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We compare the efficiency using indirect boundary and 
near-boundary elements methods for building numerical-
analytical solution of three-dimensional stationary heat 
conduction problems. We built mathematical and discrete-
continual models of problems with boundary conditions of the 
first kind, second kind and third kind using integral 
representations for the temperature. 
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I. Introduction 
Modeling and optimization of thermal processes are 

essential in a variety of industries and technology 
particularly in instrument-making and mechanical 
engineering, in the design of microelectronic devices, a 
cover constructions and equipment by fireproof materials 
[7]. The basis of a mathematical model of a heat 
stationary process, as filtering incompressible fluids, 
electrostatics, serves as a differential equation in partial 
derivatives of elliptic type (the Laplace and the Poisson), 
supplemented by the boundary conditions of the first 
kind, the second kind, the third kind and mixed (at their 
combination). 

Since exact analytical solutions of these problems can 
be obtained only for simple domains, numerical-analytical 
and numerical methods are used, which include finite 
difference and finite elements, integral and boundary 
integral equations, boundary and near-boundary elements, 
and others [1, 2, 4, 5, 9-10]. In the indirect boundary and 
near-boundary elements methods integrated image output 
differential equation written to a fold of its fundamental 
solution of intensities "fictitious" sources distributed on 
the edge of an object or external to it near-boundary 
region. By themselves, the intensity functions have no 
physical meaning, but when they are found, the value of 
the desired temperature inside the body can be obtained 
by using integration. 

In this paper, by model stationary heat processes in the 
parallelepiped we compared indirect boundary and near-
boundary elements methods. Discrete-continuous model 
for the intensities of the unknown source which are 
introduced onto the boundary or near-boundary elements 
and approximated by constant, is reduced to a system of 
linear algebraic equations (SLAE), formed as a result of 
satisfaction of boundary condition in collocation sence. 

II. Mathematical model for finding  
the thermal field 

We consider a homogeneous isotropic parallelepiped in 
Cartesian coordinate system 321 ,, xxx , in region  
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and boundary conditions of the first kind, second kind and 

third kind: ,),()( )1()1(   xxfx                    (3) 
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Where 0/)(~)(  xx ; )(~ x   the intensity sources in 

n  ; n   rectangle (n=2) or parallelepiped 

(n=3);    characteristic function in area  , for 

instence  1  at x  ,  0  at x  ; 

 )3()2()1(   boundary of  ; )()1( xf , 

)()2( xf   functions describing the temperature and heat 

flow at the boundary; )()3( xf   ambient temperature; 

0 , )(x   coefficient of the thermal conductivity of the 

material and coefficient of heat transfer from the surface 
of the object; ),,( 321 xxxx  . 

III. Integral representation of solution  
To construct an algorithm for solving the problem (1)-

(5) we use an indirect boundary (IBEM) [1] and indirect 
near-boundary elements methods (INBEM) [4]. 
According to the main provisions of these methods on the 
boundary of the object   or to the external near-
boundary   area G we introduce unknown functions 

)(x , },{ G , describing the distribution of 

fictitious heat sources. 
After the expansion of the function )(x  domain on the 

whole R3, equation (2) can be written as 
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where   – characteristic function of area  , that is 

1  at ,x  0  at x . 

Eq. (6) ),( xU  [3] integral representation of 

temperature and its normal’s derivative [1, 4]: 
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outer unit vector normal to unambiguously defined 
boundaries  . 

We slanted x in (7)-(8) from the middle of region   to 
boundary   to satisfy the boundary conditions (3)-(5), 
we obtain the boundary integral equation (BIE): 
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Due to arbitrariness of region   and function )(  

and )( , it is almost impossible to perform an analytical 

integration in BIE (9)-(11) for applied problem. Let us 
perform three-dimensional discretization. Faces 

)6,1()(  jj  of the parallelepiped or corresponding near-

boundary zones )( jG  of region G we discretizat 
respectively on V  with boundary or near-boundary 

elements v , moreover   v
V
v 1 ; v , vG  – are flat 

and three-dimensional elements of the second order the 
4 - s and 8-s nodes [4], they do not overlap each other. 
Thickness of the near-boundary elements, which are built 
on one boundary elements, is selected the same and 

equals jh  ( 6,1j ). Then the unknown function, which 

describes the distribution of fictitious heat sources within 

the element is v , is approximated with constant 
vd . 

Region n  we discretize with elements of the second 

order that have 4 or 8 nodes nq  ),...,1( Qq   when 

setting internal sources in a rectangular or parallelepiped 
respectively. 

To satisfy the boundary conditions we use the 
collocation method. We choose the collocation points 

inside each boundary element ,,...,1, Vww   

  w
V
w 1 . After discretization the BIE (9)-(11) can 

be written in the form SLAE: 
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After solving system (12)-(14), we obtain 
vd  and use 

them in (7), (8) to find the temperature and heat flow: 

),(),()(
1

UxbdUxAx vv
V

v
 



  ,            (15) 

),(),(
)(

)(

1
0 QxbdQxA

x
x

vv
V

v





 






n

. (16) 

IV. The numerical research 
Problem 1. To compare obtained by IBEM and 

analytically distributions of thermal fields in the 
parallelepiped (1) with a set boundary conditions of the 
first kind: 

,,)( )1(
1  xvx  ,,)( )2(

2  xvx   

6,3,,0)( )(  jxx j ,                    (17) 

where ,2,0 21  aa  ,2,0 21  bb  2,0 21  cc . 

Here and in future, all physical quantities are taken in the 
system SІ, except for the temperature in degrees Celsius 
selected, 10   W/(mС). 

We approximate the unknown heat source by constant 
and compare the solution, obtained by IBEM for different 
numbers of boundary elements V, with the analytical 
solution [6]. Faces of the parallelepiped were discre-
tizated in the same number of elements   VVV 6, . In 

the Table 1 the absolute error )()()( xxx a   is 

shown at interior points of the parallelepiped, for ,21 v  

102 v . 
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As we can see, with increasing of the number of 
boundary elements, the numerical solution in the internal 
points with the analytical one.  

TABLE 1 
COMPARISON OF ANALYTICAL AND INDIRECT BOUNDARY 

ELEMENTS METHOD SOLUTIONS 

The coordinates 
)(x , 

,4V V=24 

)(x , 

,36V V=216 

( 0.5, 0.5, 0.5 )  0.3746654121 0.0463688868 
( 0.5, 0.5, 1.0 )  0.1682535106 0.0197977721 
( 0.5, 0.5, 1.5 )  0.3746654121 0.0463688868 
( 0.5, 1.0, 0.5 )  0.1682535106 0.0197977721 
( 0.5, 1.0, 1.0 )  0.1331050888 0.0202940332 
( 0.5, 1.0, 1.5 )  0.1682535106 0.0197977721 
( 0.5, 1.5, 0.5 )  0.3746654121 0.0463688868 
( 0.5, 1.5, 1.0 )  0.1682535106 0.0197977721 
( 0.5, 1.5, 1.5 )  0.3746654121 0.0463688868 
( 1.0, 0.5, 0.5 )  1.0082569230 0.1026429162 
( 1.0, 0.5, 1.0 )  0.5805761182 0.0517733055 
( 1.0, 0.5, 1.5 )  1.0082569230 0.1026429162 
( 1.0, 1.0, 0.5 )  0.5805761182 0.0517733055 
( 1.0, 1.0, 1.0 )  0.1526992651 0.0270093067 
( 1.0, 1.0, 1.5 )  0.5805761182 0.0517733055 
( 1.0, 1.5, 0.5 )  1.0082569230 0.1026429162 
( 1.0, 1.5, 1.0 )  0.5805761182 0.0517733055 
( 1.0, 1.5, 1.5 )  1.0082569230 0.1026429162 
( 1.5, 0.5, 0.5 )  0.5834400108 0.1085786090 
( 1.5, 0.5, 1.0 )  1.6058204488 0.2063962951 
( 1.5, 0.5, 1.5 )  0.5834400108 0.1085786090 
( 1.5, 1.0, 0.5 )  1.6058204488 0.2063962951 
( 1.5, 1.0, 1.0 )  3.1731142048 0.3454613118 
( 1.5, 1.0, 1.5 )  1.6058204488 0.2063962951 
( 1.5, 1.5, 0.5 )  0.5834400108 0.1085786090 
( 1.5, 1.5, 1.0 )  1.6058204488 0.2063962951 
( 1.5, 1.5, 1.5 )  0.5834400108 0.1085786090 

 
Problem 2. To compare obtained by IBEM and 

INBEM distributions of thermal fields in the paralle-
lepiped (1) with boundary condition of the first kind: 

 xxxfx ,)()( 2 ,                   (18) 

where ,1,1 21  aa  ,1,1 21  bb  1,1 21  cc . 

Since, using IBEM and INBEM we have the most 
errors when we approach the boundary (they are less in 
the middle of the solid by the maximum principle), on 
Fig. 1 we show the absolute error satisfying the boundary 

condition )()()( xfxx    on the top face )4(  

after solving this problem for 16V , jh =h=0.25 

( 6,1j ). 

As we can see, numerical results deteriorate in the 
points which are located near the boundary of the solid, 
also we observe growth of the error at the interface 
boundary and near-boundary elements (due to the choice 
of just one collocation point on the boundary element). 
When we increment number of discretization elements 
(corresponding to more accurate satisfying the boundary 
condition) we can see increased precision on the 
boundary and inside of the object. However, as shown in 
Fig. 1, INBEM allows achieves higher accuracy satisfying 

boundary conditions compared to IBEM, this is due to the 
possibility of changing the parameter vh  (thickness of 

near-boundary elements), which smooths the abrupt 
transition from the temperature on the boundary to the 
zero in outside.  

 

a) 

 
b) 

Fig. 1. Error of satisfying the boundary condition on the  
top face of the parallelepiped in solving problem using: (a) 

IBEM and (b) INBEM  

 
Problem 3. To estimate the effect of internal source, 

which is given in the form of a square plate 
},,25.0,:),,{( 3213212 dxdxdxdxxx 

 by intensity ))cos(1))(cos(1()(~ 21

d
x

d
xx g





 , 

where 5.0d , on the distribution of the thermal field in 
the parallelepiped (1) with the boundary condition of the 
first kind (18). 

On Fig. 2 we compare distribution of thermal field of 
parallelepiped with a heat internal source and without 
one. This problem was solved by IBEM for 16V , the 

number of discretization elements in internal plate is Q=4 
(we note that it has no affect on dimension of the matrix 
of SLAE (12)). 

As we can see, the temperature increases when 
parallelepiped is heated ( 5.0g ) and decreases  when 

it is cooled ( 5.0g ) compared with the case where 

no internal source. 
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a) 
 

b) 
 

 
c) 
 

d)

 
e) 
 

f) 

Fig. 2. Temperature distribution in the parallelepiped with  

an internal heat source in the form of plate:for g =-0.5  (a)  

on the plate 2x =0.25; (b) above the plate 2x =0.75;  

for g =0.5- (c) on the plate 2x =0.25; (d) above the  

plate 2x =0.75; without internal source  (e) 2x =0.25  

and (f) 2x =0.75  

 

Problem 4. To estimate the effect of internal source, 
which is given in the form of parallelepiped 

:),,{( 3213 xxx ,, 222111 dxddxd   

},333 dxd                              (19) 

with intensity  
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where 75.0321  ddd , on the distribution of the 

thermal field in the parallelepiped (1) with boundary 
condition of the first kind (18). 

Fig. 3 shows the distribution of thermal field of 
parallelepiped with internal heat source of different 
intensity and without one, this problem was solved by 
IBEM for 16V , the number of discretization elements 

in internal cube is Q=8. 
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a)  
 

b) 
 

c) 
 

d) 

 
e) 
 

f) 

Fig. 3. Temperature distribution in the parallelepiped with an 
internal heat source in the form of cube: for g =0.5  (a) on the 

plate, through the center of the source, 2x =0.0; (b) on the plate 

in the middle of the source 2x =0.5 and (c) on its 

boundary 2x =0.75; for g =-0.5 (d-f) on the same planes  

 
As we can see, temperature of the parallelepiped 

( g =0.5) is higher than in the previous case (when the 

source was flat) when volumetric source is heated, and it 
is lower than otherwise ( g =-0.5). 

Problem 5. To find the distribution of thermal field in 
the parallelepiped (1) with mixed boundary conditions: 

,,10)( )1( xx  ,,0)( )2( xx  
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00 
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 x
x
x

n
6,3,)(  jx j , 

and volumetric internal source (19) with intensity (20), 
where 

,75.0,75.0,25.0,25.0 221121  ñbñbaa
 

g =-0.5, 10   W/m² С, 75.0,25.0 321  ddd . 

Fig. 4 shows the distribution of thermal field after 
solving this problem by INBEM for 16V , 

3.021  hh , 1.043  hh , 15.065  hh , the number 

of discretization elements in internal cube is Q=8. 
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a)  

b)

c) 

d) 

Fig. 4. Temperature distribution in  parallelepiped with  
an internal volumetric heat source  on the plane, (a) through  

the center of the source, 2x =0.0; (b) on the planes in the middle 

of the source 2x =0.5, (c) on its boundary 2x =0.7, (d)  

beyond boundary 2x =0.95 

Conclusion 
We realized the approbation of the proposed 

approaches that are based on the combined use of the 
advantages of analytical and numerical methods. They 
include the fundamental solution of the Laplace equation, 
the basic idea of indirect boundary and near-boundary 
elements methods and collocation method. The error of 
satisfying the boundary conditions decreases when the 
number of boundary elements or near-boundary elements 
increases. However, complications of the procedure of 
numerical integration would significantly reduce the 
computational error, even with a smaller number of 
elements. Note also that the benefits of both approaches 
include the fact that they do not require differentiation of 
numerical values. 

For calculation language C# was used. To visualize the 
results, we use Gnuplot. 

The approaches can be extended for consideration of 
three-dimensional solid of arbitrary shape, then we must 
calculate integrals over 8 nodes of boundary element 
instead of 4 and 24 nodes of near-boundary element 
instead of 8.  
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