

“COMPUTER SCIENCE & ENGINEERING 2013” (CSE-2013), 21–23 NOVEMBER 2013, LVIV, UKRAINE 214

Development the hybrid code
metric for software
reliability analysis

Vitaliy Yakovyna, Vasyl Buta

Software Department, Lviv Polytechnic National University,
UKRAINE, Lviv, S. Bandery street 12,

E-mail: yakovyna@lp.edu.ua

Abstract – A hybrid code metric to evaluate the software
reliability that takes into account the relative cost of software
development at different stages of the lifecycle has been
developed. This allows to analyse the software reliability at the
early lifecycle stages.
Кеу words – software reliability, software development

lifecycle, software code metrics, deterministic software
reliability models.

I. Introduction
Modern technological approaches to software develop-

ment are complex and often iterative in nature. Activities
such as design, coding, testing and maintenance of these
approaches are often combined, or follow each other
cyclically during the transition from iteration to iteration.
The testing process can be carried out continuously as the
source code is constantly being updated with new features
and fixes. The greater the volume of the source code, the
more effort is necessary to maintain the quality of a
software system at an appropriate level. To solve this
problem, there are different programming methodologies,
automated testing, methods of defects detection and
prediction of [1].

Application of development methodologies are aimed
at reducing the number of defects insertion into the source
code. The purpose of the automated testing is also a
reduction in the number of defects introduced and
prevention of recurrence of previously detected and
corrected defects. In identifying of introduced defects to
the source code defects than manual testing can only help
the detection and prediction of [1]. Means of detecting
defects work are based on static analysis of source code.
In this case, searches for defects are conducted correspon-
ding to a typical erroneous patterns, such as the use of an
uninitialized variable. Therefore, only a small fraction of
defects can be detected by such means.

Defect in the case of software is incorrect logic,
inappropriate or incorrect command that at runtime may
cause failure [2, 3]. In other words, defect is a source of
failure, and failure – is an implementation of defects. When a
failure occurs, it corresponds to a defect in the program, but
the defect may not cause program failure and programnever
goes down until the faulty statement is not met. Thus, in
contrast to hardware, software failure statistics should take
into account scenarios and code coverage tests, otherwise the
software reliability analysis can lead to incorrect results,
even using adequate body of mathematics.

Similarly to reliability of hardware, the software
reliability in the time interval is characterized by
probability of no-failure performance for a certain period
of time under certain conditions [2, 4]. As a result of the

program performance, the input state transforms into
output state. Thus the program can be viewed as a
function f, which transforms input to output where input
is the set of all input states, and output is the set of all
output states. Input state can be defined as a set of input
variables or common commands/transactions in the
program [5].

Software reliability models can be divided into two large
classes – deterministic (static) and probabilistic (dynamic) [2,
3, 5, 6]. Probabilistic models represent the emergence of
failures and defects removal as random events.

Deterministic models are used for study the:
1. elements of the program by counting the number of

operators, operands and instructions;
2. flow control program by counting the branching

paths and routing performance;
3. data flow programs by examining data sharing and

data transfer.
Measuring the performance of deterministic type is

derived from the analysis of source text of program, and
does not include any random event or value. Deterministic
class includes two models [5, 6]: Halstead software model
and McCabe cyclomatic complexity model. In general,
these models represent quantitative approach to measuring
software. Halstead software model is used to evaluate the
number of defects in program [5, 6], while the McCabe
cyclomatic complexity model is used to determine the
upper limit of the programs test number [5, 6].

Nowadays there are many numerical characteristics of
software – software code metrics. Among these metrics
the following metrics can be distinguished: dimen-
sionally-oriented, complexity metrics and hybrid metrics
that combine the advantages of other types. However
there is no universal metrics, any controlled metric
properties of programs should be monitored either
depending on each other, or depending on the specific
problem. Adequate analysis and prediction of software
reliability is not possible without taking into account
reliability characteristics and parameters of the real
software realiability models. Therefore, the study of
software code metrics and their impact on the software
reliability is relevant task of software engineering.

II. Hybryd reliability metric
Complexity metrics are divided into three main groups

[7–9]:
• metrics of program size;
• metrics of program control flow complexity;
• metrics of program data flow complexity.
Metrics of programs size are based on the determi-

nation of quantitative characteristics associated with the
size of the program, and are differentiated by relative
simplicity. Metrics of this group are focused on the
analysis of the source code, so they can be used to assess
the complexity of interim software development. The
most well known metrics of this group include the
number of program operators, the number of lines of
source code, and a set of Halstead metrics [7, 8].

Metrics of program control flow complexity are based
on an analysis of the control graph of the program.

 http://cse.ukrscience.org

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

“COMPUTER SCIENCE & ENGINEERING 2013” (CSE-2013), 21–23 NOVEMBER 2013, LVIV, UKRAINE 215

Metrics of the second group can also be used to assess the
complexity of interim software development. The typical
representative of the second group is the McCabe
cyclomatic complexity metric [7].

Metrics of program data flow complexity are based on
an assessment of the usage, configuration and location of
data in the program. In particular this can be applied to
global variables. This group includes Chepin's metrics [9].

Different metrics reflect different aspects of software
complexity. For a comprehensive account of the data
aspects of the software evaluation more than one metric,
and their combination should be used. Thus, the hybrid
metrics of software code are based on simpler metrics and
are their weighted sum.

Since the following typical cost distribution of software
development process is generally accepted [10]: 17% –
design, 8% – coding, 25% – testing, and 50% – support,
the following hybrid metric for reliability assessing based
on the Kokol metrics is proposed [11]:

 0.17 0.08 0.25 0.5HM C D V G Q        ,

where C – the estimation of the program complexity at
the design stage [7]:

UN COM

NIC
NF NI K


 

,

(here NI is the total number of statistical variables that are
passed to the interfaces between the program components;
NIUN – the unity value of variables that are passed to the
interfaces between the components; KCOM – the comp-
lexity coefficient of the program);

D – Halstead difficulty metric that reflects the difficulty
of program coding [9, 12]:

1 2

22

ND 


  ,

(here 1 – the number of distinct operators; 2 – the
number of distinct operands; N2 – the total number of
operands);

V(G) – McCabe cyclomatic number [9]:

  2V G e n   ,

(here e is the number of graph arcs, while n denotes the
number of vertices);

Q – Chepin's metric as a measure of the complexity of
understanding the program [12]:

2 3 0.5Q P M CN T       ,

(here P is the set of variables for calculations and for
output, M is the set of modified or created within the
program variables, CN is the set of control variables,
while T denotes the set of unused within the program
variables).

The proposed hybrid software reliability metric HM can
be used during the whole lifecycle to analyse developed
software reliability. This makes it possible to reduce the
cost of reliable software developing.

Conclusion
The survey of software reliability analysis trends

reveals, on the one hand, the need to increase the degree
of adequacy of classical reliability models that treat
software as a black box, and from the other hand the
development of models and methods for software
reliability analysis on the basis of architectural
approaches and need to establish the correlation between
code metrics and software reliability.

A hybrid metric for software reliability evaluation on
the basis of Kokol metric is proposed taking into account
the relative cost of software developing lifecycle stages.
This makes it possible to assess the reliability of software
at the early stages of its lifecycle, and thus reduce the cost
of software developing with a given reliability value.

References
[1] S. I. Kirnosenko, V.S. Lukianov, "Prognozirovanie

obnaruzhenija defektov v programmnom obespechenii
[Prediction of software defects revealing]" Program-
mnyje producty i sistemy – Software products and
systems, no. 3, pp. 67–71, 2011.

[2] H. Pham, System software reliability. London:
Springer-Verlag London Limited, 2006.

[3] T. H. Sheakh, S.M.K. Quadri, and V. Singh, "A Study
of Analytically Improving the Reliability of
Software" International Journal of Research and
Reviews in Computer Science, vol. 3, no. 1, pp. 1404–
1406, February 2012.

[4] A.M. Polovko and S.V. Gurov, Osnovy teorii
nadezhnosti [Reliability theory basics]. Saint
Petersburg: BHV-Petersburg Publ., 2008.

[5] H. Pham and M. Pham, "Software Reliability Models
for Critical Applications", Idaho National Engi-
neering Laboratory, EG&G Idaho Inc., EGG—2663
Technical Rep., 1991.

[6] Cobra Rahmani, Azad Azadmanesh "Exploitation of
Quantitative Approaches to Software Reliability",
University of Nebraska at Omaha, Survivable
Networked Systems Rep. (CIST-9900), 2008.

[7] Alan J. Perlis, et al., Software Metrics. Cambridge,
MA: The MIT Press, 1981.

[8] M. L. Hutcheson, Software Testing Fundamentals:
Methods and Metrics. Hoboken, NJ: Wiley, 2003.

[9] A. Abran, Software Metrics and Software Metrology.
Hoboken, NJ: Wiley-IEEE Computer Society, 2010.

[10] D. Wright, Software Life Cycle Management. Ely: IT
Governance Publishing, 2011.

[11] P. Kokol, "Using spreadsheet software to support
metrics life cycle activities" SIGPLAN Not., vol. 24,
no 5, pp. 27–32, 1989.

[12] S. H. Kan, Metrics and Models in Software Quality
Engineering. Indianapolis: Addison-Wesley
Professional, 2002.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

