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Abstract: Modern complex mission-critical systems
are built as fault-tolerant systems, i.e. having the ability
to function while some of their separate elements have a
fault. The complexity of such fault-tolerant systems
makes their reliability models quite big and complex.
Therefore, such requirements for building models, as the
high level of credibility and the appropriate level of
formalization, are imposed on these models, which
allows to implement the automation to their creating and
analysis of reliability and, therefore, using modern
computer tools. The combination of analytical methods
for the research on reliability and computing capability
of modern computers is a promising direction for further
development of methods of reliability theory.
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1. Introduction

The task of technical mission-critical systems is a
continuous supply of information messages, energy
resources etc. to users. Such systems are developed in
such a way that the duration of their downtime caused by
failures of the constituent elements of the system would
be as small as possible. For this purpose the reservation
(in most cases duplication) and renovation (repairing) of
the components is used. At the design stage the
developer should carry out the multivariant analysis of
reliability indices of the system and select the best
variant based on the comparative analysis of the
reliability characteristics of design alternatives. The
difficulty of this task lies in the fact that the
mathematical reliability models of redundant and
restorable systems are very complex, because these
systems are characterized by a large number of states.
There are known the analytical expressions for
calculating of reliability indices of restorable systems
with an unlimited number of restorations [1, 2, 3], but
the assessment of reliability indices of systems with a
limited number of restorations is of significant practical
interest that is dictated by the terms of maintenance and
economic indicators. Multi-analysis becomes practically
impossible without the use of computer tools that allows
you to get results of the analysis only for the specific
numeric values of the parameters of system components.

The prospective direction of development the
multivariate reliability analysis methods of technical
systems is the combination of general analytical methods
with the computing capabilities of modern software [4].

In this paper, the analytical model of redundant
repairable system with a limited number of restorations
has been developed, whose constituent elements, each
with single redundance (loaded reservation), are
connected in series according to their reliability. While
forming the model, the repeteability of structure
topological properties has been used, that allows for
simplifying the analysis of the time dependence of the
probability of staying in specific states (normal
operation, downtime (repairing), catastrophic failure)
and calculating the reliability indicators. unit

2. Mathematical model of system reliability

The structure of the analyzed system is shown in
Fig.1 in the form of series connection of N units, each of
which is a pair of modules with loaded reserve. A repair
team maintains every unit with the direct recovery
priority. Modules of the system can be restored only
once. With repeated failure of the module it stays invalid
(inoperative) and cannot be repaired. If the component
fails while the repair team is restoring another module, it
waits for recovery in the queue.
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Fig. 1. Structure of the system.

The system passes to downtime condition when both
modules of any link, that may be recovered, fail, or at
least one of them can be recovered. If both modules were
previously recovered, during their both repeated failure
the system passes to a state of catastrophic failure.

Taking into account the system way of functioning,
we can conclude that any module of the system can be in
one of the following states:



Analytical Reliability Model of Redundant Repairable System With Limited Numbe ...

o F- workability (normal functioning);

e F1- workability (normal functioning) after the first
recovery;

® R —recovery (repair) state;

e OR - waiting its turn for repair in the absence of a
free repair body;

e ORK - final failure state after carrying out the
allowable number of recoveries;

The following component transitions from one state
to another are possible: F — R — FI — ORK, or F —
OR — R — F1 — ORK. Note that the transitions F — R,
F — OR, FI — ORK mean the failure of the unit, when
transitions R — F, R — F'I denote its recovery.

In its turn, any unit can dwell in one of the following
conditions:

e F- unit workability state, when both its components
are functioning without failure;

e FR - unit workability state, when one of its
components is functioning without failure, while the
other is in R state;

e FI - unit workability state, when one of its
components is functioning without failure, and other
is functioning after the first recovery;

e FIR - unit workability state, when one its
components is functioning after the first recovery,
and the other is in R state;

e F1] - unit workability state, when both components
are functioning after the first recovery;

e FK - unit workability state, when one of its
components is functioning without failure, while the
other is in ORK state;

e FIK - unit workability state, when one its
components is functioning after the first recovery,
and the other is in ORK state;
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e R] - unit recovery (repair) state, in which one of its
components is in R state, and the second — in OR
state;

e RIK - unit recovery(repair) state, in which one of its
components is in R state, and another one is in ORK
state;

e ORK - final invalid unit state, in which both
components are in ORK state;

e PF - state of work (or downtime) termination of
workable unit caused by the failure or recovery of
another unit of the system.

Such unit transitions from one state to another are
possible:

F—FR—Fl—FK— RIK— FIK— ORK;
and also:

F—FR— Rl —>FIR— FIll > FIK — ORK.

Note that the unit can pass from any working state to
functioning termination (downtime) state PF.

The matrix of an individual unit state is shown in
Table 1.

Considering its content, we can see that states 0, 1,
2,3, 4,7, 8,9, 10, 11, 14, 15 represent the unit
workability, states 5, 6, 12, 13 are the states of recovery
(repair) causing system downtime, and the 16™ state is a
unit final failure state which causes the final failure of
the system as a whole.

Information about possible unit transitions from one
state to another is described by means of a transition
matrix, whose format is 2x17. The 4; element of this
matrix is the number of state to which the unit passes
from the j-th state as a result of state changes of the i-th
unit component (and = 1,2; = 0,1, ..., 16).

The unit transition matrix is presented in Table 2:

Table 1
Matrix of individual unit state
State Ne
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Unit Ne
1 F | R F Fl | F R OR | ORK | FI | R F FI ORK | R ORK | FI ORK
2 F | F R F FI | OR | R F R FI ORK | FI | R ORK | FI ORK | ORk
State  of
modul F | FR | FR | FI | FI | Rl | RI | FK FIR | FIR | FK FIl | RIK | RIK | FIK | FIK | ORk
u
Table 2
Unit transition matrix
State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Module 1 1 3 6 7 9 8 - - - 11 13 14 - 15 - 16 -
Module 2 2 5 4 8 10 - 9 12 11 - - 15 14 - 16 - -
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The parameters of an individual unit are A, p
denoting the intensity of failures and recoveries of its
components accordingly. In this case, the time
dependences of unit probability of staying in certain
condition is described by the following system of the
Chapman— Kolmogorov equations (1):

O 2, +2)- B0
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é%2=@4ﬂ0%m+%)%@
B sy R -+ ) B0
PO _ By 1) PO
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It is advisable to solve the Chapman— Kolmogorov
equations with the help of the Laplace transform, which
allows accessing to the system of algebraic equations,
recorded in relation to operator images of time
probability dependences, by solving which we find the
time probability dependences by using the inverse

R(t)y=e"
2/ . —(A+u)t —ﬂ, —2-At
R(1)=P()=-225 ¢
H—A
—(A+p)t

P =P =12
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Initial unit state at t = 0:

Po(0)=1;
P1(0)=P(0)=P3(0)=P40)=Ps5(0)=Ps(0)=P7(0)=P5(0)
=Py(0)=P10(0)=P11(0)=P15(0)=P13(0)=P14(0)=P,5(0)
=P15(0)=0 .
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Laplace transform. For this purpose we can use the
software MATLAB or MATHCAD in the field of
symbolic mathematics.

Assume that both unit components are characterized
by the same level of failure and repairs. As a result we
obtain:
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From these analytical solutions probabilities can be specific conditions are determined using the
determined: expressions for the probability of individual units
unit workability state: being in their respective states.
PH(t)=Py(1)+P () +P(1)+P5(£)+P (1) +PA1)+Ps(f)+ e The probabi!ity’ of system staying in the state of
TPy(0)+ Pio(O)+P1 () TP 1) +P15(2); normal functioning
recovery (repair) state: Pr()= Pri(t) Pry(f) -...-.Pra(0),
Prt)= PO +P()+P 10+ Pis(0); e The probability of system staying in the state of
final invalid state: recovery (repair)
15 -
Pr(6)=Pri(t) Prt) ...-Pes(t)+Pri() Pro(?)-...-Prn(t
PK(I)ZPm(t)Zl—ZPi(I); R() R]() FZ() FN() F]() RZ() FN()
i=1 +PFI(I)‘PF2(I)'PR3(I)'...'PFN(1)+...+PF1(1)‘PF2(I)‘
Considering the system as a whole, we note that its Pr3(t) ... -Pra(?),

sta'te at any point qf time is determined by the state of 2%11 where Py(f) is the probability of the i-th unit staying
units at the same time. The system as a whole may be in

one of the following states:
e I - normal functioning if all parts are in working
condition;
e R-recovery (repair) if any unit is in R/ or RIK state, PU({t) = Px)()+Pis(t)+.. . +Pip(£)= I-[PH1)+Pr(?)].
and others are in PF state;
e V-catastrophic failure, if any unit moves to ORK e Pg(?) is the probability of system staying in a state
state. The probabilities of the system staying in of catastrophic failure.

in working condition;

state of recovery (repair)

o Pr{(?) - the probability of the i-th unit dwelling in a
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3. Example of the application of the developed
mathematical model

The subject of research is a fault-tolerant technical
system, which consists of one module in working
configuration and one module in a hot standby (both
have equal failure rates: A1 = A2). When the working
configuration module fails, it is replaced from reserve.
Modules that are out of order, queue up for the repair.
After repairing, the modules are transferred to a
functioning state or to reserve. Repairs are carried out
with intensity p. Total number of repairs of each module
are limited to one.

For the formation of reliability indices, (namely,
availability function — probabilities of staying in working
condition, downtime probabilities — repair probabilities)
let us use the analytical solutions of the system of the
Chapman-Kolmogorov differential equations, obtained
above.

The research was carried out with the following
inputs:

» failure intensity of basic and backup module

(hot standby) - 1 * 10-3 1 /hour

» repair intensity - 0.001, 0.002, 0.05, 0.01, 0.1

1/hour.

When analyzing the system reliability, it has been
found out that ignoring the downtime probability for
systems, the repair of which is significant, leads to a
significant overstating of availability function (Fig. 2).
Moreover, the probability of downtime depends on the
ratio of the reliability of components of fault-tolerant
system (intensity of failures - A) and repair parameters
(intensity of recovery - ). If the system failures are rare
and quickly repaired, and repair time is less than 1% of
the average time between failures, the downtime practi-
cally does not influence on the availability function.

Pl

without considering downtime

considering downtime

without repair *
 Mihout repair

¢ 60 ) 110°

Fig.2. Dependence of the availability function on the time with
downtime taking into account.

The research shows that the probability of downtime
depends on the intensity ratio of failures and recoveries
(Fig. 3). With shortening the duration of repair the
probability of downtime decreases. Moreover, for

systems in which a repair is done 100 times faster than
the system fails, the probability of downtime can be
ignored.

P()
03k

o2

o1

1=10

Fig.3. The dependence of the probability of downtime intensity
ratio of failures and recoveries.

Therefore, taking into account the probability of
downtime is necessary in cases where the system often
fails and repair time is equal to or is more than 10% of
the average time between failures.

Conclusion

The proposed method of forming the mathematical
model of system reliability as a whole based on the
reliability model of separate unit simplifies the analysis,
because it does not require the construction of state
matrix and transition matrix of the whole system, and is
easily applied in the case of systems with an arbitrary
number of units.

Using the developed analytical reliability model is
convenient for solving the optimization task of selection
the parameters of separate units by the criterion of
minimum probability of system downtime.
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AHAJITHYHA MOJEJb HATIMHOCTI
PE3EPBOBAHOI BITHOBJIIOBAHOI CUCTEMM
3 OBMEXEHOIO KIVIBKICTIO BITHOBJIEHb

bornan Manasiid,
Jleonin O3ipkoBcbkHii

Po3pobrieHo aHamiTHYHY MOJIENTH Pe3epPBOBAHOT Bifl-
HOBITIOBAHOT CHCTEMH 3 OOMEXEHON KIiTBKICTIO Bil-
HOBJIEHB, CTPYKTypa sKOi TMO/laHa B PO3YMIHHI Haiii-
HOCTI TIOCTIZIOBHUM 3’ €THAHHSAM KOMITOHCHTIB, KOKEH 3
SIKHX 3ape3epBOBaHUN 3 KpaTHicTio | (HaBaHTaxeHe
pezepryBanus). [Ipu dopMyBanHI MozeNi BUKOPHCTAHO
TIOBTOPIOBAHICTE TOIIOJOTIMHNAX BIACTHBOCTEH CTPYK-
TYpH, IO /1a€ 3MOTY CIIPOCTHUTH aHali3 JacOBHX 3aJlekK-
Hocrel HmoBipHOCTEH nepeOyBaHHS CUCTEMU y KOHK-
peTHUX cTaHax (HOPManbHOTO (YHKINIOHYBAHHS, IIPO-
CTOI0 (PEMOHTY), KaTacTpodidHOi BiIMOBH) Ta po3pa-
XYHOK BIANIOBITHAX IIOKa3HUKIB ii HamiHOCTI. Buko-
pHUCTOBYBAaTH po3pobleHy aHATITHYHY MOJAeNs Ha-
JUIHOCTI 3pYy4HO i 9ac po3B’s3aHHA ONTHMIi3alliifHOl
3a71a4i BUOOPY NapaMeTpiB OKPEMHX JIAHOK 3a KPHTEPieM
MIHIMyMy HMOBIPHOCTI IIPOCTOH) CUCTEMH.
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