 11 23

22
1 2 3 12 31 11 32 11 22 12 21 3

2 2

2 det

R R R t t t t t t t t R R R t t t t t t t t

R R R t t t t t t t t v A

− − + − − +

+ − − =
 

The determinant of A  is as follows: 
( ) ( ) ( )

( )
1 2 3 11 22 33 11 23 32 1 2 3 12 23 31 12 21 33 1 2 3 13 21 32 13 22 31

1 2 3 11 22 33 11 23 32 12 23 31 12 21 33 13 21 32 13 22 31

det A R R R t t t t t t R R R t t t t t t R R R t t t t t t

R R R t t t t t t t t t t t t t t t t t t

= − + − + − =

= − + − + −
    (11) 

Taking into consideration equations (10) and (11) we obtain: 
( )( ) ( )( ) ( )( )( )

( )
22 33 23 32 13 32 12 33 23 31 21 33 11 33 13 31 21 32 22 31 12 31 11 32

1 2 2
1 11 22 33 11 23 32 12 23 31 12 21 33 13 21 32 13 22 31

2 t t t t t t t t t t t t t t t t t t t t t t t t
R R

v t t t t t t t t t t t t t t t t t t

− − + − − + − −
=

− + − + −
 

( )( ) ( ) ( ) ( )( )( )
( )

22 33 23 32 12 23 13 22 23 31 21 33 13 21 11 23 21 32 22 31 11 22 12 21
1 3 2

2 11 22 33 11 23 32 12 23 31 12 21 33 13 21 32 13 22 31

2 t t t t t t t t t t t t t t t t t t t t t t t t
R R

v t t t t t t t t t t t t t t t t t t

− − + − − + − −
=

− + − + −
   (12) 

( )( ) ( )( ) ( )( )( )
( )

13 32 12 33 12 23 13 22 11 33 13 31 13 21 11 23 12 31 11 32 11 22 12 21
2 3 2

3 11 22 33 11 23 32 12 23 31 12 21 33 13 21 32 13 22 31

2 t t t t t t t t t t t t t t t t t t t t t t t t
R R

v t t t t t t t t t t t t t t t t t t

− − + − − + − −
=

− + − + −
 

Let’s mark the right sides of all equations (12) as 1P , 2P , 3P  respectively in order to make them 

more concise. Using the third equation of the equations set (12) 3R  can be written in this way: 3
3

2

PR
R

= . 

Substituting this expression in the second equation of the set (12) we can express 2R  in the following way: 

3 1
2

2

P RR
P

= . After substitution of the obtained value in the first equation in the set (12) we derive the 

following expression: 2 1 2
1

3

P PR
P

= , i.e. 1 2
1

3

P PR
P

= ± . 

Hence we can know the module of 1R . Its sign is to be defined by the sign of the sensor’s output 
signal (the vector M direction mast be known). The values of 2R  and 3R  can be derived from the second 
and the third equations of the set (12). 
 

Method approbation 
The proposed in-situ calibration method was experimentally approved using a 3D probe based on 

Hall devices with output signals that can be approximately described by functions (3). In the case of Hall 
devices the sought values 1R , 2R , 3R  have the following physical meaning: 

1

i
i Hi

IR R
d

=       (13) 

where HiR  is the Hall coefficient of the Hall sensor numbered i, iI  is the current through its current 
electrodes, id  is the thickness of its sensitive layer. 
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The direct experiments with 3D magnetic sensors calibration in a harsh environment can be hardly 
conducted because they can be too time-consuming and require a year or more. So in order to perform an 
approbation of the proposed calibration method we used the approach based on the imitation of the Hall 
coefficients instability by means of arbitrary changing the feed current of the Hall devices. As follows from 
(13), the Hall coefficient HiR  of a sensor and its feed current iI  influence the sought coefficient iR  in the 
same way. So if we change the current iI  within certain limits and consider this change random and 
unknown, thus we conduct experiments with imitation of instability of the linear coefficient iR . During the 
conducted experiments we changed the feed current of each Hall device in the 3D magnetic sensor 
independently by ±5 % of its nominal value (20 mA). 

At the first calibration stage the 3D magnetic sensor was placed into a magnetic shield in order to 
measure the offset voltages of all Hall devices included into it. Then we measured the 3D probe’s output 
signals 1S , 2S , 3S  for its 100 arbitrary positions in a test uniform magnetic field with magnetic flux 
density BREF = 127 mT and subtracted the corresponding offset voltages measured previously from the 
obtained values. The Fig. 1 shows results of measuring the magnetic-field vector BER at the following 
changes of the feed currents: 1 2.9%I = −δ , 2 4.2%I =δ , 3 0.8%I = −δ  without correction of the linear 
coefficients (BER) and with applied correction in accordance to the proposed method (BCOR). 

It can be seen that with no correction the deviation of the calculated values of the magnetic-field 
vector B was in range from 123 to 133 mT, which means the error ±4.6 % while refinement of the linear 
coefficients in accordance with the proposed method provided deviation of the calculated magnetic-field 
vector’s module that does not exceed 0.3%. This error up to 0.3% is caused by the fact that Hall devices 
output signals are described by equations (3) approximately. 

 

 
Fig. 2 The results of calculations of the magnetic-field vector module  

with no correction of linear coefficients (BER) and after such a correction (BCOR). 
 

Conclusion 
The work introduces a new method of in-situ calibrating a 3D-probe that is intended for vector 

quantities measurement and composed from sensors non-orthogonally placed on adjacent sides of its cubic 
substrate. The parameters of sensors angular displacements are assumed to be known. Eash sensor’s output 
signal is linearly dependent on the measured vector’s projection normal to its plane. Analytic formulas for 
the linear coefficients of the 3D-probe’s output signals were obtained. The proposed method is based on 
measurement of the 3D-sensor’s output signals by means of its arbitrary rotation in a uniform field (3D-
probe’s current position is unknown. The method requires no tools for positioning calibrated 3D-sensors in 
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a test field. In the case if need for development of an intelligent sensor based on 3D-sensors for vector 
quantities measurement arises the proposed method of refining linear coefficients can be implemented in 
software of intelligent sensors. 
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Для кусково-однорідного провідного півпростору розглянуто аналітично-числову 
методику знаходження компонент векторів напруженості електромагнітного поля, збу-
дженого стороннім джерелом струму. Проведено числові експерименти для повної, з ураху-
ванням струмів зміщення, та квазістаціонарної моделей, досліджено вплив включення з 
вищою та нижчою, ніж у геосередовищі, провідністю на розподіл поля на денній поверхні. 

Ключові слова: система рівнянь Максвелла; система рівнянь Гельмгольца; уста-
лені коливання електромагнітного поля; непрямий метод граничних елементів. 

 
The numerical-analytic technique for finding electric and magnetic components of 

electromagnetic field in a piecewise homogeneous conductive half-space is suggested. 
Electromagnetic field is excited by a horizontal contour with current harmonically changing in 
time. The problem is formulated and solved by means of the boundary element method. 

Key words: Maxwell's equation system, the Helmholtz equation system, established 
EMF fluctuations; indirect boundary element method. 

 
Вступ 

Сьогодні гармонічно змінні в часі електромагнітні поля (ЕМП) в однорідних та гори-
зонтально-шаруватих моделях земної кори за дії природних та штучних джерел досліджені за 
допомогою добре розвинутої теорії спектрального аналізу. Це особливо стосується широкого класу 
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