Storage Devices, Deerfield Beach, USA, 2003. – *P. 12. 21. Дамаскин Б.Б., Петрий О.А. Электрохимия.* – *М.: Высш. шк., 1987.* – *295 с. 22. Randin J.P., Yeager E. // J. Electrochem. Sos., 118 (1971) 711. 23. Randin J.P., Yeager E. // J. Electroanal. Chem., 36 (1972) 257. 24. Gerischer H., Phys J. Chem., 89 (1985) 4249. 25. Bakhmatyuk B.P., Venhryn B.Ya., Grygorchak I.I., Micov M. ., Mudry S.I. // Rev. Adv. Mater. Sci.* – *2007 .- Vol. 14.* – *№ 2.* – *P. 151–56. 26. Hyun-Kon Song, Hee-Young Hwang, Kung-Hong Lee, H. Le Dao, Electrochim. Acta 45 (2000) 2241–2257.*

УДК 621.315.592

М.М. Берченко, С.В. Фадсєв, О.Ю. Нікіфоров Національний університет "Львівська політехніка", кафедра напівпровідникової електроніки

ЗАКОНОМІРНОСТІ ОКИСНЕННЯ ТВЕРДОГО РОЗЧИНУ РВ_{0,8}SN_{0,2}TE

©. Берченко М.М,. Фадсєв С.В, Нікіфоров О.Ю., 2010

N.N. Berchenko, S.V. Fadeyev, A.Yu. Nikiforov.

OXIDATION SPECIFICS SOLID SOLUTION PB0.8N0.2TE

© Berchenko N.N., Fadeyev S.V., Nikiforov A.Yu., 2010

Для оцінки хімічного складу власного оксиду твердого розчину на основі халькогенідів $Pb_{1-x}Sn_xTe$ (x=0;0,2;1) застосовано метод діаграм фазових рівноваг. Дослідження проводили за методом рентгеноструктурного аналізу термічно окиснених зразків. Результати досліджень добре узгоджуються з діаграмами фазових рівноваг. Основними сполуками, що утворюються під час окиснення твердого розчину $Pb_{0.8}Sn_{0.2}Te \in PbTeO_3$, SnO_2 , $PbSnO_3$ та Pb_2SnO_4 .

Ключові слова: IV–VI напівпровідникові сполуки, діаграми фазової рівноваги, окиснення, межа розділу власний діелектрик – напівпровідник, рентгенівська дифракція.

To evaluate the chemical composition of its own oxide solid solution based on chalcogenides $Pb_{1-x}Sn_xTe$ (x=0; 0,2;1) applied the method of phase equilibrium diagrams. Research conducted by X-ray analysis of samples that were thermal oxidation. Research results agree well with the predicted phase equilibrium diagram. The main compounds formed during oxidation of solid solution $Pb_{0.8}Sn_{0.2}Te$ is $PbTeO_3$, SnO_2 , $PbSnO_3$ and Pb_2SnO_4 .

Keywords: IV–VI semiconductor compounds, Equilibrium phase diagrams, Oxidation, Native dielectric–compound semiconductor interface, X-ray diffraction.

Вступ

Зацікавленість твердими розчинами (ТР) на основі халькогенідів зв'язана з тим, що вони знайшли широке застосування в різних галузях електроніки, зокрема в різних типах фотоелектричних приладів тощо. Але прилади, які виготовляють на основі ТР халькогенідів, змінюють свої параметри під час їх зберігання та експлуатації. Істотна зміна параметрів відбувається в приладах, "активні елементи" яких контактують з повітрям. Однією з причин цього, на наш погляд, є процеси окиснення, що відбуваються на поверхні ТР. Тому дослідження процесів окиснення ТР і встановлення фазового складу межі розділу власний оксид – ТР актуальні та необхідні для створення пасиваційного покриття поверхні напівпровідникового ТР. У цій статті розглядаються закономірності утворення межі розділу власний оксид – твердий розчин Pb_{0.8}Sn_{0.2}Te.

Побудова діаграми Рb-Sn-Te-O

Для побудови діаграми системи Pb–Sn–Te–O використано метод діаграм фазових рівноваг [1, 2]. Взаємну розчинність фаз у твердому стані не враховували, тобто вважаємо, що взаємодії відбувались між чистими фазами. Розглядали такі валентності елементів : Pb та Sn – +2; +4, Te – +4; +6. Для аналізу вибрано 18 фаз : чотири елементи та 14 сполук. Перелік фаз, стандартну ентальпію утворення ΔN_r^o та стандартну ентропію S_r^o кожної фази наведено в табл. 1. Окрім одержаних експериментально, всі значення ΔH_r° та S_r° розраховано на основі статистичного підходу [3]. Для визначення стандартної енергії утворення цих сполук використано середнє співвідношення $\Delta G_r^\circ / \Delta H_r^\circ$ бінарних оксидів (PbO, Pb₃O₄, PbO₂, SnO, SnO₂, TeO₂, та TeO₃).

Таблиця 1

Фази	^о (кДж∙моль ⁻¹)	S_{r}^{o} (кДж•(моль•К) ⁻¹) ΔG_{r}^{o} (кДж•моль ⁻¹)	
Pb	0.0	64.8	0.0
Sn	0.0	51.2	0.0
Te	0.0	49.5	0.0
O_2	0.0	205.0	0.0
PbTe	-68.6	110.0	-67.3
SnTe	-62.0	100.0	-61.3
PbO	-218.6	67.84	-189.1
Pb ₃ O ₄	-720.0	211.3	-606.2
PbO ₂	-276.0	71.92	-218.3
TeO_2	-321.7	58.58	-264.6
TeO ₃	-391.6	81.17	-309.4
SnO	-280.7	57.17	-256.9
SnO_2	-577.6	49.01	-519.9
PbTeO ₃ *	-568.7	126.4	-480.0
SnTeO ₄ *	-946.6	107.6	-815.0
Pb ₂ SnO ₄ *	-654.0	184.7	-860.0
PbSnO ₃ *	-838.0	116.9	-739.5
SnTe ₃ O ₈ *	-1623.9	224.75	-2736.3

Фази, що розглядаються, та їхні термодинамічні дані за 25 °С та тиску 0,1 МПа

* Розрахункові значення

Повна діаграма фазових рівноваг системи Pb–Sn–Te–O (рис. 1) має вигляд правильного тетраедра з одним елементом у кожній вершині. Кожна грань тетраедра – діаграма фазових рівноваг відповідних потрійних систем (Pb–Te–O, Sn–Te–O, Pb–Sn–O та Pb–Sn–Te). Повну інформацію про продукти окиснення Pb_{0.8}Sn_{0.2}Te зображено в розрізі тетраедра Pb–Sn–Te–O в площині PbTe–O–SnTe (рис. 2, табл. 4). Діаграми фазових рівноваг можна використати для оцінки фазового складу власного оксиду, що утворюється на поверхні напівпровідника.

Рис. 1. Повна діаграма фазових рівноваг системи Pb-Sn-Te-O

Рис. 2. Діаграма фазових рівноваг окиснення твердого розчину Pb_{0.8}Sn_{0.2}Te

Експеримент

Експериментальні дослідження проводились із монокристалами p-Pb_{1-x}Sn_xTe (x = 0; 0, 2; 1). Термічне окиснення порошків (монокристалів) відбувалося в електричній печі в інтервалі температур 250–580 °C в повітрі.

Дослідження методом рентгеноструктурного аналізу (PCA) проводились за допомогою рентгенівського дифрактометра ДРОН-3М (рентгенівська трубка з мідним анодом). Інтервал кутів детектування становив 10–90°, швидкість руху детектора – 1 °/хв. Фази, що утворилися для PbTe, SnTe, PbSn та Pb_{0.8}Sn_{0.2}Te за різних режимів термічного оброблення (визначені методом PCA), наведено в табл. 2.

Для точного визначення параметрів решітки ми розглядали відбиття в дальніх кутах (θ перевищує 60°), де дублети $K_{\alpha 1}$ та $K_{\alpha 2}$ відокремлені між собою достатньо, щоб виключити похибки, зв'язані з їх взаємним накладанням та зміщенням унаслідок цього. Для цих кутів випадкова та систематична похибки у визначенні міжплощинних відстаней зменшується під час збільшення кута дифракції, якщо $\theta \rightarrow 90^{\circ}$ похибки прямують до нуля. Щоб уникнути цих похибок, використано метод екстраполяції [4]. У цьому методі визначають параметри решітки за декількома відбиттями в інтервалі точних кутів. Треба побудувати графік залежності сталої решітки від функції, що описує кутову залежність систематичних похибок. Щоб отримати значення $a_{\text{екстр.}}$, залежність треба екстраполювати на θ =90°. Якщо систематичні похибки зв'язані з поглинанням рентгенівських променів у зразку, то найзручнішою екстраполяційною функцією, від якої стала решітки залежить лінійно, є функція Нельсона – Релея

f (
$$\theta$$
) = 0,5 (cos² θ / sin θ + cos² θ / θ).

Maganiag	Режими термообробки		Фази, визначені методом РСА,	
матеріал	Температура, °С	Час витримки, год	що утворилися при окисненні	
	250	5	РbTe, ймовірний початок утворення	
			тетрагональногоPbTeO ₃ та α -PbTeO ₃	
PbTe 350		5	РbTe, тетрагональний РbTeO ₃ та α-PbTeO ₃	
	500	11	РbTe, α-РbTeO ₃ , ймовірний початок утворення	
			TeO ₂ , Te ₄ O ₉ , Te ₂ O ₅ , PbO, α -PbO ₂	
580 4 PbTe, тет		РbTe, тетрагональний РbTeO ₃ та β-PbTeO ₃		
	250-400	<u><</u> 9	SnTe	
SnTe	500	5	SnTe, тетрагональний SnO ₂ , ймовірний початок	
			утворення Te ₄ O ₉	
	250-350	30	Pb _{0,8} Sn _{0,2} Te	
400 Pb _{0,8} Sn _{0,2} Te		30	Pb _{0,8} Sn _{0,2} Te, SnO ₂ , ймовірний початок утворення	
			α -PbO ₂ , PbSnO ₃ , Pb ₂ SnO ₄	
	500	30	$Pb_{0,8}Sn_{0,2}Te, SnO_{2,}$ тетрагональний PbTeO ₃ ,	
			тетрагональний Pb ₂ TeO ₄ ,	
			кубічний PbSnO ₃ , ймовірний початок утворення	
			α -PbTeO ₃ , PbO τα Te ₄ O ₉	
PbSn	350	4	SnO ₂	
Pb _{0,8} Sn _{0,2} Te PbSn	250–350 400 500 350	30 30 30 4	Sn Fe, тетрагональнии SnO ₂ , имовірний початутворення Te ₄ O ₉ Pb _{0,8} Sn _{0,2} Te Pb _{0,8} Sn _{0,2} Te, SnO ₂ , ймовірний початок утворе α-PbO ₂ , PbSnO ₃ , Pb ₂ SnO ₄ Pb _{0,8} Sn _{0,2} Te, SnO ₂ , тетрагональний PbTeO ₃ тетрагональний Pb ₂ TeO ₄ , кубічний PbSnO ₃ , ймовірний початок утворе: α-PbTeO ₃ , PbO та Te ₄ O ₉ SnO ₂	

Фазоутворення за різних режимів термічного оброблення PbTe, SnTe, PbSn та Pb_{0.8}Sn_{0.2}Te

Метод екстраполяції найчастіше використовують для визначення сталої решітки кристалів кубічної структури. За результатами РСА досліджувані вихідні матеріали мають кубічну структуру, просторова група Fm-3m. Для розрахунку складу досліджуваного твердого розчину використано метод Вегарда. Результати наших розрахунків сталої решітки наведено в табл. 3. Зміна розрахованих величин сталої решітки для $Pb_{0.8}Sn_{0.2}$ Те відповідає, очевидно, зменшенню вмісту Sn. Відсутність елементарного Те на дифрактограмах зв'язана, на наш погляд, з тим, що одночасно з виділенням Те відбувається його випаровування, а його кількість у досліджуваних зразках нижче від чутливості методу рентгеноструктурного аналізу. Але утворення елементарного Те вдалося спостерігати за допомогою спектрів комбінаційного розсіяння світла [5].

Дифрактограми, що застосовано при прецизійному визначенні сталої решітки для вихідних матеріалів, подано на рис. 3

Таблиця З

Рехими терміццої обробии	PbTe	Pb _{1-x} Sn _x Te	
тежими термічної обробки	<i>a</i> , Å	<i>a</i> , Å	<i>x</i> , %
вихідні	6.460601	6.429093	20.43
250 °С, 5 год (Рb _{1-х} Sn _x Te)	-	6.429479	20.18
350 °C, 5 год (PbTe); 30 год (Pb _{1-x} Sn _x Te)	6.460536	6.429654	20.07
400 °С, 30 год	6.460412	6.435228	16.45

Сталі решіток вихідних та термічно оброблених зразків PbTe і Pb_{0.8}Sn_{0.2}Te

Таблиця 4

Фазовий склад власного оксиду

PbO_2 , SnO_2 , TeO_3
PbTeO ₃ , SnO ₂ , TeO ₃
Pb ₂ SnO ₄ , PbSnO ₃ , PbTeO ₃ , SnO ₂
Pb ₂ SnO ₄ , PbSnO ₃ , SnO ₂ , PbTe
PbTe, SnO ₂ , Te
$Pb_{0.8}Sn_{0.2}Te$

Рис. 3. Дифрактограми для прецизійного визначення сталих решітки: PbTe (a); SnTe (б); Pb_{0.8}Sn_{0.2}Te (в)

Висновки

- Результати досліджень за методом РСА добре узгоджуються з діаграмами фазових рівноваг Pb–Sn–Te–O, згідно з якими на початкових етапах окиснення формуються такі фази: для PbTe PbTeO₃, для SnTe SnO₂, та для Pb_{0.8}Sn_{0.2} Te SnO₂, елементарний Te, PbTeO₃, PbSnO₃ та Pb₂SnO₄.
- Важливою закономірністю окиснення $Pb_{0.8}Sn_{0.2}Te \in переважаюче окиснення олова, що приводить до зміни складу самого твердого розчину від <math>x = 0,2$ (у вихідному) до x = 0,16 (у термічно обробленому за t = 400 °C).

• Хімічний склад та розподіл елементів, що утворюються на початкових етапах окиснення, практично однакові незалежно від часу та тривалості зростання оксиду. Це підтверджує важливе значення термодинамічної рівноваги в формуванні межі розділу з оксидом.

1. Thurmond C.D., Scwartz G., Kammlott G.W., and Scwartz B. // J. Electrochem. Soc. – 1970. – Vol. 127. – P. 1336. 2. Rhiger D.R., Kvaas R.E. // J. Vac. Sci. Technol. – 1983. – Vol. A1. – P. 1712. 3. Diehl R., Nolang B.I. // J.Crystal Growth. – 1984. –Vol. 66. – P. 91. 4. Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электроннооптический анализ. – М.: Металлургия. 1970. – 66 с. 5. Алещенко Ю.А., Берченко Н.Н., Винникова А.И. и др. // Письма в ЖТФ. – 1989. – Т. 15, вип. 3. – С. 17.

УДК 621.315.592

І.А. Большакова¹, Р.Л. Голяка², Т.А. Марусенкова² Національний університет "Львівська політехніка", ¹кафедра напівпровідникової електроніки, ² кафедра електронних приладів

ПОЛЬОВА ХАРАКТЕРИСТИКА СЕНСОРІВ МАГНІТНОГО ПОЛЯ НА РОЗЩЕПЛЕНИХ ХОЛЛІВСЬКИХ СТРУКТУРАХ

Ó Большакова I.А., Голяка Р.Л., Марусенкова Т.А., 2010

I. Bolshakova, R. Holyaka, T. Marusenkova

FIELD CHARACTERISTIC OF MAGNETIC SENSORS ON THE SPLITTED HALL STRUCTURES

Ó Bolshakova I., Holyaka R., Marusenkova T., 2010

Наведено аналіз польової характеристики сенсорів магнітного поля на розщеплених холлівських структурах. Характеризуючись рядом принципових переваг, зокрема, можливістю інтегрування у трикомпонентні (ВХ, ВҮ, ВΖ) зонди магнітного поля з високою просторовою роздільною здатністю, такі розщеплені холлівські структури вимагають глибшого аналізу залежності вихідної напруги сенсора від вектора індукції магнітного поля. Запропоновано модель розщепленої холлівської структури, що описує паразитну магніторезистивну модуляцію польової характеристики, методику дослідження цієї модуляції та її кількісні параметри. Наводиться приклад застосування отриманих результатів під час калібрування трикомпонентних вимірювальних зондів магнітного поля.

Ключові слова: сенсор, магнітне поле, холлівські структури.

The work gives an analysis of the field characteristics of magnetic sensors on the splitted Hall structures. Having a number of advantages (including the capability to be integrated into three-component magnetic probes with high spatial resolution), such splitted Hall structures require further analysis of output voltage dependence on magnetic induction vector. Besides, this paper proposes a splitted Hall structure model describing the parasitic magnetoresisitive modulation of the field characteristic, the methodology of this modulation study and its