
Proceedings of the International Conference on Computer Science and Information Technologies, September 28th-30th, Lviv, Ukraine

 120

UDC 683.1
Hryhorovych A., *Hryhorovych V.

Drohobych Pedagogic Lyceum,
Ivan Franko Str., 36, Drohobych, 82100, Ukraine,

*Ivan Franko Drohobych State Pedagogic University,
cathedra of informational systems and technologies,

Ivan Franko Str., 24, Drohobych, 82100, Ukraine,
E-mail: a_grygorovych@mail.ru, vgrig@bigmir.net

REALIZATION OF OPERATIONS WITH NESTED
RELATIONS

© Hryhorovych A., Hryhorovych V., 2006

There have been reviewed object-relational peculiarities and work with nested relations in the industrial
SMDB. There have been given the examples of operations with nested relations by means of Oracle, SQL3, SQL4 and
XML.

Кеуwords –.nested relations, Oracle, SQL3, SQL4, XML.

Nested relations are especially important for the programs of data base elaboration, specifically a subclass of
nested relations called relations in partitioned normal form (PNF). A relation is in partitioned normal form when its
atomic attributes are a superkey of the relation and when any non-atomic component of this relation’s tuple also is in
partitioned normal form (PNF). Relations in partitioned normal form were investigated in [1-5]. This question arised
for the first time in 1977 when A.Makinouchi said [6] that conditions of the first normal form (1NF), put on
relational data base do not fit different programs for data base elaboration, such as Information Retrieval Systems or
Computer-Aided Design and Manufacturing, CAD/CAM. Such programs need to operate with structured substances
when the first normal form lets only atomic (non-divided) meanings for attributes. Nested relations got a new
stimulus for the development because of the wide use of Object-Relational Data Model, specifically beause of
insertion of the proper possibilities to industrial systems of management of data base (SMDB) (for instance, Oracle)
and to the existing standards – SQL3 (SQL-99). Object-relational data models (ORDM) make a relational model
wider through insertion of object-oriented possibilities and providing of design of non-standard data types; they
allow complicated data types for attributes in tuples, including non-atomic meanings, such as nested relation.
ORDM reserve relational basement, specifically delarative access to the data, and make the possibilities of a data
model wider; they are compatible with the existing relational languages.

1. Object-relational peculiarities and work with nested tables in Oracle
Defining of the object types that include nested relations
Oracle allows us to define types like the types SQL. For example, defining of a point signed by two

coordinated looks like:
CREATE TYPE PointType AS OBJECT (

 x NUMBER,
 y NUMBER);
We may use the object type like any other type in the further defining of object types or types-tables. For

example, we may define a type of a line:
CREATE TYPE LineType AS OBJECT (
 end1 PointType,
 end2 PointType);
After this we may create a relation that includes lines of the type LineType:
CREATE TABLE Lines (
 lineID INT,
 line LineType);
Design of object quantities
Like C++, Orale provides inluded constructors for the results of the announces type that have the type’s

name. So, a result of the type PointType is formed with a word PointType and a list of the corresponding
meanings put into brackets. For example, to create a line segment with ID27 in Lines that lies from the eginning of
the coordinates to the point (3; 4), we shall write:

INSERT INTO Lines
 VALUES(27, LineType(

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Proceedings of the International Conference on Computer Science and Information Technologies, September 28th-30th, Lviv, Ukraine

 121

 PointType(0.0, 0.0),
 PointType(3.0, 4.0)));
I. e., we have created two meanings of the type PointType, these meanings are been used to create meanings

of the type LineType , and this meaning is been used with the whole 27 to create a tuple for Lines .
Nested tables
Extremely powerful possibility of the using the object types in Oracle is that the column types, i.e. types of

attributes can be a table-type [7,8]. I. e., meaning of attributes in one tuple can be a full relation, as depicted in a Fig.
1, where a relation with a scheme (a, b) has the meaning b, that by its turn is a relation with a scheme (x, y, z)

-

- - -

- - -

a b

-

x y z

-
x y z

- -

- - -

-

x y z

- - -

- - -

Fig. 1 Scheme of a nested relation R(a, b(x,y,z,))

To receive a relation as a type of some attribute, we need to define a type at once, using an attribute AS

TABLE OF. For example,
 CREATE TYPE PolygonType AS TABLE OF PointType;

The given definition points us that a type PolygonType is a relation, which tuples have a type
PointType , i.e., they have two real components x and y.

Now we may to define the relation, one of the columns of which has meaningh that perform polygons; i.e.,
they are a complex of points. There the following definition may take place, in which the polygons are performed
with names and complexes of points:

 CREATE TABLE Polygons (
 name VARCHAR2(20),
 points PolygonType)
 NESTED TABLE points STORE AS PointsTable;
Here “elementary” relations, that perform corresponding polygons, are retained not directly as meanings of

attributes points , but in a single table PointsTable , that has to be described after put into brackets of the list
attributes of the table Polygons , and that is used for retaining of relations of a type PolygonType .

To insert lines into relations which have one or several columns that are nested relations (e.g., into the
relation Polygons), we use a constructor of a type for a nested relation (in our example PolygonType) to
surround the meaning of the nested relation. The meaning of the nested relation is performed with the list of the
meaning of a corresponding type; in our example the type PointType is performed with the constructor of the
type with the same name.

With the help of the following construction we insert a polygon “square” that consists of four points and
depicts a single square:

INSERT INTO Polygons VALUES(

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Proceedings of the International Conference on Computer Science and Information Technologies, September 28th-30th, Lviv, Ukraine

 122

 'square', PolygonType(PointType(0.0, 0.0), PointType(0.0, 1.0),
 PointType(1.0, 0.0), PointType(1.0, 1.0)));
We may receive the points of this square using the inquire
 SELECT points
 FROM Polygons
 WHERE name = 'square';

We also may receive the details of a nested relation with the help of the inquire FROM using the key word
THE applied to a subinquire the result of which is the relation. If the inquire abow reverts the whole relation, the
result of the following will be the points of the square which are placed on the main diagonal (i.e., x = y):

 SELECT ss.x
 FROM THE(SELECT points
 FROM Polygons
 WHERE name = 'square'
) ss
 WHERE ss.x = ss.y;
In this inquire the nested relation received a supplemental parameter ss that is being used in requires SELET

and WHERE as if it were a usual relation.
Combination of nested relations and references
In a case of creating of nested tables the tuples of which in fact are indicators (reference books) to the tuples

of another table (we can see it in normalization of the data), a problem arises that the attribute of the nested table has
no name. For using in such cases Oracle gives the name COLUMN_VALUE.

Let’s change the relation that depicts polygons to receive nested tables of indicators (reference books). First,
we create a new type that is a nested table of indicators (of reference books) to the points:

CREATE TYPE PolygonRefType AS TABLE OF REF PointType;

After that we create a new relation, similar to Polygons , but with the points retained as a nested table of
indicators:

CREATE TABLE PolygonsRef (
 name VARCHAR2(20),
 pointsRef PolygonRefType)
 NESTED TABLE pointsRef STORE AS PointsRefTable;
It is necessary to remember that the points have to be directly retained in some relation of the type

PointType . In this case, constructing a require to find the points that are situated on a main diagonal, it is
necessary to use COLUMN_VALUE to address to the column of the nested table. The require will look like:

 SELECT ss.COLUMN_VALUE.x
 FROM THE(SELECT pointsRef
 FROM PolygonsRef
 WHERE name = 'square'
) ss
 WHERE ss.COLUMN_VALUE.x = ss.COLUMN_VALUE.y;

2. I I. Realization of nested tables with the means SQL3 and SQL4
To create nested tables where a column of one table includes in fact another table we use collections.

Collections are constructors of types that are used to define collections of other types. Collections are used to retain
several meanings in one column of a table. As a result, there can be created one table that includes several levels on
nestedness of the type “a main/a subordinate”. So, collections let us fulfill projecting of physical structure of the data
base more flexible.

In a standard SQL3 there is паратремизований type of the collection ARRAY, and in a standatd SQL4 it is
expected an additional introducing паратремизованих types of the collections LIST, SET and MULTISET [9]. In
any case a parameter, called an element of a type, can have a previously defined type, a typeof a user UDT (User-
Defined Types), a line type or to be a collection, but it cannot be an indicating type or a type UDT that includes an
indicating type. Besides, Each collection has to be homogenous, i.e. all its elements must have the same type or arise
from hierarchy of one type. The types of the collections have the following definitions:

ARRAY. One-dimension massif, maximum elements are indicated for which.
LIST . A put in order collection where duplicated are allowed.
SET. Not in order collection where duplicates are forbidden.
MULTISET. Not in order collection where duplicates are allowed.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Proceedings of the International Conference on Computer Science and Information Technologies, September 28th-30th, Lviv, Ukraine

 123

These types are analogous to the types defined in a standard ODMG 3.0 [9, p. 1012-1036], exepting that the
name Bag is changed with the data type MULTISET of the language SQL. Such operations ate expected for these
collections:

Two sets SET are used as operandes and return a resulr of he type SET;
Two multisets MULTISET are used as operandes and return a result of a type MULTISET;
A multiset MULTISET is used as an operand and returns a result of a type SET;
Any collection is used as an operand and returns a result equal to the number of the elements in this

collection;
Two lists LIST are used as operandes and return a result of a type LIST ;
Two lists LIST are used as operandes and return a result of a type INTEGER;
A list LIST and one or two whole numbers are used as operandes and return a result of a type LIST ;
An array ARRAY and one or two whole numbers are used as operandes and return an element of an array

ARRAY;
Two massifs ARRAY are used as operandes and concatenation is fulfilled of these two arrays in one array

ARRAY in an indicated order .The next examples show us the possibilities of the work with the collections in SQL.
Using of the collection of the type SET
It is necessary to supplement a table STAFF, so that it would be possible to save the data about the number of

family members (next of kin), and then to find the names and last names of the members with the name John
White.

The collection of the data type SET allows us to include a column into the table STAFF in this way:
NextOfKin SET (PersonType)
In this case the inquire will look like:
SELECT n.fName, n.lName
FROM Staff s, TABLE (s.NextOfKin) n
WHERE s.lName = ‘White’ AND s.fName = ‘John’;
Using the collection of the type ARRAY
If the limit is expected according to which we allow retaining of the data about not more that about three

members of the family, we may this column like the data of the type ARRAY.
NextOfKin PersonType ARRAY(3)
In this case the inquire that expects a selection of the data only about the first member of the family will look

like:
SELECT s.NextOfKin[1].fName, s.nextOfKin[1].lName
FROM Staff s
WHERE s.lName = ‘White’ AND s.fName = ‘John’;
Because it is not permitted to use the array as an indicator to a table, it is necessary to ise the whole form of a

note in the list of the selection of an operator.

3. Nested relations in XML
In the language XML (eXtensible Markup Language) the data are given as lines of a text that includes

insertions of markup that serves to description of qualities of the data. Using of the markup allows us to supplement
the text with the information that touches its contents or its shape.

In XML we may use two approaches to present the relational data:
- Relation of the type “one to many” are presented as separate tables of lines that are linked with the

common columns. These common columns are defined in the collections as the keys, and the relation takes place
among them.

- Nested relations are presented hierarchically, i.e., paternal elements include nested filial elements. In the
following example there are showed orders Orders of a customer, nested to the element Customers [10]. I.e.,
the data about customers and all their orders are grouped in one hyerarch with Customers .

<CustomerOrders>
 <Customers>
 <CustomerID>ALFKI</CustomerID>
 <Orders>
 <OrderID>10643</OrderID>
 <OrderDetails>
 <CustomerID>ALFKI</CustomerID>
 <OrderDate>1997-08-25</OrderDate>

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Proceedings of the International Conference on Computer Science and Information Technologies, September 28th-30th, Lviv, Ukraine

 124

 </Orders>
 <Orders>
 <OrderID>10692</OrderID>
 <CustomerID>ALFKI</CustomerID>
 <OrderDate>1997-10-03</OrderDate>
 </Orders>
 <CompanyName>Alfreds Futterkiste</CompanyName>
 </Customers>
 <Customers>
 <CustomerID>ANATR</CustomerID>
 <Orders>
 <OrderID>10308</OrderID>
 <CustomerID>ANATR</CustomerID>
 <OrderDate>1996-09-18</OrderDate>
 </Orders>
 <CompanyName>Ana Trujillo Emparedados y helados</CompanyName>
 </Customers>
</CustomerOrders>

4. Conclusion
The rewieved possibilities allowed us to approve that it is already realized the corresponding widening of the

functions of Systems of managing of data bases (SMDB) to provide the support to the operations upon the nested
relations. Many existing SMDB include instrumental means for elaboration of nested relations, thanks to which
there is solved the problem of proper presentation of the data in informational systems that continues to be actual:
on one side – for the existing problems new models of the data that more properly present the subject’s sphere have
being built; on the other side – new problems arise that need the elaborating of the data of new nature. The usage of
the nested relations in investigation of the models of spatial data is especially perspective, - it will allow us to realize
scaling at the level of the data model: depending on the scale a object can be considerated as “simple” or as such one
that has some spatial structure.

References
[1] F. Bancilhon, P. Richard and M. Scholl. On line processing of compacted relations. In Proc. 8th

International Conference on Very Large Databases, pages 263-269, Mexico City, Sep. 1982.
[2] S. Abiteboul and N. Bidoit. Non first normal form relations: An Algebra allowing data restructuring.

Journal of Computer and System Sciences, 33: 361-393, 1986.
[3] M. A. Roth, H. F. Korth and A. Silberschatz. Extended algebra and calculus for nested relational databases.

ACM Transactions on Database Systems, 13 (4): 389-417, Dec. 1988.
[4] G. Hulin. A Relational Algebra for Nested Relations in Partitioned Normal Form. Manuscript M318, Philips

Research Laboratory Brussels, Oct. 1989.
[5] G. Hulin. On Restructuring Nested Relations in Partitioned Normal Form. In Proc. 16th VLDB Conference,

p. 626-637. Brisbane, Australia 1990. www.vldb.org/conf/1990/P626.PDF
[6] A. Makinouchi. A consideration on normal form of not-necessarily-normalized relation in the relational data

model. In Proc. 3rd International Conference on Very Large Databases, pages 447-453, Tokyo, Oct.
1977.

[7] Фейерштейн С., Прибыл Б. Oracle PL/SQL для профессионалов 3-е изд. – Спб.: Питер, 2003. С. 799 –
857.

[8]Jeff Ullman. Object-Relational Features of Oracle. www-db.stanford.edu/~ullman/fcdb/oracle/or-
objects.html

[9] Коннолли Т., Бегг К. Базы данных. Проектирование, реализация и сопровождение. Теория и
практика. 3-е издание. : Пер. с англ. – М.:Издательский дом «Вильямс», 2003.

[10]http://msdn.microsoft.com/library/rus/default.asp?url=/library/rus/vbcon/html/vbconnestedrelationshipsinx
ml.asp

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

