

“COMPUTER SCIENCE & ENGINEERING 2013” (CSE-2013), 21–23 NOVEMBER 2013, LVIV, UKRAINE 192

Abstraction of synchronous
computational model for parallel

graph processing
Oleksandr Romaniuk1, Tetyana Koroteeva2

1Software Department, Lviv Polytechnic National University,
UKRAINE, Lviv, S. Bandery street 28-a,
E-mail: Alexandr.Romanyuk@gmail.com

2Software Department, Lviv Polytechnic National University,
UKRAINE, Lviv, S. Bandery street 28-a,

E-mail: maxim04041997@gmail.com

Abstract – The analysis of current approaches to the
development of algorithms for parallel and distributed computing
on data graphs. The proposed technique facilitates the writing of
parallel algorithms based on graphs by usage of the Actor and the
Valiant's Bulk-Synchronous Parallel models. This approach
differs by determinism of algorithms, by resilience to different
faults and by higher level of abstraction that makes a developer
free from implementation details introduced by parallel and
concurrent programming primitives.
Кеу words – high dimensional graphs, parallel algorithms,

resilient arhitecture, Actor model, Bulk Synchronous Parallel
model.

I. Introduction
Algorithms based on graphs are important for solving of

many problems in scientific computing, datamining, they are
a part of artificial intelligence. Applications of such
algorithms are routing, robotics, software verification
techniques, proofs, biology and others.

Dimensions of solution spaces increase and parallel
computing becomes an integral part of requirements for
implementation of computational complexity and memory
constraints. Unfortunately, algorithms and software that were
developed for parallel scientific applications aren’t
necessarily effective for high dimensional graphs.

One of the important issues of parallel algorithms is a
great difficulty in implementation of their logic. Even more
difficult is to find bugs in these implementations by other
developers. The cause of problem is a lack of sufficient level
of code abstractions that is available for developers of
parallel algorithms. Because of mentioned problems
developers have to think beyond the logic of algorithm.
Therefore, improvements of algorithms on graphs that
increase level of code abstraction, run-time computation and
a memory are quite important for modern scientific research.

The aim of this work is to separate parallel algorithm
developers from the nitty-gritty details such as: thread
synchronization concerns; data races; deadlocks; asynchro-
nous message exchange between nodes; clustering of graphs
by providing high-level data model and functions to
calculate; increase flexibility of communications among
parallel processes (vertices of a search graph); reduce non-
determinism in state of parallel computations.

The subject of the research is the high level of abstraction
to facilitate an implementation of algorithms based on graphs
with horizontal and vertical scalings, that are transparent for
developer.

II. Computational model
In this work the abstract model of parallel computations

is proposed, which consists of three parts - a graph, an
update function and a mechanism for synchronization of
vertices. The graph displays a state of a program, stores
variable data provided by user and displays computa-
tional dependencies. The update function added to every
vertex determines local computations and operates with
data graph in small areas that overlaps. The synchro-
nization mechanism performs global aggregative func-
tions that cover part or all data graph.

The data model consists of a data graph, a container that
manages user defined data. All is processed and represented
as graph. Graph mirrors the computational structure that is
specific to a particular problem and state of a program that is
being executed. The data model is independent of edge
directions. Thus, there is the opportunity to associate
arbitrary parameters with each vertex and edge of the graph.
Together with the data, the graph stores the value to be
updated during the iterative process. Thus, the algorithm is
implemented by creation of a set of rules according to which,
a value of each node may be changed over time. Data
updates in vertices executes at synchronous "super steps"
that are similar to the Valiant’s model of Bulk Synchronous
Parallel [1, 2] computations. Super step is a computational
iteration, which consists of executing updates for all vertices
(defined locally for each vertex separately), and of a
synchronization function. At a function’s output an updated
list of messages alerts for incoming changes of an vertices
internal state, which is addressed to a neighbour vertices.
These reports are available for recipient vertices during start
of a next super step. The result of aggregative function is
available for all vertices through incoming messages, which
are available at the beginning of each subsequent super step.

Calculations from the model that proposed at this work are
presented as functions for status updates of vertices [3, 4, 5].
Update function is a representation of a main element of
calculation algorithm and it’s operating data within
neighboring nodes. Each update function is determined by a
developer of an algorithm for each vertex separately. Update
function planes it’s next update operations (on adjacent
vertices) using asynchronous messaging.

Adjacent vertices of the graph define the limit to which the
update feature is available. Update function takes vertex with
its boundary as input and returns new versions of data
packed into a set of boundaries and vertices. After executing
update modified data is written back to the graph. A set of
vertices computed by the asynchronous updates. Functions
are updated to effectively express adaptive computing
through control over the data that returns a set of vertices in
further calculations. For example, update function is able to
put into an execution plan the return of data only in case of
significant changes done by it neighbor’s vertices.

The synchronization mechanism that aggregates data
among all nodes that defined in the graph works on the basis
of folding and reduction functions used in the paradigm of
functional programming. When synchronization mechanism
is started, the algorithm uses the folding function for serial
data aggregation among all nodes. Combining function
allows to make parallel reduction tree that is used for
combination of results from several parallel fold functions.

 http://cse.ukrscience.org

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

“COMPUTER SCIENCE & ENGINEERING 2013” (CSE-2013), 21–23 NOVEMBER 2013, LVIV, UKRAINE 193

Update function finalizes the end result before it is written
back to the distributed memory.

Suggested execution model allows to define arbitrary
update functions to read and modify any data on the adjacent
vertices and edges. This approach aims to improve the
performance of parallel algorithms due to the lack of
excessive synchronization and fewer switches of an
execution contexts [2, 3]. Also it simplifies the process of
writing parallel algorithms by eliminating the need of
making a low level design (e.g. async messaging,
synchronization, clustering, scaling, etc.).

III. Results
Performance of implementation of two algorithms based

on proposed parallel synchronous model was evaluated.
Algorithms that selected for evaluation were the PageRank,
and the Single source Shortest Path (SSSP).

Results of performance testing were been compared to
the analogous implementations of aforementioned
algorithms based on the MapReduce paradigm (on the
Apache Hadoop platform).

Results were conducted on the server based on the Intel
Xeon processor: 3.1 GHz, 8 physical cores and hyper-
threading, 32 GB RAM. Used software configuration: OS
Debian Linux 7.1 64bit, HotSpot JVM 7u40 64bit (27 GB
of HeapSpace was used), Apache Hadoop 2.1.

PageRank - a popular technique for analyzing the
relative “importance” of webpages based on the hyperlink
structure. The PageRank value of page depends on the
values of pages those links to the source page, equation of
PageRank function iteratively applies until the value of
each page converges [6].

 Single source Shortest Path algorithm solves problem
of finding the shortest path from the source vertex to
every other vertex in the graph. The problem solved by
finding a shortest path tree rooted at source that contains
all the desired shortest paths.

Fig. 1. Running times of the PageRank

Preliminary testisting showed next improvements in the

speedup on 8 cores: the PageRank at 18.75% (see Figs. 1, 2)
and the SSSP at 22.5% (see Fig. 3) comparing to the
MapReduce implementations.

Fig. 2. Speedups of the Pagerank

Fig. 3. Running times of the SSSP

Conclusion
Parallelizing algorithms is challenging but higher level of

the abstraction like one that was proposed makes it much
easier. We could see that parallel algorithms could be
implemented with less efforts and with better scalability.

References
[1] L. G. Valiant et al., "Bulk Synchronous Parallel

Computing. A Paradigm for Transportable Software", in
Proc. Hawaii international Conf. on system sciences,
Cambridge, MA, 1995, pp. 95-108.

[2] D. P. Krizanc and A. A. Saarimaki, “Bulk Synchronous
Parallel: practical experience with a model for parallel
computing”, in Parallel Architectures and Compilation
Techniques Conf., Canada, 1996, pp. 636-640.

[3] G. H. Malewicz et al., “Pregel: a system for large-scale
graph processing”, in Proc. 28th ACM Symp. Principles
of distributed computing, New York, NY, 2009, p. 6.

[4] Y. J. Low et al., “Graphlab: A new framework for parallel
machine learning”, in Conf. on Uncertainty in Artificial
Intelligence, Catalina Island, CA, 2010, pp. 31-43.

[5] P. B. Haller and H. J. Miller, “Parallelizing machine
learning-functionally: A framework and abstractions for
parallel graph processing”, In The 2nd Annu. Scala
Workshop, Stanford, CA, 2011, pp. 15-64.

[6] S. Y. Wills, “Google’s PageRank: The Math Behind the
Search Engine”, Mathematical Intelligencer, vol. 28,
no. 4, p. 16, Apr. 2006.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

