МАТЕРІАЛИ ЕЛЕКТРОННОЇ ТЕХНІКИ

УДК 532.783

Т.В. Басюк¹, Л.О. Василечко¹, І.І. Сиворотка², В. Березовець³, С.В. Фадєєв¹
¹Національний університет "Львівська політехніка", кафедра напівпровідникової електроніки,
²НДЦ " Карат",
³Фізико-механічний інститут ім. Г.В. Карпенка

ВЗАЄМОДІЯ РІДКІСНОЗЕМЕЛЬНИХ АЛЮМІНАТІВ В СИСТЕМАХ НА ОСНОВІ PRALO₃ ТА LAALO₃

© Басюк Т.В., Василечко Л.О., Сиворотка І.І., Березовець В., Фадєєв С.В., 2009

T.V. Basyuk, L.O. Vasylechko, I. I. Syvorotka, V. Berezovets, S.V. Fadeev

INTERACTION OF RARE EARTH ALUMINATES IN THE PRALO₃-AND LAALO₃-BASED SYSTEMS

© Basyuk T.V., Vasylechko L.O., Syvorotka I.I., Berezovets V., Fadeev S.V., 2009

Комбінованим методом твердофазного синтезу на повітрі та дугової плавки в атмосфері Аргону виготовлено серію зразків складних оксидів $Pr_{1-x}R_xAlO_3$ і $La_{1-x}R_xAlO_3$ (R – рідкісноземельний елемент). Методами порошкової дифракції рентгенівського випромінювання та термічного аналізу досліджено кристалічну структуру, термічне розширення та фазові перетворення твердих розчинів $Pr_{1-x}R_xAlO_3$ і $La_{1-x}R_xAlO_3$ в широкому температурному діапазоні. Побудовано діаграми станів деяких псевдоподвійних систем $PrAlO_3$ - $RAlO_3$ та $LaAlO_3$ - $RAlO_3$.

Series of $Pr_{1-x}R_xAIO_3$ and $La_{1-x}R_xAIO_3$ (R – rare earth element) specimens were prepared by a combination of solid-state reaction in air and arc-melting in Ar atmosphere. Crystal structure, thermal expansion and phase transformation of $Pr_{1-x}R_xAIO_3$ and $La_{1-x}R_xAIO_3$ solid solution have been investigated by means of X-ray powder diffraction technique and thermal analysis in wide temperature range. The phase diagrams of some $PrAIO_3$ - $RAIO_3$ and $LaAIO_3$ - $RAIO_3$ pseudo-binary systems have been constructed.

Вступ

За кімнатної температури алюмінати рідкісноземельних елементів (РЗЕ) належать до трьох типів перовскитоподібних структур, а саме: ромбоедричної, просторова група (ПГ) *R*-3*c*, (R = La, Pr, Nd), ромбічної, ПГ *Pbmn* (R = Sm–Lu, Y) та тетрагональної, ПГ *I4/mcm* (CeAlO₃) [1-3]. За високих температур (ВТ) в сполуках RAlO₃ (R = La, Ce, Pr, Nd) відбувається плавний фазовий перехід (ФП) із ромбоедричної до кубічної структури перовскиту. Для SmAlO₃, GdAlO₃ і EuAlO₃ властивим є стрибкоподібний фазовий перехід першого роду із ромбічної в ромбоедричну структуру перовскиту. Багато низькотемпературних (НТ) фазових переходів спостерігаються тільки в алюмінатах церію та празеодиму [4–7].

Найдослідженішою серед псевдоподвійних систем алюмінатів рідкісноземельних елементів є система LaAlO₃–PrAlO₃. Перші високотемпературні рентгенодифрактометричні дослідження, проведені на зразках La_{0.65}Pr_{0.35}AlO₃ та La_{0.50}Pr_{0.50}AlO₃ майже 40 років тому, показали існування в

них фазового переходу від ромбоедричної до кубічної структури за температур 1110 і 1233 К відповідно [8]. Високотемпературні фазові перетворення у твердих розчинах $La_{1-x}Pr_xAlO_3$ досліджувалися також методом порошкової дифракції нейтронного випромінювання [9]. Було встановлено, що температура ФП із ромбоедричної до кубічної структури перебуває в лінійній залежності від складу твердого розчину. У середині 1980-х років методами раманівської спектроскопії та оптичного поглинання в системі $LaAlO_3$ —PrAlO₃ було виявлено низку низькотемпературних фазових перетворень від ромбоедричної до ромбічної, моноклінної та тетрагональної структур у діапазоні температур 210–49 К [10]. Нещодавні комплексні дослідження, проведені нами методами *in situ* низько- та високотемпературної дифракції синхротронного випромінювання та термічного аналізу в широкому діапазоні температур від 9 до 1600 К [11], дали змогу вперше встановити кристалічну структуру усіх температурних модифікацій твердих розчинів $La_{1-x}Pr_xAlO_3$, а також побудувати діаграму стану системи $LaAlO_3$ –PrAlO₃.

Два низькотемпературні ФП із ромбоедричної в ромбічну та із ромбічної в моноклінну структури були виявлені у твердих розчинах Pr_{1-x}Nd_xAlO₃, що утворюються в системі PrAlO₃-NdAlO₃ [12]. Було встановлено, що температура цих фазових перетворень лінійно спадає зі зменшенням вмісту неодиму.

Взаємодія компонентів в системах (1-x)LaAlO₃--xEuAlO₃, (1-x)LaAlO₃--xGdAlO₃ та (1-x)PrAlO₃--xEuAlO₃ досліджувалась авторами [13]. За кімнатної температури в них виявлено два типи твердих розчинів із ромбічною та ромбоедричною структурою перовскиту, між якими існують області незмішуваності. Тверді розчини La_{1-x}Eu_xAlO₃ із x<0.5 мають ромбоедричну структуру, а з x>0.65 – ромбічну, тоді як в системі LaAlO₃--GdAlO₃ межа між цими двома перовскитними фазами є дуже вузькою і лежить близько x \approx 0.38. У системі PrAlO₃--EuAlO₃ тверді розчини із ромбоедричною і ромбічною структурою формуються за x<0.38 і x>0.57 відповідно. Літературні дані про термічну поведінку цих систем відсутні.

Дослідження кристалічної структури та температурної поведінки твердих розчинів у системах LaAlO₃–NdAlO₃ та LaAlO₃–SmAlO₃ в діапазоні температур 12–1173 К проведено нами в роботі [14]. Показано, що за кімнатної температури в системі LaAlO₃–NdAlO₃ існує неперервний твердий розчин заміщення із ромбоедричною структурою перовскиту, який переходить до кубічної структури за високих температур. У системі LaAlO₃–SmAlO₃ утворюються два типи твердих розчинів La_{1-x}Sm_xAlO₃ із ромбоедричною ($0 \le x < 0.6$) та ромбічною ($0.6 < x \le 1$) структурами, яким притаманні ВТ фазові перетворення до кубічної та ромбоедричної структур відповідно. Встановлено, що температури цих ФП лінійно зростають із зменшенням вмісту лантану. Наведено діаграми стану систем LaAlO₃–NdAlO₃ та LaAlO₃–SmAlO₃.

Мета роботи – дослідити кристалічну структуру твердих розчинів, що утворюються в системах PrAlO₃–RAlO₃ та LaAlO₃–RAlO₃ (R = La–Lu, Y) в широкому температурному діапазоні, встановити вплив катіонного заміщення на параметри кристалічної структури, термічного розширення та фазові перетворення в цих системах, а також побудовати діаграми стану відповідних систем на основі отриманих результатів.

Методика експерименту

Для досягнення поставленої мети було виготовлено серію зразків $Pr_{1-x}R_xAlO_3$ та $La_{1-x}R_xAlO_3$ (x= 0,03 – 0,9) комбінованим методом твердофазного синтезу на повітрі та дугової плавки в атмосфері Аргону. Вихідними реагентами для приготування зразків були оксиди РЗЕ та алюмінію. Старанно усереднені суміші оксидів, взяті у стехіометричних співвідношеннях, були спресовані в таблетки діаметром 7 мм і відпалені на повітрі за температури 1100 К протягом 10–20 годин. Для досягнення повноти синтезу та кращої гомогенізації зразків вони були додатково переплавлені в електродуговій печі в атмосфері Аргону. Фазовий аналіз зразків та дослідження їх кристалічних

структур за кімнатної температури проводили методом рентгенівської порошкової дифракції з використанням дифрактометра Гіньє *G670*, обладнаного *Huber Image Plate* детектором (Інститут Макса Планка хімічної фізики твердого тіла, м. Дрезден, Німеччина) або рентгенівського дифрактометра ДРОН-3М (кафедра НПЕ, Національний університет "Львівська політехніка"). Низько- та високотемпературні дослідження кристалічних структур та фазових перетворень проводили методом *in situ* порошкової дифракції високого розділення з використанням синхротронного випромінювання на експериментальній станції В2 в синхротронній лабораторії НАЅYLAB (м. Гамбург, Німеччина). Розрахунки параметрів елементарних комірок, координат атомів та теплових параметрів проводились повнопрофільним методом Рітвельда із застосуванням пакета програм WinCSD [15]. Диференціальний термічний аналіз та диференціальна скануюча калориметрія (ДТА/ДСК) були проведені на термічному аналізаторі STA 409 (HETZSCH, Selb) із SiC-нагрівачем. ДТА криві були зняті за допомогою Pt10%Rh-Pt сенсора в температурному діапазоні від 300 до 1173 К. Швидкість зміни температури становила 10 або 20 К/хв. ДСК сенсор використовувався для високочутливих вимірювань за температур, нижчих за 1573 К.

Результати досліджень

Рис. 1. Концентраційні залежності параметрів і об'єму елементарних комірок твердих розчинів $La_{1-x}R_xAlO_3$ за кімнатної температури. Параметри ромбоедричної (Rh) та ромбічної (O) елементарних комірок приведені до перовскитної псевдокомірки відповідно до співвідношень $a_p = a_r / \sqrt{2}, \ c_p = c_r / \sqrt{12}; \ V_p = V_r / 6; \ a_p = a_o / \sqrt{2}; \ b_p = b_o / \sqrt{2}; \ c_p = c_o / 2$

Проведені дослідження показали, що за кімнатної температури у системах LaAlO₃–RAlO₃ (R = Sm–Tb, Y) утворюється два типи твердих розчинів з ромбічною та ромбоедричною структурами (рис. 1). Між двома фазами із різними типами перовскитних структур існує область незмішуваності. Встановлено, що розміщення і протяжність цієї області залежить від різниці

величин іонних радіусів лантану та РЗЕ. Положення області співіснування двох фаз зміщується в бік алюмінату лантану, а ширина її збільшується зі зменшенням іонного радіуса R-катіону. Параметри і об'єм елементарних комірок твердих розчинів $La_{1-x}R_xAlO_3$ (R = Nd–Tb) монотонно спадають, зі збільшенням вмісту РЗЕ, тоді як у системах $LaAlO_3$ -RAlO₃ (R = Dy–Lu, Y) об'єм і параметри *a*, *c* спадають зі збільшенням вмісту РЗЕ, а параметр *b* у ромбічній сингонії – зростає (рис. 1, *г*).

У системах $PrAlO_3$ –LaAlO₃ та $PrAlO_3$ –NdAlO₃ у всьому концентраційному діапазоні утворюються тверді розчини з ромбоедричною структурою (рис. 2, *a*). Два типи твердих розчинів із ромбоедричною і ромбічною структурою (рис. 2, *б*, *в*) існують в системах $PrAlO_3$ –RAlO₃ (R = Sm, Eu, Gd), тоді як в системах $PrAlO_3$ –RAlO₃ (R = Tb–Lu, Y) утворюються тверді розчини із ромбоедричною ($R\bar{3}c$) і двома різними ромбічними (*Pbmn*, *Imma*) структурами (рис. 2, *c*). Параметри і об'єми елементарних комірок сполук $Pr_{1-x}R_xAlO_3$ (R = La, Nd, Sm, Eu) монотонно спадають зі зменшенням середнього радіуса катіона P3E. У твердих розчинах $Pr_{1-x}R_xAlO_3$ (R = Gd-Lu, Y) об'єм та параметри *a* і *c* елементарної комірки спадають зі збільшенням вмісту R, тоді як параметр *b* зростає.

Рис. 2. Концентраційні залежності параметрів і об'єму елементарних комірок твердих розчинів $Pr_{1-x}R_xAlO_3$ за кімнатної температури. Параметри ромбоедричної (Rh) та ромбічної(O) комірок приведені до перовскитної псевдокомірки відповідно до співвідношень $a_p=a_r/\sqrt{2}, c_p=c_r/\sqrt{12}, V_p=V_r/6; a_p=a_o/\sqrt{2}, b_p=b_o/\sqrt{2}; c_p=c_o/2, V_p=V_o/4 (для ПГ Рbnm)$ $i a_p=a_o/\sqrt{2}, b_p=b_o/2; c_p=c_o/\sqrt{2}, V_p=V_o/4 (для ПГ Ітта)$

Дослідження температурної поведінки твердих розчинів, проведені із використанням методів *in situ* HT і BT синхротронної дифракції та ДТА/ДСК, виявили існування декількох типів структурних фазових перетворень. У системах на основі LaAlO₃ існують два фазові перетворення: плавний фазовий перехід від ромбоедричної до кубічної структури (рис. 3, *a*) та стрибкоподібний перехід першого роду від ромбічної до ромбоедричної структури (рис. 3, *b*). У системах на основі PrAlO₃, крім вищезгаданих фазових перетворень, спостерігається багато додаткових низькотемпературних переходів, а саме: $R\bar{3}c \leftrightarrow Imma$, $Imma \leftrightarrow I2/m$, $I2/m \leftrightarrow I4/mcm$, $R\bar{3}c \leftrightarrow I2/m$ та $R\bar{3}c \leftrightarrow I\bar{1}$ (рис. 3, *в–е*). Кристалічні характеристики різних модифікацій твердих розчинів, уточнені за даними порошкової дифракції синхротронного випромінювання, наведені у таблиці.

Рис. 3. Температурні залежності структурних параметрів твердих розчинів у системах LaAlO₃-RAlO₃ та PrAlO₃-RAlO₃. Параметри ромбоедричної ($R\overline{3}c$), ромбічної (Ітта), моноклінної (І2/т) та триклінної (І $\overline{1}$) комірок приведені до перовскитної псевдокомірки відповідно до співвідношень $a_p = a_r/\sqrt{2}$, $c_p = c_r/\sqrt{12}$, $V_p = V_r/6$; $a_p = a_o/\sqrt{2}$, $b_p = b_o/2$; $c_p = c_o/\sqrt{2}$, $V_p = V_o/4$ (для ПГ Pbnm) і $a_p = a_o/\sqrt{2}$, $b_p = b_o/2$; $c_p = c_o/\sqrt{2}$, $V_p = V_o/4$ (для ПГ Imma); $a_p = a_n/\sqrt{2}$, $b_p = b_n/2$, $c_p = c_n/\sqrt{2}$, $V_p = V_m/4$; $a_p = a_t/\sqrt{2}$, $b_p = b_t/\sqrt{2}$, $c_p = c_t/4$

Кристалог	рафічні х	арактерист	ики різних	модифікаці	и твердих	розчинів La	I _{1-x} K _x AIU ₃ T	a Pr _{1-x} K _x Al	03
		$La_{0.2}Eu_{0.8}$	$La_{0.9}Eu_{0.1}$	$\mathrm{La}_{0.9}\mathrm{Eu}_{0.1}$	$Pr_{0.76}La_{0.24}$	$\mathrm{Pr}_{0.76}\mathrm{La}_{0.24}$	$Pr_{0.76}La_{0.24}$	$Pr_{0.44}Nd_{0.56}$	$Pr_{0.44}Nd_{0.56}$
	ытара- метри	Pbnm	$R\overline{3}c$	$Pm\overline{3}m$	I2/m	Imma	$R\overline{3} c$	$I\bar{1}$	$R\overline{3}c$
	IIdian	673 K	773 K	1173 K	90 K	170 K	300 K	40 K	290 K
	$a, m \AA$	5.31829(9)	5.37889(5)	3.81860(2)	5.34037(8)	5.3180(2)	5.34055(4)	5.3313(1)	5.32930(7)
ALUMA,	$b, m \AA$	5.30898(8)	Ι	I	7.5011(1)	7.5092(3)	I	5.2963(2)	I
	$c, m \AA$	7.5062(1)	13.1563(3)	I	5.32459(8)	5.3483(2)	13.0033(1)	7.4881(2)	12.9488(2)
•	α, °	06	90	90	06	06	90	90.362(2)	90
	β,°	90	90	90	90.571(1)	90	90	89.964(2)	90
•	γ°	90	120	90	06	06	120	90.240(2)	120
R,	x	-0.0044(2)	0	1/2	0.2511(8)	0	0	-0.0011(9)	0
4 <i>i</i> y <i>I</i> 2/ <i>m</i> Ta <i>I</i> -1,	У	0.0186(1)	0	1/2	0	1/4	0	0.4991(11)	0
4e y Imma,	Z	$1/_{4}$	1/4	$1/_{2}$	0.7526(6)	0.5014(5)	1/4	0.2500(9)	1/4
$6c \operatorname{y} R\overline{3} c, 1b \operatorname{y} Pm\overline{3} m$	$B_{ m iso},{ m \AA}^2$	1.134(7)	1.284(9)	1.627(8)	0.351(6)	0.59(1)	0.613(9)	0.560(8)	0.79(1)
All,	x	1/2	0	0	1/1	0	0	0	0
4 <i>e</i> y <i>I</i> 2/ <i>m</i> , 4 <i>b</i> y <i>Imma</i> ,	У	0	0	0	¹ /1	0	0	0	0
$6b \text{ y } R\overline{3} c, 1a \text{ y } Pm\overline{3} m,$	Z	0	0	0	1/4	0	0	0	0
2a y I-1	$B_{ m iso},{ m \AA}^2$	0.83(3)	0.98(4)	1.01(3)	0.54(3)	0.65(4)	0.61(4)	0.8(7)	0.67(4)
	x	Ι	I	Ι	Ι	Ι	Ι	0	Ι
A12,	У	Ι	I	I	Ι	Ι	I	0	I
2b y I-1	Z	-	-	I	—	-	Ι	1/2	Ι
	$B_{ m iso},{ m \AA}^2$	Ι	-	I	-	-	I	0.1(7)	I
01,	x	0.054(2)	0.526(2)	1/2	0.214(4)	0	0.5385(10)	0.050(4)	0.5481(8)
4i y I2/m y I-1,	у	0.4918(15)	0	0	0	$1/_{4}$	0	0.019(6)	0
4e y Imma,	N	1/4	1/4	0	0.229(5)	0.043(2)	1/4	0.255(4)	1/4
18e y R3 c, 3d y Pm3 m	$B_{ m iso}, { m \AA}^2$	1.5(2)	1.33(9)	1.21(10)	0.7(2)	0.9(2)	0.43(8)	0.4(2)	0.62(8)
č	x	-0.273(2)	I	I	0	1/4	I	0.251(6)	I
$\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}$	у	0.287(2)	I	I	0.286(2)	-0.0198(12)	I	0.757(5)	I
$+g$ y $1 \le 10^{\circ}$, $0g$ y 1000 , $4i v I = 1$	Ζ	0.0281(13)	I	Ι	0	1/4	Ι	-0.031(3)	Ι
/ /	$B_{ m iso},{ m \AA}^2$	1.4(2)	Ι	I	0.1(2)	0.59(11)	I	0.7(2)	Ι
3	x	Ι	Ι	Ι	1/2	Ι	Ι	-0.274(5)	Ι
$\frac{1}{m/U}$, cO	У	I	I	I	0.249(8)	I	I	0.772(5)	I
4i v 1-1	Z	I	I	I	0	I	I	0.473(4)	I
($B_{ m iso}, { m \AA}^2$	I	I	I	0.33(12)	I	I	0.3(2)	I

* $B(eq) = 1/3[B_{11} a*2 a2 + ... 2B_{23} b*c*b c cos(alpha)]$, $*T = exp[-1/4(B_{11} a*2 h2 + ... 2B_{23} b*c*k l)]$.

Рис. 4. Фазові діаграми систем PrAlO₃-RAlO₃ та LaAlO₃-RAlO₃ (R=Nd, Sm, Eu). Символами L, C, Rh, O1, O2, M, T, Tcl позначено області існування рідкої, кубічної, ромбоедричної, двох ромбічних (Ітта, Pbmn), моноклінної, тетрагональної та триклінної фаз відповідно

Використовуючи літературні дані, а також результати експериментальних *in situ* температурних досліджень структури твердих розчинів, побудовані повні або часткові діаграми стану систем $PrAlO_3$ -RAlO_3 та LaAlO_3-RAlO_3 (R = Nd, Sm, Eu) (рис. 4). Фазові перетворення $R\bar{3}c \leftrightarrow Pm\bar{3}m$ та $Pbmn \leftrightarrow R\bar{3}c$ пов'язані зі зміною ступеня деформації перовскитної структури і їх температури лінійно спадають із збільшенням радіуса катіонів рідкісноземельних елементів. НТ фазові переходи $R\bar{3}c \leftrightarrow Imma$, $Imma \leftrightarrow I2/m$, $I2/m \leftrightarrow I4/mcm$, $R\bar{3}c \leftrightarrow I2/m$ та $R\bar{3}c \leftrightarrow I\bar{1}$, які спостерігаються лише в системах $PrAlO_3$ -RAlO_3, виникають внаслідок взаємодії електронних станів іонів Pr^{3+} із фононами кристалічної ґратки, тому їх температури не залежать від середнього радіуса R-катіонів і спадають зі зменшенням вмісту Празеодиму. Однак у твердих розчинах систем $PrAlO_3$ -RAlO_3 (R = Sm-Lu, Y) температура HT фазового переходу $R\bar{3}c \leftrightarrow Imma$ дещо зростає зі зменшенням концентрації празеодиму.

Висновки

Комбінованим методом твердофазного синтезу та дугової плавки отримано серію зразків складних оксидів в системах $PrAlO_3$ -RAlO_3 та $LaAlO_3$ -RAlO_3 (R = La-Lu, Y). Досліджено кристалічну структуру, термічну поведінку та фазові перетворення в твердих розчинах $Pr_{1-x}R_xAlO_3$ та $La_{1-x}R_xAlO_3$ в широкому температурному діапазоні 12–1500 К. Методами *in situ* порошкової дифракції синхротронного випромінювання та термічного аналізу встановлено вплив катіонного заміщення на характер та параметри концентраційно- та термічно-індукованих фазових перетворень. На основі отриманих результатів, а також літературних даних побудовані діаграми стану деяких систем $PrAlO_3$ -RAlO_3.

1. Geller S., Bala V. B. Acta. Cryst. - 1956. - 9. - P. 1019. 2. Howard C.J., Kennedy B.J., Chakoumakos B.C. J. Phys. Condens. Matter. -2000. - 12. - P. 349. 3. Vasylechko L., Senyshyn A., Bismayer U. Perovskite-type aluminates and gallates, in: Handbook on the Physics and Chemistry of Rare Earths, ed. K.A. Gschneider Jr., J.-C. Bunzil, and V. Pecharsky (Elsevier, Amsterdam) - 2008. - 39. -P. 113. 4. Fujii H., Hidaka M., Wanklyn B.M. Phase Transition - 1999. - 70. - C. 115. 5. Moussa S.M., Kennedy B.J., Hunter B.A., Howard C.J., Vogt T. J. Phys.: Condens. Matter. - 2001. - 13. - L203. 6. Carpenter M.A., Howard C.J., Kennedy B.J., Knight K.S. Phys. Rev. B -2005. -72. - 024118. 7. Vasylechko L., Senyshyn A., Trots D., Niewa R., Schnelle W., Knapp M. J. Solid State Chem. - 2007. -180. - P. 1277. 8. Geller S., Raccah P.M. Phys. Rew B. - 1970. -2(4) - P. 1167. 9. Kennedy B.J., Howard C.J., Prodjosantoso A.K., Chakoumakos B.C. Appl. Phys. A. - 2002.- 74. - C. s1660. 10. Glynn T.J., Harley R.T., Hayes W., Rushworth A.J., Smith R.H. J. Phys. C: Solid State Phys. - 1975. - 8. - L126. 11. Basyuk T., Vasylechko L., Syvorotka I., Schmidt U., Trots D., Niewa R., Phys. Status Solidi C. - 2009. -6(5). - P. 1008. 12. Nordland W.A., Van Uitert L.G. J. Phys. Chem. Solids. - 1970. - 31(6). - P. 1257. 13. Brusset H., Gillier-Pandraud Mme H. Mat. Res. Bull. - 1975. - 10. - Р. 481. 14. Басюк Т.В., Василечко Л.О., Сиворотка I.I., Федорчук А.О., Фадсев С.В. // Вісн. Нац. ун-ту "Львівська політехніка". - 2008. - № 619: Електроніка. - С. 61. 15. Akselrud L.G., Zavalij Р.Yu., Grin Yu., Pecharsky V.K., Baumgartner B., Woelfel E. Materials Science Forum. - 1993. - 335. - P. 133.