

“COMPUTER SCIENCE & ENGINEERING 2013” (CSE-2013), 21–23 NOVEMBER 2013, LVIV, UKRAINE 26

Basic Operations of Modern
Hashing Algorithms

Viktor A. Melnyk1, Andriy Y. Kit2
1Department of Information Technologies Security,

Lviv Polytechnic National University, UKRAINE, Lviv,
S. Bandery street 12, E-mail: vamelnyk@lp.edu.ua

2Department of Information Technologies Security,
Lviv Polytechnic National University, UKRAINE, Lviv,
S. Bandery street 12, E-mail: andrew.kit.91@gmail.com

Abstract – In this paper we performed a comparative
analysis of hashing algorithms SHA-1, SHA-2, MD-5,
RIPEMD, Keccak respecting a set of their basic operations. As
an outcome of this analysis a qualitative and quantitative
composition of elements of the multifunctional high-
performance hashing processor for execution any of these
algorithms is defined.
Кеу words – hash function, SHA-1, SHA-2, MD-5, RIPEMD,

Keccak, basic operations.

I. Introduction
The hashing is a process of transformation of the input

data set of arbitrary length to the output bit string of fixed
length. Such transformations are called hash functions. In
general, a hash functions may be divided into hash
functions of general purpose and cryptographic ones,
which are widely used in cryptography and satisfy a
number of requirements that are imposed by
cryptographic applications. Any cryptographic hash
function should be resistant to collisions. That is
excluding the possibility, or rather, to make it as low as
possible, of the existance of two posts that would produce
the same hash. In this paper we focus on the
cryptographic hash functions that are built "from scratch".
We consider all the basic operations used in these
algorithms and what should be executed by each separate
digital element of the processor. Such an approach in the
future will enable us to design a device that performs hash
for any of hash algorithms from the set of algorithms.

Hardware implementation of hashing, as well as
encryption, has a number of advantages over the software
one. First of all, it is speed of transformation execution,
because only with dedicated device designed to solve a
specific problem, one can reach a top speed. The second
is security. If the device for cryptographic transformation
is implemented as a separate module, it is possible to
implement a number of additional measures for
protection. In particular, the device can be made so that
any intrusion into its internal structure would violate its
operation. Besides that the hardware devices are easy to
integrate with unite computer system and that is easier
than writing relevant software applications [1].

The hashing algorithms belong to computationally
complex algorithms and intended to process large
volumes of data and wide bit words. Implementation of
these algorithms in general purpose processors is
generally inefficient, thus specialized hashing processors
are often being developed. However, the functionality of
these processors is narrow and is often limited to

execution of the single algorithm. In order to implement
multifunctional hashing processor the task arises to
analyse the basic operations of the hashing algorithms and
to define elements required for their fast execution. This
is the subject that is being addressed in this paper.

II. Modern hash functions
We consider two commonly used methods of hash

functions construction. First one that uses a custom
encryption algorithm like AES [2], while the second one
is building "from scratch".

In the first type of the hash functions the symmetric
block encryption algorithm is being used as a function of
compression. In this case, in order to achieve a higher
level of security, as a key the data block is being used,
that is designed to calculate a hash in a given iteration,
and a result of previously applicated compressing
functions is being used as an input data. The resulting
hash function is formed after the last iteration of the
algorithm. In this case, the reliability of the hash function
is determined by the reliability of used symmetric block
encryption algorithm. The N-hash algorithm (developed
by Nippon Telephone and Telegraph in 1990) is an
example of this type of hashing algorithms [3].

The idea of using a block encryption algorithm, which
reliability is known, to get a robust hashing schemes,
looks natural. However, some of these hash functions
have difficulties, namely the need of use the key that is
applied for encryption and that should be kept in secret.

Another weakness of the above hashing schemes is that
the size of the hash code matches with the size of a block
encryption algorithm. Often, the size of block is
insufficient to make the scheme stable against attacks
based on "birthday paradox " [4]. In addition, a significant
drawback of hash functions designed on the base of
symmetric block encryption algorithms are relatively low
speed of their operation.

In hashing algorithms built "from scratch", the
function of compression (it`s the main element of the
Merkle-Damharda scheme, which stability determines
the stability of the algorithm [5]) is built from scratch
and must meet the basic requirements of reliability.
Execution speed of this type of hash functions is by an
order higher than that of hash functions based on the
symmetric block encryption algorithm. So when the high
speed is a demand then a hash function built "from
scratch" should be used.

III. The life cycle of cryptographic hash
functions

In Fig. 1 [6] we show the years when each of the
algorithms was created, depressed and broken. Despite
the fact that the algorithm MD5 [7] was broken in 2004, it
still remains relevant as continues to be widely used along
with the algorithm SHA-1 [8]. In 2012 the Keccak [9]
algorithm was won SHA-3 competition [10], but its
replacement instead of the SHA-2 has not yet been
scheduled as no significant attacks on SHA-2 algorithm
were yet demonstrated [11].

 http://cse.ukrscience.org

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

“COMPUTER SCIENCE & ENGINEERING 2013” (CSE-2013), 21–23 NOVEMBER 2013, LVIV, UKRAINE 27

Fig. 1. The life cycle of cryptographic hash functions

IV. Basic operations of hashing algorithms
SHA-1, SHA-2, MD-5, RIPEMD

and Keecak
Let’s analyze discussed above hashing algorithms and

identify which basic operations are being used in there.
The basic operations of the algorithm SHA-1 are cyclic

shift left, logical shift right, logical addition (OR),
addition modulo 2 (XOR), arithmetic addition, logical
multiplication (AND), and inversion (NOT).

The basic operations of the algorithm SHA-2 are cyclic
shift right, logical shift right, addition modulo 2,
arithmetic addition, logical multiplication, and inversion.

The basic operations of MD5 algorithm are cyclic shift
left, multiplication, logical addition, addition modulo 2,
arithmetic addition, logical multiplication, and inversion.

The basic operations of the algorithm RIPEMD [12] are
cyclic shift left, logical addition, addition modulo 2,
arithmetic addition, logical multiplication, and inversion.

The basic operations of the algorithm Keccak are cyclic
shift right, addition modulo 2, logical multiplication, and
inversion.

While designing of the hashing processor the following
considerations should be taken into account:
1. During execution of each of the considered hashing

algorithms a certain number of basic operations of each
type are being executed. However, this does not mean
that in implementation of appropriate hashing processor
the number of a arithmecic/logic elements must be the
same as the number of times one or other relevant
operation is being executed.

2. In order to achieve high performance the computations
need to be split into parallels. However, not all parts of

the algorithm can be executed in parallel. For instance,
in SHA-256 algorithm after message separation by 16
words of 32 bits each, one needs to generate another 48
words. This part of algorithm is represented on the C #
below:

for (int j = 16; j < 64; j++)
{
 uint s0 = Mathem.Rotr(w[j - 15], 7) ^
 Mathem.Rotr(w[j - 15], 18) ^
 (w[j - 15] >> 3);
 uint s1 = Mathem.Rotr(w[j - 2], 17) ^
 Mathem.Rotr(w[j - 2], 19) ^
 (w[j - 2] >> 10);
 w[j] = w[j - 16] + s0 + w[j - 7] + s1;
},

where w[16…63] – another 48 words, Mathem.Rotr() –
function which performs a cyclic shift right, “>>” –
logical shift right, ‘^’ – logical adding, ‘+’ – arithmetic
adding.

In this part one can parallelly compute s0 and s1, since
they are independent of each other. So for fast hardware
implementation of s0 and s1 are needed two elements that
will implement a cyclic shift right. For hardware
implementation of entire program code above – four
elements that will operate in parallel. However, for
example, in following (eqations (1)-(5)) nonlinear bitwise
functions of RIPEMD-160 algorithm parallel execution of
all functions is not possible.

f(j; x; y; z) = x  y  z (0<=j<=15) (1)
f(j; x; y; z) = (x  y)  ( x  z) (16<=j<=31) (2)

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

“COMPUTER SCIENCE & ENGINEERING 2013” (CSE-2013), 21–23 NOVEMBER 2013, LVIV, UKRAINE 28

f(j; x; y; z) = (x   y)  z (32<=j<=47) (3)
f(j; x; y; z) = (x  z)  (y   z) (48<=j<=63) (4)
f(j; x; y; z) = x  (y   z) (64<=j<=79) (5)

So only two elements of «NOT», for example, can be

done. Thus during the first 16 iterations of the main loop
of the algorithm RIPEMD-160 functions (1) and (5) can
be simultaneously executed. There equations (1) and (5)
contain three operations «XOR», one operation «NOT»
and one «OR». Because two operations «XOR» in
equation (1) can be executed by one logical element, it is
advisable to talk about a need to execute «XOR»
operations only twice at this stage of the algorithm.

Types of basic operations and a number of
arithmetic/logic elements for their execution for each of
the algorithms under consideration are shown in Table 1.

Based on information from Table 1 lets construct a
diagram (Fig. 2), which concludes the basic operations
and number of elements to implement them in the
processor, which would perform each of the considered
hashing algorithms.

As we can see from Fig. 2, for implementation of the
hashing processor for SHA-2 algorithm it is needed to
instantiate 13 adders, 10 cyclic shifters, 6 XOR and 5
AND logic elements, and one inverter. For enhancement
of device functionality and its enforcement with other
algorithms – SHA-1, MD5 and RYPEMD, Keccak we
must apply additionally 4 leftwise cyclic shifters, 2 OR
logic elements, one inverter and one XOR. Multiplication
in the MD5 algorithm can be successfully replaced with
addition, as not all adders that are available in the device
will be involved.

TABLE 1

TYPES OF BASIC OPERATIONS OF HASHING ALGORITHMS AND A NUMBER OF ARITHMETIC/LOGIC ELEMENTS FOR THEIR EXECUTION

Fig. 2. Basic operations and number of elements to be implemented in hashing processors for
SHA-1, SHA-2, MD-5, and RIPEMD algorithms execution

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

“COMPUTER SCIENCE & ENGINEERING 2013” (CSE-2013), 21–23 NOVEMBER 2013, LVIV, UKRAINE 29

Conclusion
The paper considers the types of hashing algorithms

and basic operations of most widely used hashing
algorithms built "from scratch". The analysis of these
algorithms allowed to determine basic operations, a
number of the operations that can simultaneously be
performed by digital elements, and a number of these
elements needed to be implemented in hashing processors
for algorithms SHA-1, SHA-256/512, MD-5, RIPEMD-
160/256/320, and Keccak execution. The results of the
analysis can be used for development of high-perfor-
mance multifunctional hashing processors.

References
[1] B. Schneier, "Applied Cryptography: Protocols,

Algorithms, and Source Code in C", 2nd ed, Canada:
John Wiley & Sons, Inc., 1996.

[2] National Institute of Standards and Technology
(NIST). Advanced Encryption Standard (AES) (FIPS
PUB 197), November 26, 2001.

[3] S. Miyaguchi, K. Ohta, and M. Iwata: "128-bit hash
function (N-hash)", NTT Review, 2(6), November
1990, pp. 128–132.

[4] R. Shirey, “Internet Security Glossary, Version 2”,
RFC 4949, August 2007, p. 35.

[5] J. Katz, Y. Lindell, „Introduction to modern Crypto-
graphy“, USA: Chapman and Hall/CRC, August 2007.

[6] V. Aurora, " Lifetimes of cryptographic hash
functions", http://valerieaurora.org [Online]. Avai-
lable: http://valerieaurora.org/hash.html [Accessed:
Oct. 1, 2013].

[7] R. Rivest, “The MD5 Message-Digest Algorithm”,
RFC 1321, April 1992.

[8] D. Eastlake 3rd, P. Jones, “US Secure Hash
Algorithm 1 (SHA1)”, RFC 3174 , September 2001

[9] G. Bertoni, J. Daemen, M. Peeters and G. Van
Assche, “The Keccak reference”, http://keccak.
noekeon.org/, January 14, 21 [Online]. Available:
http://keccak.noekeon.org/Keccak-reference-3.0.pdf.
[Accessed: Oct. 19, 2013].

[10] The National Institute of Standards and Technology
(NIST). “NIST Selects Winner of Secure Hash
Algorithm (SHA-3) Competition”, http://www.nist.gov.
[Online]. Available: http://www.nist.gov/itl/csd/sha-
100212.cfm. [Accessed: Oct. 19, 2013].

[11] National Institute of Standards and Technology (NIST).
FIPS-180-2: Secure Hash Standard, August 2002.

[12] B. Preneel, H. Dobbertin, A. Bosselaers, “The Crypto-
graphic Hash Function RIPEMD-160”, CryptoBytes,
Volume 3, No. 2, pp. 9 - 14, Autumn 1997. [Online].
Available: ftp://ftp.rsasecurity.com/ pub/cryptobytes/
crypto3n2.pdf. [Accessed: Oct. 1, 2013].

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

