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3anponoHoBaHO MeTOAMKY IN-Situ kaniopyBannsi 3D-30HTIB MarHiTrHoro moJs 3
JiHIAHMMHM BUXITHUMH XapaKTePUCTHUKAMM JaBadviB 3a BiIOMHX mapaMeTpiB KyTOBOIo po3cy-
MillleHHs1 IXHIX NJIOIMH 3 TPaHsIMH MiAKJAAKH 30HTA. Oaep:kaHi aHaXITH4YHI BUpa3m 1J
po3paxyHKy JiHiliHuX KoedinieHTiB. ExCiepuMeHTAILHO MiATBEPAKeHO e()eKTUBHICTDH 3a1po-
TOHOBAHOI METOIMKH.

Kawuogi ciioBa: 3D-30Ha1 MarHiTHOro moJjisi, METOAMKA KamiopyBaHHs, in-Situ kaaiopy-
BaHHS, 1aBayi XoJsa.

This work presents a method of in-situ calibrating 3D magnetic sensors based on Hall
devices that have linear field characteristics and are non-orthogonal, with known position of
each Hall device in relation to the 3D sensor’s substrate. Formulas for calculation of Hall
deviceslinear coefficients are obtained. The method’s efficiency is proved experimentally.
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Introduction
Hall devices are widely used as magnetic sensors. They have a number of advantages including a
wide measurement range (10°...10% T), low power consumption (<10 mW) and small size (1..3 mm). The
output signal of an ordinary Hall deviceis linearly dependent on the projection of the magnetic-field vector

B onto the normal N to its sensitive semiconductor layer. So, in order to obtain a measurement device for
measuring three orthogonal projections B,, B,, B, of the magnetic-field vector simultaneously, one

integrates three Hall devices into a 3D-sensor placing them on the adjacent sides of the sensor’s cubic
substrate [1, 2]. At best three Hall devices in a 3D sensor are completely orthogonal, so in that case 3D-
sensor’s calibration comes to finding of the linear coefficient of each Hall device included in this sensor.
However, the condition of the Hall devices complete perpendicularity is not practically met because of
processing limits of 3D sensor’s manufacturing. In case if the condition of strict perpendicularity is not
fulfilled, calibration gets more complicated: in this case the parameters of Hall devices angular
displacements are to found in addition to the above-mentioned linear coefficients.

A number of important magnetometry problems set requirements that sensors have to be stable when
working for a long time in a harsh environment. Such problems include magnetic field measurement in
magnetic deflection systems of charged particle accelerators, magnetic confinement systems of
thermonuclear reactors, systems of magnetic diagnostics of hardware and pipelines etc. The main difficulty
of producing magnetic field measurement devices in such a harsh environment is thermal and radiation
instability of a Hall device sensitive layer. The described problem can be solved in two ways: using very
stable semiconductors and recalibrating sensors.

Problems of improving stability of semiconductors used in Hall devices intended for operation in a
harsh environment including radiation conditions of charged particle accelerators and thermonuclear
reactors are covered in a number of publications [3, 4, 5]. A number of publications [6] cover in-situ
calibration of semiconductor Hall devices by means of a miniature coil integrated into a magnetometric
sensor. The coil periodically establishes a test magnetic field. The drift of Hall coefficient can be
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determined by measuring the change of the Hall device output signal caused by test magnetic field
established by the cail.

However in some cases test coils are not applicable Firgt reason for it is the fact that test coils can be
impacted by low or high temperatures, so the field that they produce should be considered unstable. The second
reason is that the magnitude of test magnetic flux density is rather small (does not exceed severa mT), so at
high outside magnetic or e ectromagnetic fieds the Hall coefficients cannot be defined with sufficient accuracy.
The third reason is the fact that test coils increase the magnetic sensor size significantly. This hamper Hall
devicesto be placed tightly thus restricting the spatial resolution of a 3D sensor.

That’'s why ordinary periodical calibration of 3D sensors in a magnetic measure or an el ectromagnet
is still urgent in a number of magnetometry problems. The first calibration may be done by the
manufacturer using high-precision mechanical devices for exact positioning the calibrated sensors in the
uniform magnetic field. However, in-situ calibration (calibration in work environment) sets the condition
of involving few if any additional devices, so use of expensive high-precision positioning devices is
undesirable for in-situ calibration.

Problem statement and the wor k pur pose

In this work we introduce a new method of periodical refinement of linear coefficients in the output
signals of Hall devices included in the 3D sensor being calibrated in the case if the strict perpendicularity
condition is not met and the parameters of angular displacements are known. The problem of finding the
angular displacements is solved in [7] using humerical methods with high computational complexity. The
same solution can be used for refinement of the linear coefficients.

However, the growing significance of intelligent sensors cause the problem of finding such a 3d-
sensor’s in-situ calibration method that would possess the minimal computational complexity and thus can
be implemented by microconvertersincluded in intelligent sensors based on magnetometric 3D-sensors.

We ve obtained analytic formulas for the linear coefficients of Hall devices combined into a
magnetic 3D-sensor. The derived formulas use the parameters of the mentioned angular displacements that
are defined once during the first calibration process and sets of Hall devices output signals measured when
rotating a 3D sensor in a uniform magnetic field in arbitrary manner. The proposed method requires no
high-precision mechanisms that are usually used for positioning 3D-probes in a magnetic field.

Method description
The set problem has concern to in-situ calibrating magnetometric 3D-sencors, but the mathematical
tool for its solution can be used for solving the problems of measuring vector quantities in general. That's
why all analytic dependencies given below are formulated abstractedly with undisclosed physical meaning
of theformulas terms.

Let the vector quantity M = (x y z) being measured have the invariant module;

M=Jx2+y2+z2 @

Let's suppose that the vector quantuty is to be measured by a 3D-probe with three sensors on
adjacent sides of its cubic substrate and each sensor’s output signal linearly depends on the vector
guantity’s projection normal to its plane:

S =RMy;
S, =RMy;, ()
S = RgMy3

there S, S,, S; areoutput signals, R, R,, R; arethe linear coefficients of three sensors in a 3D-probe,

My1, My2, M3 arethe projections of the vector M which are normal to the planes of three sensors.

If the planes of all sensors combined into a 3D-probe are completely perpendicular then one can
calibrate such a 3D-probe (and thus find the linear coefficients R, R,, R;) rotating it arbitrarily in a
uniform test vector field and reading its output signals. This calibration method is givenin [8].

155



Let the condition of strict perpendicularity be broken. Having the direction cosines of the
perpendiculars to the planes of sensors combined into a 3D-probe marked as (t;;, 45, ti3), (ty1, tyy, ths),
(t31, t3o, ta3) in some Cartesian coordinates xyz assigned to this 3D-probe, we obtain the equations:

Rty X+ Rty + Rity3z=§
Roty X+ Rty y + Roty32= S, ©)
Rotai X+ Retap Y + Rotzaz = S

The work [7] introduces the method of calibrating magnetic 3D-sensor with output signals that are
described by equations (3). The parameters of sensor’s angular displacements (i.e. the direction cosines t;;,
i =1,3, j =1,3) remaininvariant during sensor’s operation but thelinear coefficients R, R, , R, can change.

Let’s find the linear coefficients R, R,, R; by arbitrary rotation of a 3D-sensor in a space where
the vector quantity has theinvariant module M (values t;; (i =13, j :ﬁ) are assumed to be known).

If the set of equations (3) possesses a solution then its matrix A has an inverse matrix C :

aRit; Rty R 9 &, Cp O3 9
A= 9R2t21 Roty,  Rotys _ C=A'= 9021 Cx %3_ (4)
Retsi Rty Relszg é%l C Cug

where ¢; are some unknown coefficients.

Using the inverse matrix (4) we can write unknown components of the vector M inthe way:
O &y Cp C30aH0
9y1=9021 Cn Cp :x952: ®)
$75 Son on cnp S

So, the components of the vector being measured can be written in the following way:

X=Cy 3G 0 %S, + 03553, Y =0y 5§ 0 %5, +C53 583, 2= Gy 55, 165555, 6335,
Since the measured vector’s module (1) isinvariant in a uniform field, for each 3D-sensor’ s position
in this field we can write:

(cuS +C0oS +€15S3)” +(CnS + €205, +6555)° + (S + €30Sy +€55Sy)” =M 2 ©)
Having opened the brackets and combined similar terms we obtain:

(0121+C€1+C<§1)Sf +(sz +c%, +0§Z)S§ "'(0123 +0§3+0§3)S§ +
2(C11Cip + Co1Cop +C31C3p ) SS; +2(C11Cy3 + Co1Cog +C1Ca3) §S; + @)

+2(C1pC13 + CopCag +C3pC33) 83 = M 2
Having measured the output signals S;, S,, S; for different sensor’s position in a uniform field (the
measured vector's components X, y, z areunknown) we composea set of equations of form (7). Thisset isa st
of linear algebraic eguations in 6 unknowns: (cfl +C3 +<.‘§1) : (of2 +C3, +<.‘§2) : (cf3 +C3; +<.‘§3) :
(CuaCio *+C1Cop *+ CarCaa) + (C1aCis + CarCos + CarCas)  (C1aCua + CaCos + CapCag ) - Theleast number of the output
signals st is 6, asfollows from theamount of unknowns. The solutions of the set of at least 6 equations of form (7)
aesomenumbers ¢, C,, C3, V;, Vo, V3 Which are connected with the matrix C's dements by the relationship:
ch+ch +cg =cf;
Ch +C5 +C5 =G5 ;
Gl + C33 + €5 = 05
201Co1 +2C15Cpp +2C13Co3 =y 8
20;1C31 + 2C5C3 + 2C13C33 = Vs
2Cy1Ca1 + 2CxyC3p +2C53C33 = V3
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The matrix A1 =C can bewritten using the matrix A dements:
ARy (toolas - toalar) RiRs(lialer - tiolss) RiRe (tiotzs - t13t22); &y Cp CG30
At= det—Ag RoRs (tastar - toitss) RRs(tistas - tistsr) RiR(tistr - titrs) 2= C O i (9)
ERRs (togtss - toots) RiRs(tiotar - tigtsy) RIR (tiatyn - tioty)g &Ca1 Ca Ciz

Substituting ¢; expressed through relevant elements of the matrix A ! \we obtain:
2RRRE (totas - tostsr ) (tiatar - tiotas) + 2RIRRE (tostar - toatas) (tustas - tistar) +
+2R RoRE (tyrtay - tootar ) (tiots: - tiatsn) =i (det A)
2RRERs (taatas - tostan) (tiotos - tistrn) + 2RIRERS (tastas - tortss) (tiator - tustas) +
+2RRZRy (toata - tootar) (it - tiotyr) = Vs (det A)
2RERoRs (tratr - tiotas) (tiotzs - tistn) + 2RERRe (tratas - tuatar) (tistr - tiates) +

2 _ 2
2R RRy (t12t31 - t11t32)(t11t22 - tyoty ) = vz (det A)
The determinant of A isas follows:
det A= RIRRs (tyytootas - tiatystay) + RIRRs (tyotaatas - totortas) + RIRRs (tiatogtay - tiatoots;) =
= RIR,Ry (tigtootas - tyatostay +1iotastay - tiotortas +tatortsy - tstots)
Taking into consideration equations (10) and (11) we obtain:

_ 2((t22t33 - toatar ) (tiala - tiotas) + (tastar - tortas) (tuatas - taatar) * (tartas - tootar) (tiotar - t11t32))

RR =

(10)

(1D)

2
Vi (tagtootas - tiatostsy +tiotostay - tiotortas +tistotay - tiatoots)

RR, = 2((t22t33 - toatan ) (tiotos - tiaton) + (tastar - toatss) (tistor - tiatas) + (toater - tooter) (tiatan - t12t21)) (12)
Vo (tistootas - tiatostas +tiotastsr - tiotortss +tiatstas - t13t22t:-;1)2
_ 2((t13t32 - tiotas) (tiotos - tiston) + (tiates - tigter) (tator = tiatzs) + (tiotas - tuatsn ) (tiatos - t12t21))

RRs =

2
V3 (t1tootas - tiatostss + tiotostar - tiotortas +tistartsr - tiatostas)
Let’s mark the right sides of all equations (12) as B, P,, P; respectively in order to make them

more concise. Using the third equation of the equations set (12) R; can be written in this way: Ry :é’ .
Substituting this expression in the second equation of the set (12) we can express R, in the following way:

R :P;_@_ After substitution of the obtained value in the first equation in the set (12) we derive the

2
. . RR, .
following expression: R12=1—2,I.e. R=%+ @
R =3

Hence we can know the module of R,. Its sign is to be defined by the sign of the sensor’s output

signal (the vector M direction mast be known). The valuesof R, and R; can be derived from the second
and the third equations of the set (12).

Method approbation
The proposed in-situ calibration method was experimentally approved using a 3D probe based on
Hall devices with output signals that can be approximately described by functions (3). In the case of Hall
devicesthe sought values R, R,, Ry havethefollowing physical meaning:

—R, L
R =Ry a (13)

where R is the Hall coefficient of the Hall sensor numbered i, I; is the current through its current
electrodes, d; isthethickness of its sensitive layer.
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The direct experiments with 3D magnetic sensors calibration in a harsh environment can be hardly
conducted because they can be too time-consuming and require a year or more. So in order to perform an
approbation of the proposed calibration method we used the approach based on the imitation of the Hall
coefficients instability by means of arbitrary changing the feed current of the Hall devices. As follows from
(13), the Hall coefficient R; of a sensor and its feed current |; influence the sought coefficient R inthe
same way. So if we change the current |I; within certain limits and consider this change random and
unknown, thus we conduct experiments with imitation of instability of the linear coefficient R . During the
conducted experiments we changed the feed current of each Hall device in the 3D magnetic sensor
independently by £5 % of its nominal value (20 mA).

At the first calibration stage the 3D magnetic sensor was placed into a magnetic shield in order to
measure the offset voltages of al Hall devices included into it. Then we measured the 3D probe’s output
sgnals S, S,, S; for its 100 arbitrary positions in a test uniform magnetic field with magnetic flux
density Brer = 127 mT and subtracted the corresponding offset voltages measured previously from the
obtained values. The Fig. 1 shows results of measuring the magnetic-field vector Ber at the following
changes of the feed currents: dl, =-2.9%, dl, =4.2%, dl; =-0.8% without correction of the linear
coefficients (Begr) and with applied correction in accordance to the proposed method (Bcor).

It can be seen that with no correction the deviation of the calculated values of the magnetic-field
vector B was in range from 123 to 133 mT, which means the error £4.6 % while refinement of the linear
coefficients in accordance with the proposed method provided deviation of the calculated magnetic-field
vector’s module that does not exceed 0.3%. This error up to 0.3% is caused by the fact that Hall devices
output signals are described by equations (3) approximately.

0135 -

013

B, T

0126+

a 20 41] B0 a0 100

Measurement #

Fig. 2 The results of calculations of the magnetic-field vector module
with no correction of linear coefficients (Bgr) and after such a correction (Bcog)-

Conclusion

The work introduces a new method of in-situ calibrating a 3D-praobe that is intended for vector
guantities measurement and compaosed from sensors non-orthogonally placed on adjacent sides of its cubic
substrate. The parameters of sensors angular displacements are assumed to be known. Eash sensor’s output
signal is linearly dependent on the measured vector’s projection normal to its plane. Analytic formulas for
the linear coefficients of the 3D-probe's output signals were obtained. The proposed method is based on
measurement of the 3D-sensor’s output signals by means of its arbitrary rotation in a uniform field (3D-
probe’ s current position is unknown. The method requires no tools for pasitioning calibrated 3D-sensorsin
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a test field. In the case if need for development of an inteligent sensor based on 3D-sensors for vector
guantities measurement arises the proposed method of refining linear coefficients can be implemented in
software of intelligent sensors.
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PO3HI3HABAHHA ITPOBITHUX TA BUCOOMHUX BKJIIOYEHB
Y KYCKOBO-OJHOPITHOMY HIBITPOCTOPI ITPH
MATEMATHYHOMY MOJAEJIIOBAHHI YCTAJIEHUX KOJINBAHDb
EJEKTPOMAT'HITHOI'O ITOJIA

© JKypasuax JI., @edopuwun 1O., 2014

18 KycKOBO-OJHOPIZHOTO TPOBITHOIO0 MiBNPOCTOPY PO3IVISIHYTO AHAJITHYHO-YHCJIOBY
METOJUKY 3HAXOMKEHHSI KOMIIOHEHT BEKTOPIB HAMPYKEHOCTI eJIeKTPOMATHITHOro moJisi, 30Y-
JIKEHOr0 CTOPOHHIM KkepesioM cTpymy. IIpoBeeHO YHCIIOBI eKcliepUMEHTH [IJIsl TIOBHOI, 3 ypaxy-
BAHHSIM CTPYMIB 3MillleHHsI, Ta KBa3icTaliOHAPHOI MoJeJeid, T0CTITKEeHO BIVIMB BKJIIOYEHHS 3
BHUILOIO TA HILKYO0I0, HEXK Y reocepenoBUIILi, MPOBITHICTIO HA PO3MOLN MOJISA HA IeHHIH MoBepXHi.

Kuarouogi cjoBa: cucrema piBHsiHb MakcBes1a; cucreMa piBHsHb ['elbMrosinua; ycra-
JieHi KOJIMBAHHSA €J1eKTPOMATHITHOrO MOJIsl; HENMPSAMMUA MeTOX TPAHUYHUX eJIEMEHTIB.

The numerical-analytic technique for finding electric and magnetic components of
electromagnetic field in a piecewise homogeneous conductive half-space is suggested.
Electromagnetic field is excited by a horizontal contour with current har monically changing in
time. The problem isformulated and solved by means of the boundary element method.

Key words. Maxwell's equation system, the Helmholtz equation system, established
EMF fluctuations; indirect boundary element method.

Beryn
CpoOrogHi rapMoOHIYHO 3MiHHI B yaci enektpoMarHitTHi monst (EMII) B omHOpimHHX Ta TOpH-
30HTAJILHO-IIAPYBATUX MOJENISAX 3€MHOI KOpPH 3a Jii MPUPOAHMX Ta IITYYHHX JDKEpen IOCITiKeHi 3a
JIOIIOMOT'0I0 10Ope PO3BUHYTOT TEOPil CreKTpaibHOro aHamzy. L{e 0co0IMBO CTOCYETHCS IIUPOKOIO KIacy
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