
 

“COMPUTER SCIENCE & ENGINEERING 2013” (CSE-2013), 21–23 NOVEMBER 2013, LVIV, UKRAINE 94 

The upper and lower bounds  
for solutions of general quadratic 

optimization problems 
Anatolii Kosolap1, Anastasiia Peretiatko2 

1Specialized Computer Systems Department,  
Ukrainian State University of Chemical Technology, 

UKRAINE, Dnipropetrovsk, Gagarina Avenue 8,  
E-mail: anivkos@ua.fm 

2Specialized Computer Systems Department,  
Ukrainian State University of Chemical Technology, 

UKRAINE, Dnipropetrovsk, Gagarina Avenue 8,  
E-mail: _nastya_@ua.fm 

We consider the general problem of quadratic minimization 
with quadratic constraints. We are searching for the upper and 
lower bounds for the values of the minimized function. 
Semidefinite optimization is used for finding the lower bound. 
This lower bound is used to obtain an upper bound by interior 
point method. Numerical experiments often show that obtained 
upper bound is the exact solution of the original problem. 
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I. Introduction 
Many problems in economy, finance, optimization of 

complex projects, planning, computer graphics, control of 
complex systems are converted to quadratic optimization 
problems in finite-dimensional space, where the objective 
function and constraints are defined by general quadratic 
functions. Such problems may contain many local minima 
and they are NP-hard. Feasible set of these problems can 
be nonconvex and discrete. 

One of the common approaches for solving this class of 
problems is semidefinite relaxation [1-2]. In this case the 

quadratic function AxxT  is represented in the form 
TAxx  or XA , where A  is symmetric matrix, and X  

is positive semidefinite matrix of rank one. This 
transformation allows to reduce the general quadratic 
problem to linear semidefinite optimization problem 
(SDP), in which the unknown variable is the semidefinite 
matrix. Semidefinite optimization problems can be 
effectively solved [3]. However, semidefinite relaxation is 
an approximate transformation (without the requirement 
that the rank of the matrix X  is 1). 

A primal-dual interior point method [3] was proposed 
for solving semidefinite optimization problems, but the 
search for more efficient algorithms is still continuing. In 
this paper we use semidefinite simplex method for 
solving semidefinite optimization problems [4]. 

II. Problem Statement 
Let’s consider the general quadratic optimization problem 

},,,...,1,0)(|)(min{ 0
n
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where all functions i
T
ii

T
i cxbxAxxf )(  are quadratic, 

xbi ,  are vectors of n–dimensional Euclidean space, ic  are 

constants, and all of the matrices iA  are symmetric. 

Let’s use the semidefinite relaxation to transform the 
problem (1) to the form 

 0 ,1,..., ,0  |   min 0  XmiXAXA i      (2) 

where 
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and  ijij xaXA  defines the inner product of 

symmetric matrices. 
The transformed problem (2) is equivalent to the 

problem (1) if the matrix X is semidefinite matrix of rank 
one. However, the condition that the matrix should be of 
rank one cannot be set analytically. Therefore, we solve 
the problem (2) without this condition. Then the solution 
of the problem (2) defines a lower bound for the solution 
of the problem (1). The solution of the problem (2) X* 
determines the exact solution of the problem (1) if X* is 
semidefinite one-rank matrix.  

III. Problem-Solving Methods 
Methods for solving the problem (2) are studied in 

various papers [1-3]. The best method is the interior point 
method [3]. However, it allows to find the solution of the 
problem (2) with less accuracy than a new semidefinite 
simplex method, which uses a local approximation of a 
semidefinite cone by the sum of one-rank matrices. 
Moreover, the interior point method solves the problem 
(2) with equality constraints. When you convert 
inequalities into equalities by putting free variables, a size 
of the solving problem will be increased on the number of 
new variables.  

Unlike the usual simplex method, in semidefinite 
simplex method we solve a sequence of linear 
programming problems. At each iteration we define a new 
column of the constraint matrix from the solution of 
simple quadratic optimization problem 
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1
ijb  are elements of the basic matrix 1B  of simplex 

method. It is well known that the problem (3) is 
effectively solved [5]. It is obviously that the solution of 
the problem (3) coincides with the solution of the problem 

}.1|||||)1||(||min{ 22  xxrQxxT  
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Let’s choose 0r  so that the matrix rIQQ *  is 

positive definite. It's enough  

,|,| ** iqq
ji

ijii 


 

where *
ijq  are the elements of matrix *Q . Thus, the 

solution of the problem (10) reduces to finding the 

eigenvector of matrix *Q  that corresponds to its 

minimum eigenvalue. It is equivalent to the solution of 
the problem 

}1|||||min{ 2* xxQxT  

or the problem 

}.1|||max{|| *2 xQxx T         (4) 

If *x  is the solution of the problem (4) then the matrix Q  

is positive semidefinite if 0** Qxx T . In this case the 

problem (2) is solved; otherwise the search for the solution 
of the problem (2) by the simplex method will be continued. 

The solution of the problem (2) we use as a starting 
point to solve the problem (1) by the primal-dual interior 
point method [6]. It was shown that this method 
converges to a local minimum in polynomial time [6]. 

Numerical experiments show that this method often can 
find the point of global minimum of the problem (1) if we 
use solution of the problem (2) as a starting point for the 
problem (1). 

IV.Numerical Results 
Software for the proposed method was developed and 

numerical experiments were performed.  
Let’s consider some test problems from [7] and [8]. At 

first we find a lower bound of the problems by 
semidefinite simplex method, and then we search the 
upper bound. The results of numerical experiments are 
presented in Table I and Table II. It is shown that we 
receive the exact solution of the original problem in about 
90% of problems. In the problems fp_2_1 [7] and g15 [8] 
we couldn’t find the point of global minimum. 

TABLE 1 
THE RESULTS OF NUMERICAL EXPERIMENTS FROM [7] 

Problem’s 
name in [7] 

Dimension 
Lower 
bound 

Upper 
bound 

Optimal 
solution 

fp_2_1 6*7 -18,86 -16,5 -17 
fp_2_2 7*9 -213 -213 -213 
fp_2_4 7*12 -23.71 -11 -11 
fp_3_3 7*13 -438 -310 -310 
fp_3_4 3*6 -5 -4 -4 
e_1 3*4 -3 -3 -3 
f_a 3*5 -5,98 -1,083 -1,083 
f_b 2*3 -11,99 -8,5 -8,5 
f_c 5*11 -13 -13 -13 

 
 

Problem’s 
name in [7] 

Dimensio
n 

Lower 
bound 

Upper 
bound 

Optimal 
solution 

f_f 2*6 -2,828 -2,828 -2,828 
s_1 3*5 0 0,74 0,74 
s_1b 3*5 0 0,74 0,74 
s_1c 3*5 0,69 0,74 0,74 
s_1d 3*5 0,4 0,74 0,74 
s_2 3*4 -1,5 -0,5 -0,5 
s_2b 3*4 -1,5 -0,5 -0,5 
s_2с 3*4 -0,54 -0,5 -0,5 
s_2d 3*4 -0,938 -0,5 -0,5 

 
TABLE 2 

THE RESULTS OF NUMERICAL EXPERIMENTS FROM [8] 

Problem’s 
name in [8] 

Dimension 
Lower 
bound 

Upper 
bound 

Optimal 
solution 

g01 13*22 -15 -15 -15 
g04 5*11 -32232 -30665 -30665 
g07 10*18 24,3064 24,3062 24,3062 
g11 3*4 0,75 0,75 0,75 
g15 3*2 943,985 - 961,715 
g18 10*23 -0,866 -0,866 -0,866 

Conclusion 
In this paper we use new methods for searching  

the upper and lower bounds of solutions of general 
quadratic optimization problems. The numerical experi-
ments for well-known test problems showed that the 
upper bound of the global minimum is accurate for the 
majority of these problems.  
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