npupoay onaHo- Ta OararoBuMipHux IKB, poskpuBae ¢yHIameHTanbHEe 3HAYCHHS MPOCTOPOBUX
CUMETPUYHO-aCUMETPUYHUX CTPYKTYPHHUX CIiBBIAHOIIEHb B TEOPil ONTUMAaIbHOTO KOAYBaHHS BEKTOPHUX
JAaHUX 1 CTBOPIOE MOXJIMBOCTI JJIsi HPOEKTYBaHHS HOBITHIX NPHCTPOIB Ta CHCTEM Ha BEKTOPHHUX
iH(pOpPMaLiHHUX TEXHOJIOTISX 3 MOMIMIIEHUMH TEXHIYHUMHU XapaKTePUCTHKAMHU.
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st 30J10TOr0 CiveHHs1 i JJI NMOJIIHOMIB 3 HeCKiHYeHHMM YHCJIOM 4YJIeHiB CTBOPEHO HOBi
anajdiTnuHi 3ajaexHocTi. Iloxkazano aHaJdiTHYHO, AK MOKIMBO BU3HAYNTH HeCKiHYEHHMI MOJIIHOM,
B SIKOMY apryMeHT € 30JI0Te CiueHHsI 3 BUKOpUCcTaHHAM psixy Teisiopa. Bupasu s po3paxyHky
LMX MOJIIHOMIB, B AKOMY KoedilieHTH € yncia nocjinoBHocti MidoHauyi, 101AH0THCS.

Kurouosi ciioBa: anropurm ®i6oHayuyi, 30/10Te CiueHHs, cTeNeHeBUA Psi, Pi3HULSA, JVIbHUK.

New analytical dependences were established for golden chopping and for polynomials
with infinite number of members. It is shown how we can determine analytically infinite
polynomial in which the argument is the golden chopping using a Taylor's series. The
expressions for calculating these polynomials in which the coefficients are numbers in the
Fibonacci’s series are displayed.

Key words: Fibonacci’salgorithm, golden chopping, power series, difference, divider.

Introduction
In 1202 Italian mathematician Leonardo of Pisa also known as Fibonacci (which means son of
Bonacci) wrote abook "Liber abacci" ("Book about abacus') [1]. With this book Europeans first learned of
Hindu ("Arabic") numerals, as well as the Fibonacci’ s sequence.
The Fibonacci’s sequenceisexpressed asas Fy =0, F =1, F, =1, F;=2, F, =3, F;=5, Fg =8,
F,=13, Fg=21, Fg=34, ..., F;;=5527939700884757, F,5=8944394323791464, ... . We deal with

a game-theoretic framework [2] involving a finite number of infinite populations, members of which have
a finite number of available strategies. The payoff of each individual depends on her own action and
distributions of actions of individuals in all populations. Fischer's concept, which is presented in [3], is an
attempt to use Fibonacci's numbers for constructing the method of market behavior forecast taking into
consideration the aspects of price and time. The wide range of Fibonacci's numbers application, especially
in statistics, sports, non-Euclidean geometry, RSA codes, coloring of geographical maps, etc. are presented
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in [4]. Fibonacci’s agorithm has also been applied in technical fields. In particular, new agorithms of
analog-to-digital conversion are an important outcome of this theory [5], which became the basis for the
design of advanced analog-to-digital converters. Fibonacci numbers are used in automatic lines [6], which
use a method of determining the state space of automatic lines with storage components based on a
Fibonacci number. The obtained formulas give a theoretical basis for constructing mathematical models of
automatic lines' complex. Gold sectional are also used in telecommunications theory [7, 8]. The new
logical-mathematical tools for modeling systems "man-machine-environment" in telecommunications are
shown, and its application in the theories of linear and nonlinear filtering and in solving special problems
searching are also shown. In [9] the method of matrix encryption / decryption numerical information using
the sequence of Fibonacci numbers are shown, where classical mathematical tools - the theory of matrices
is used. A method of detecting and correcting errors in an encrypted matrix, errors which happen in
communication channels, is proposed. In this procedure, natural decimas of different sizes are
corresponding objects of correcting. It has a principal meaning for the development of theory coding of
information.
The general formula of building this sequenceis as follows

F.=F,+F_,. n=23 .., F,=0, F =1. (D)
Dividing F, ,/F, golden chopping is obtained.

It turns out that no matter whether this sequence consists of integers or red numbers, F,_,/F, ratio will

aways give golden chopping, which is aperiodic irrational number. And the greater the number of steps N the
more accurately one can calculate golden chopping. For example, taking a sequence of Fibonacci ratio
F,/F;=3/5=0.6 and increasing N to 78 we will have

F,, | F,s =5527939700884757/8944394323791464~0.61803398874989484820458. (2

It is of no import which will be the start value of F,, F,. It may be real numbers. Moreover you can
pass F,>F,. For example, let it be F,=120.4, F, =13.8. Then according to (1) we can construct the

following sequence: 134.2, 148, 282.2, 430.2, 712.4, 1142.6, 1855, 2997.6, 4852.6, 7850.2, 12702.8
20553, 33255.8, 53808.8, 87064.6, 140873.4, 227938, 368811.4, 596749.4, 965560.8, ... .

Dividing the last two numbers, we also abtain the golden chopping with a certain approximation,
which depends on the number of the sequence members

F,e/ Fy =596749.4/965560.8 ~ 0.618 033 996 4. ©

The preliminary version of this paper was presented as the publication [10].

1. Basicrelationsfor golden chopping
Golden chopping is marked as
Z =0.618 033 988 749 894 848 204. 4
The notation difference isintroduced
R=1-Z7 =0.381 966 011 250 105 151 796. (5)
The divider is marked as
D=1/Z =1.618 033 988 749 894 848 204. (6)
The main dependenciesfor z, R and D arewritten down
1Z=7+1, (7
1/R=2+Z. (8)
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Substituting (7) in (6), we obtain
D=2Z+1. 9)
If you subtract from (8) (7), we obtain
1/R-1/Z =1. (10)
Substituting (5) into (10) and multiplying the received result by Z
Z

E=1+ z (1)
or
Z=(1-2)1+2). (12)
Expression (12) gives us a quadratic equation
7?2+7-1=0. (13)
The solution of this equation is
z,=-D, Z,=Z. (14)

The consequence of this solution is Z,Z, =1, as a consequence of equation (13) is

2
1{ 1. (15)
Substituting (6) into (9)
D=1+1/D, (16)
which formul ates quadratic equation
D?2-D-1=0. (17)
The solution of this equation is
D,=D, D,=-Z. (18)

The conseguence of thisinterpretation is D,D, =-1, as a consequence of equation (17) is

2
D =1.
1+ D

(19)

Thebasic properties of power series of golden chopping
Try to consder some properties of power series, where the argument is the golden chopping, or
difference. To be golden chopping the dependence, which is a consequence of the Taylor's series will be fair

& z

kzzlz K= 7 (20)
By comparing (11) and (20), we obtain

ki;lz ko117, (21)
By comparing (7) and (21), we abtain

X @

325



The consequence of these equations are the following ratio

zZ 1
——_="=1+Z. 23
1-z 2z " (23)
Subtracting from (21) Z , that isthe first term of the series and taking into account relationship (20),
(22), we obtain

kgzzk=1= =17 (24)
Equation (13) gives us the dependence
72-1-7. (25)
Substituting (5) into (25), we obtain
Z?=R. (26)

Subtracting from (24) z? and taking into account the dependence (26), we have
S 7¥=1-R. 27)
k=3

Taking into account that Z =1-R , we have
Sz=7. (28)
k=3

Multiplying left and right side of (13) on Z
Z°+7%=27. (29)
Adding to the left and right side of (29) Z
Z+2°+2°=22. (30)
It means that the first three members of the sum (22) can be omitted subtracting from the right side

value 2Z . Then the amount will be started from the fourth e ement

izkzg—zzzo—zz. (31)

k=4

Taking into account that D=Z +1 (see (7), (9)) expression (31) can be written as

S 7=1-7=R. (32)

k=4

There are several polynomial dependencies golden chopping. One is added to (30) and the received
result ismultiplied on Z

Z+2°+2°+2%=22°+27. (33)
Taking into account the dependence (26) the last expression takes the form
Z+Z2°+72°+2"=2R+2Z. (34)
Accordingto (5) R+Z =1, so (34) can be written differently
Z+Z72%°+2%+2%=R+1. (35

Subtracting polynomials in (22) according to (35) the first 4 members, and from theright side R+1,
then the polynomial (22) can be written as
izk:%—l—R. (36)

k=5

326



Substituting (5), (7) into (36) we obtain

S 74 =27-1. (37)

ks
Oneisadded in both parts of equation (35) and the received result is multiplied on Z
Z+Z2°+2°+2°+2°=ZR+2Z, (38)
Substituting (5) into (38), we obtain
Z+2°+2%+2%+2°=2(1-2)+2Z (39)
or
Z+Z%°+23+2%+2°=32-2%. (40)
Substituting (25) into (40), we obtain
Z+Z2°+72°+2%+72°=42-1. (42)
Subtracting polynomials in (22) according to (41) the first 5 members, and from the right side
47 -1, then the polynomial (22) can be written as

izk=%—4z+1. (42)

k=6
Substituting (7) into (42) and obtain the final result
3 7=31-2). 43)
Oneisadded in both parts of equati onké‘rl) and the received result ismultiplied on Z -
Z+22+2%+2%+2°+2°=42%, (44)
Substituting (25) into (44), we have
Z+2%+2%+2°+2°+2°%=4(1-2). (45)

Subtracting polynomials in (22) according to (45) the first 6 members, and from the right side
4(1-2), then the polynomial (22) can be written as

3 z* =%—4(1—Z). (46)

k=7

Substituting (7) into (46) and obtain the final result

S z¢=52-3. (47)

k=7
Oneis added in both parts of equation (45) and the received result is multiplied on Z
Z+Z2%+2%+2%+2°+2°+2"=52-4z2* (48)
or
Z+Z2°+2%+2%+2°+2°%°+27=9Z 4. (49)

Subtracting polynomials in (22) according to (49) the first 7 members, and from the right side
9Z — 4, then the polynomial (22) can be written as

oo

>z* =%—9z +4. (50)

k=8
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Substituting (6), (7) into (50) and we obtain the final result

oo

>z"=5-82. (51)

k=8
Oneis added in both parts of equation (49) and the received result is multiplied on Z
Z+Z2°+2°+2°+2°+2°+2"+2%=92%-3Z . (52)
Taking into account (25), we have
Z+2°+2%+2*+2°+2°+2"+2%=9-127. (53)

Subtracting polynomials in (22) according to (53) the first 8 members, and from the right side
9-12Z , then the polynomial (22) can be written as

37" =%—9+1zz. (54)

k=9

Substituting (7) into (49) and we abtain the final result

S 7%=137-8. (55)

k=9

These considerations can be continued to identify any partial amount. The grouped results are written
Szh=147, Y7°=1 Y7¥=2, Sz¥=1-7, Y 7" =221,
k=1 k=2 k=3 k=4 k=5 (56)
S z4=2-37, ¥7¥=52-3, 3 7"=5-82, 3 7"=137-8,..

k=7 k=8

k=6 k=9

We must remember that the Fibonacci’s series are defined as Fy=0, F =1, F, =1, F3=2,
F,=3... . After dependence anaysis (56) we can make a deductive conclusion that the coefficients of
these expressions is the number of the Fibonacci’ s series, namely

oo

Y78 =(-)"Y(F,,Z-F), n=3 4,5, ... (57)
k=n
Here we observe a sign change, plus and minus constantly alternating. It is a direct manifestation of
the Elliott’s wave theory [11], sometimes it is called the rule of aternation. It can be formulated in such a
way: complex corrective waves aternate with simple, and strong pul se waves with weak corrective waves.
This output gives another set of expressions, hamely (25), (30) (35) (41) (45) (49), (53). We write
them as a separate group of formula
2 3 4 5
Mzk=1 Yzk=2z, ¥z¥=2-2, Y 7" =471
kZl k=1 ] k=1 . k=1 (58)
> z¥=41-2), Y z¥=92-4, > 7¥=9-127,...
k=1 k=1 k=1
The coefficients of these expressions are also subject to Elliott’s wave theory. These expressions can
be written as recurrent formula

n
>z¥=8, ,+S,4Z,n=2 3 .., Sy=1 $,=0. (59)
k=1

We aso calculate another coefficients S,, S;, ... using Fibonacci’s agorithm, which is based on
Elliott’ s wave theory, namely

Sy =(=D"(Spa (D" +5,,(-D" +(-1)") . (60)
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This expression has no analytical output and is purely heuristic in nature, like expression (57).
If expression (59) substitute the value of golden chopping Z and calculate it for different values n,
you can get such a sequence of irrational numbers (confine three digits after the decimal point)

1,1.236, 1.382, 1.472, 1.528, 1.562, 1.584, ... , (612)
which according to (21) asymptotically approaching values of
1+7=1.618 033 988 749 894 848 204 58 .

In practice it is very convenient because it saves computer time. There is no need to calculate the
amount of power series, if it can be replaced by severa arithmetic operations of multiplication, addition
and subtraction.

Thebasic properties of power seriesdifferences
Y ou can build asimilar amount (21) for the differences. According to Taylor’s series we have

i R

R¥=——. 62
2R 1w €)
Taking into account the dependence (10), we have
R
-7, 63
R (63)
Substituting (63) into (62), we obtain
SR=Z. (64)
k=1
Subtract from the left and right side of (64) R
SR“=Z-R. (65)
k=2
Adding to the left and right sides of (5) the difference R
R+R=1-Z+R, » Z-R=1-2R. (66)
Substituting (5) into (66)
Z-R=27-1. (67)
Substituting (67) into (65)
SRf=27-1. (68)
k=2
Adding to the left and right side of (5) R?
R+R*=1-Z+(1-2)°. (69)
Given the dependence (25), we have
R+R?=3-4Z. (70)
Subtract from (64) expression (70)
S RK =57 -3. (72)
k=3
Oneisadded to the left and the right side of (70) and the received result is multiplied on R :
R+R*+R*=4R(1-2). (72)
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Taking into account the dependence (5), (26) expression (72) takes the form
R+R?+R%=4(2-32). (73)

After subtracting (73) from (64) we obtain:

R¥ =137 -8. (74)

M

k

Oneisadded to the left and the right side of (74) and the received result is multiplied on R :

4

R+R?+R®+R*=3R(3-42). (75)
Taking into account the dependence (5), (26) expression (75) takes the form
R+R*+R*+R*=3(7-112). (76)

After subtracting (76) from (64) we obtain:

R =347 —21. (77)

M

k=5

These considerations can be continued and any partial amount can be identified. We write the
grouped results

SRK=Z, YR*=2Z-1 YR*=52-3 Y R‘=137-8 YR*=34Z-21 ... . (78)
k=2 k=3 k=4

k=1 k=5

The coefficients of expressions (78) can be written through a series of Fibonacci’s numbers
SR =F, Z-F, , n=12 .. . (79)
k=n
This output gives another set of expressions, namely (5), (70) (73) (76). We write them a separate
group of formula
R=1-Z, R+R?*=3-4Z, R+R?+R%*=4(2-37), R+R*+R*+R*=3(7-112) ,... (80)

The coefficients of expressions (80) can be written through a series of Fibonacci’s numbers

iRk :FZn_(F2n+1_1)Z’ n:l' 2’ ot (81)

k=1

If we compare expressions (56) and (78), we can note the following pattern

izk =iRk =2, iz" =iR" =22-1
k=3 k=1 k=5 k=2

- B _ . (82)
> zZ¥=>R¢=52-3 > z¥=>R*=137-8
k=7 k=3 k=9 k=4
The obtained dependences can be summarized
SZY=YR n=12 .. . (83)

k=2n+1 k=n

Properties of generalized power series
We must take into account that except the golden chopping Z which according to (19) when adding
the power series gives one, other power series also can be built. According to Taylor’'s series during adding
these power series also will asymptotically approach to one, for example
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1

> = =1, 4
%7 )
The following formulaisfair for /3, namely
o 1
2y —=1 (85)
k13
and
> 1
D=1 (86)
k14
and
> 1
k=15

Analysis of the obtained amount of general formula can be written

=1
(N-D —
= N

1. (88)

We can make a more general conclusion: the formula (88) is fair for all real (and not only integer)
N which satisfy the condition N > 2.

Try to explore the dependence if 1<N <2. Based on the Taylor's series we again obtain again
depending

1 25;1.5*k -1, (89)
=1

U skil.z-k -1, (90)
=1

/103 1.1% =1. (91)

k=1

The received amount have been analysed and then it can be written in general formula
(W/N)S (@+1/N)™* =1. (92)
k=1

This formula also covers written above formulas, namely (84) - (91). Here N > 0 is areal number.
So substituting in formula (92) N =1 we obtain the expression (84), and at N =0.25 we will obtain the
expression (87). Formula (92) can be written in another form, replacing the negative exponent to positive

oo N k
1/N — | =1.
a3 ] (93
This formula can be written in amore general form
=[ N 1]° N
=—, 94
kzﬂ[M +N } M 49

where M >0 - areal positive number. Formula (93) are special case of (94) when M = 1.
The resulting formula is more general because it covers such cases as partial (22) when N =1,
M=2Z;(64) with N=Z, M =1.
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Try to prove these two statements. Substituting N =1, M =Z in (94), we have

=17 1
i 95
2 -2 ©
Comparing (22) and (95), it remains to prove that
1
- 96
1+27 (96)

It is easy to see that this equality is a consequence of equation (7). Thus, formula (22) is a special
cases of (94) when N =1, M =z . Substituting N =z, M =1 in (94), we have

oo Z k
—| =Z. 9
kzi{l+ YA } (o7)
Comparing (61) and (94) it remains to prove that
z
According to (11) have
%=1+ 7. (99)

Defined in (99) R we will receive expression (98). Thus, formula (64) is a specia cases of (94)
when N=2z, M =1.

Conclusion
These new analytical dependences for golden chopping provide analytica basis for their further use in
various fields of engineering practice. Expressions for polynomia series make it possble to caculate
analyticaly the sum of infinite series without residual error. It increases the accuracy of calculations, while
significantly reducing their number, because instead of calculating the sum of infinite series we can calculate the
expression in which there are several operations of addition, subtraction, multiplication and division.
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