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Interaction free energy of small particles in an elektrolyte solution
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Abstract. A solution has been constructed of the Debye-
Huckel equation for system spheres with arbitrary radii and
surface charges or potentials in electrolyte solutions. A gen-
eral theoretical method for description of inter-particle interac-
tion within such systems has been elaborated. The practically
important case of two spheres has been considered in detail.
Finite closed formulae to calculation of interaction energy of
two spherical particles with constant surface charges have been
obtained from general expressions within zero approximation.
The known relationships of Deryagin-Landaw-Lifshits-Over-
beek theory follow from our formulae in the limit cases.

Key words: Debye-Huckell equation, particles in elec-
trolyte, pair interaction.

INTRODUCTION

Through studying ion-electrostatic interaction in
systems of inorganic nanoparticles and biological cells
in electrolyte solution the basic problems of calculation
of the energy and forces interaction between cells and
particles arise. This problem is closely connected with
the problem of the electric double layer free energy of
interaction between two spherical particles suspended in
an aqueous electrolyte dispersion medium. From early
works [1] a great attention is paid to this problem [2-7],
and it is the actual question [6] until now, especially, under
consideration of interaction of inorganic small particles
with biological cells or microorganisms. Interaction of
double diffuse layers is usually calculated on the basis
of Deryaguin ‘s approximation. But the use of this ap-
proach can lead to incorrect results in some cases, as
it was noted in [2,4].

The practical important case of two spheres is
considered in detail. We fulfill the special transfor-
mation of the obtained systems. It gives the opportu-
nity to separate the groups of connected coefficients
in the infinite systems. This procedure essentially
simplifies the practical solution of the problem. From

general expressions the closed formulae to calculate
the interaction energy of two particles with constant
surface charge are received in a zero approximation.
The known relations of other authors follow from our
formulae as a particular case if certain conditions are
fulfilled [1,2].

STATEMENT OF PROBLEM

A system of N spherical particles in an electrolyte
solution with permittivity & is considered. Radius of
the particles is denoted as «,, and their permittivity is
denoted as ¢, k = 1,2, ..., j, ..., N. We link the local
polar spherical coordinates (r, 0, ¢,) with centers of
the particles (r, is a polar radius, 6, is an azimuth angle,
¢, is a polar angle). An arrangement of two arbitrarily
chosen particles from the ensemble is shown in Figure
1, where the correspondent coordinates are indicated.
Global coordinates (x, v, z) of observation point P are
determined by vectors r,, r in the local coordinates con-
nection, and distance between centers of the spheres
R, = \Rkj\, where R =r-r.

P(x,y,z) 9

w .
0, T !

Fig. 1. The local coordinates connection
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The potential corresponding to the internal and
external domains of the spheres’ surfaces are marked
relatively by overscripts “<” and “>”. In the external
domain the potential ¢~ appears to be a sum of poten}lials
&, = ¢, (.,6,,9,), created by every sphere, i.e. ¢~ = Zyﬁ;

k=1
providing that any external field is absent. In the electro-
static approximation every potential ¢, (k =1, 2, ..., N)
is a solution of the Debye-Huckell equation (1), and po-
tentials inside the spheres ¢, = ¢; (., 6, ,¢,) the solutions
of the Laplace equation (2) correspondingly:

Ay ~ K24 =0, ()
Ap; =0. @)

Boundary conditions on the surface of the k-th sphere
at r, = a, can be formulated in different ways. We con-
sider the case when the densities of surface charges are
adjusted, so we have:

>

op

a <
e Dy ;
or,

k
or,

b =9, =470, ©)

The boundary conditions (3) reflect a continuity
of potentials and electric inductions on the surfaces of
spheres, and densities of surface charges can be general
functions of local coordinates o, = o,(0,, ¢,). As usual,
it is necessary to add conditions of potentials’ limits:

¢, > O0npur, >oom ¢ <compur, >0. (4)

THE PROBLEM SOLUTION
FOR SYSTEM OF N SPHERES

To solve the problem we used the expansions of
solutions by series in the spherical functions Y, (6,,¢,),
1=0,1,2,...m=-1,-1+1,...,0,1, 2, ..., . We assume
that the system of the spherical functions is normalized.
Inside and outside of the spheres the expansions appear
to be:

% =ZA(")rk Y, (6.4, Q)

-3 > Bk (7 ), 6,1, ©)
0 m=—1
In (6) the modified spherical Bessel functions of third
kind k(2) [10] are used.
Total potential in the surrounding media can be writ-
ten as follows:

0

ZI: (k)k (kr )1, (6,.,)+

=0

m=—1
N w b )
£ 5N Bk )l (@4)} (7)
Jj=1 j= m;=—I;

where the stroke near the sum means that the term
with subscripts j = k is excluded. The sum subscripts
Z]_, m, underline that they can vary independently from
subscripts /, m which correspond to k -th sphere.

The problem consists in determination of unknown
coefficients 4%\ B™ in the expansions of potentials (5),
(6) from boundary conditions (3). To write the boundary
conditions, expressions for potentials and their derivatives
in other local coordinates are needed. For the solution of
the problem we use the addition theorems [10]. At this, we
transform the product of the spherical Bessel functions
by scalar spherical functions to a product of the modified
spherical Bessel functions by the scalar spherical func-
tions. Moreover, the properties of 3-j Wigner symbols
are taken into account and the transition to coefficients
of Klebsh-Gordon Ci,r.. [8, 9]. As result, we get the
following formula for the products &, («7;)Y,,(6,,4,) at
the condition 7, < [r; —r, [:

k; (k1;)Y,,,(

Z '(_l)w_mIY]'m'(Hk 5¢k) iz'(Krk )7

0,.¢,)= Z ,
1'=0
”

m

l m— m( Jk ?¢/k)k1“(KRjk)¢” in m-m'> (8)

1"=fi-1

where:

1/2

ol [471(21 +D)Q2I'+1)/ 21"+ 1)]
I"m-m'

CIOI OC/m/ —m", 9
and G/k, 1) 0 R/ are shown in Fig. L. It is seen that the
modified spherlcal Bessel function of the first kind 7,(2)
[10] appeared in our expression (8).

Now we can write the expression for total potential

with using addition theorem (8) in the local coordinates
linked with the k -th sphere:

0 /
s :ZZB(“k (xr)Y,,(0,,8,)+
1=0 m=-1
530307 i ‘
J 1;=0 m;=-1; Y 1;'=0

j=1
Iy

Z GO AR S IACSE

J

'{Z o O by (R OB, } (10)

J

and because the variables are separated we can found
derivatives by the radial coordinates directly from (10),
and then calculate their value on the surface of the 4-th
sphere. The expansions of the potentials and their deriva-
tives we substitute to the boundary conditions (3). As
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a result, we have the system of 2N functional equations.
Then we multiply the obtained equations by the com-
plex conjugate functions Y, (6,,¢,) and integrate over
the surface of the sphere. The procedure leads to a fam-
ily of infinite systems of algebraic linear equations. As
the spherical harmonics are orthogonal functions, and we
assume that they are normalized, we have the following
values for the integrals (51], is the Kronnecker symbol):

2z T
[ag[v, *©0.0)1,,0.p)sin0d0 = 5,5,,. (11)
0 0

So, in summation by indexes / ; ' m ; ' the terms with
subscripts /,'=1/, m;'=m are left only, and we get the
following systems:

I (k) _ pk)
a.4,’ =B,k (ka,)+
I

D a3 Y Y B

Jj=1 /j:O m,:flj

{Z Ve Ooti i GRS } =¥ (2
l; J J J J J ] J
N 0 1/ )
B S S B
L0 m—,
: {Z ) — (G )k17 (kR )(”r[f,,li:f,; P }’ (13)
- ‘

where: ¥ are the expansions’ coefficients of the
surface charges in the spherical functions, and the nota-

tions are introduced

® _ gli(ka)—¢, ka,i' (ka,)

Im

&k (ka,)— &, kak' (ka,)

(k)
® _ 4ra,o,,

Im

(14)

g dk,(xa) - ¢, xak' (xa,)

The primes mean a differentiation of functions by
their arguments. It should be noted that for the constant
densities of surface charges we have o\ = maké,oé‘mo.

As result, we have the aggregate of N connected in-
finite systems of linear algebraic equations. The systems
contain only the coefficients B\’ of external potentials
and they completely solve the problem of N spheres in-

teraction.

ION-ELECTROSTATIC ENERGY
OF INTERACTION OF TWO PARTICLES

Now we consider the problem of interaction of two
spheres in detail on the basis of general relationships.
The line crossing the centers of spheres is taken as the
axe z. The shortest distance between spheres we denote
as H, and so the distance between centers of spheres is
d = H + a, + a,. For the Debye-Huckell approximation to
the double layer free energy F = F ofa pair interaction

of the i-th and the j-th spheres for the known densities
of the surface charges can be found using formula [3, 4]:

F =1 o (P ()5, +[ 7,(B ) (), ),

(i,j=1L2i#)). (15)
The potential energy ¥ of the double layer interaction
is given by the equality V' = F—F, [5], where F| is the
free energy for two single spheres, and if the densities
o, and o, are constants:
87°a’ o] 87’ao;

F = + . (16)
e, (+xa) ¢, ,(1+xka,))

Integrating in (15) is executed over the surface of the
correspondent sphere, and because the potentials on the
surfaces of the spheres are equal inside and outside the
spheres, we can use either of potentials’ representations.
If the surface charges are constant, integration leads to
calculations of the spherical functions integrals over the
total surfaces of the spheres. Then we have:

[7,,dS, = (@N47)3,8,,
S;
and after integrating (16), taking into account the expan-
sions (5), we have the simple expression for the free

energy:

a7)

F=rload 4) +0,a> 41. (18)

So, to find the energy of pair interaction, only the
first coefficients of series expansions A4y, B’ are needed,
but, as the matter of fact, their value is to be determined
from the indefinite systems.

In this case, the problem is axis-symmetrical, and the
system for determination of the potentials' coefficients
looks like:

W =Bk, (ka)+i(ka)) B
D B(D QI+ Pk, (kd), i
T

Lj=L2i# ], 19)

By +a" Y B 1+ k. (xd) = £, (20)
E

BY +a (=) 21+ BRI+ (1) k. (x
nir

k. (kd)(Cl1S, )2’ =0. &)

We take into account that the spheres are placed on
the axe z, and in (12), (13) the functions Y, (0,¢)at O = x

have the value Y, (7,9) = 5m0(—1)’\/(2l+1)/(47r)) [11].
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The obtained system allows further simplification,
because there is an opportunity to separate the coefficients
B, B\ and to get independent systems for every sphere.
For all that, only the right parts of the systems define the
connection between spheres.

ZERO APPROXIMATION FOR TWO SPHERES

The simplest case takes place if we keep only one
term in the expansions of potentials, i.e. if /'=m'=0
(a zero approximation). If the terms of higher order in
comparison with the quantity k, (kd) are neglected, the
formula for the potential energy of interaction V(d) can
be derived:

2.3
V(H):Fff;,: 87 4 ﬂ
l+xa, ¢,
ky (rd) 2. 2.
e k, + ; k +
TS (mz)[(’“’z) iy (K, )k, () + (K, )i (@, () |

2.3
87°a, 0,0,

k, (cd) .
l+ka, ¢, (ka,)ky(xa,)k (xa)

m

[y (a)k (ca) + (xa,) i (a, )y ()

.22)

In the formula (22) the modified spherical Bessel
functions of the first order k,(z) = —k, (2), i(2) =i, '(2)
(ky(2) = (7 /2)exp(-z)/ z, iy(z) = shz / z) are used [17].

When the distances between spheres are large at
d — oo and k,(xd) — 0, general formulae are simplified,
and we obtain the formula (16).

Now we consider the spheres when a, = a, = a and
o, # 0,. At the condition a, = a, = a the corresponding
formula takes the form:

JH
0,6 \
AN
NI |

0 1 2 3 4

Fig. 2. Interactions’ energy V* = V/V, of two identical
spheres with the constant charges versus «H at ka = 1

l6r’a’oo, a

_ > e*KH
g,(I+xa)” H+2a

V(H)

2 3 2 2
w[(,m )+ (ka+ 1)672'“1] .

g, (1+xa)’

a 2
. e*ZKH
H+2a

To comparison we write out the formulae Hiroyuki
Oshima [5], which had been derived as an approxima-
tion for large radii and small separation. At the condition
a, = a, = a the correspondent formula takes the form:

(23)

2
v, (H)=27alta |:—(0'12+0'22)1n(1—A2)+20'1 o, ln%} (24)

e,k° H+2a 1-
where: 4 =(af(a+H))exp(—xH).
If 0, = 0, = o, it follows from (24) that:

(I1+xka) H+a (
—————n|1-
(ka)” H+2a

Vio(H) =—F, e j, (25)

H+a

where: in this case F; = l67°a’c? /g, (1+Kka)].
The Derjaguin’s metod [1] gives the following simple
expression for the same case:

(1+xa)
(xa)’

If we neglect the second term in our formula (23),
it takes the form:

Vv, =-F, In(1—e™"). (26)

1 a
1+ xa H+2a

-xkH

V(H)=F, 27)

We see, at ki — 0, then V, — oo. It means that for-
mula (26) can give incorrect results at small kH values.
The analogous situation takes place for relationship (25),
too. When xH >> 1 and ka >> 1, after expanding the
logarithms to correspondent series and keeping the first

s L\
0,4 \
N RN
N

0,1

0

Fig. 3. Interactions’ energy V* = V/V of two identical sphe-
res with the constant charges versus kH at ka = 4

1 — Derjaguin approximation; 2 — Hiroyuki Oshima approximation; 3 — our simplest zero approximation; 4 — our improved zero approximation.
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terms of the series we get the same expressions from
formulae (25), (27).

NUMERICAL RESULTS

We obtain closed formulae with results of another
author in the limit cases, but our results are more general
and they can be improved if the next approximation is
taken into account. Some results of the worked out cal-
culation are presented in Fig. 2 and Fig. 3.

We consider the case of adjusted densities of surfaces
charges. We determine dependences of non-dimensional
interaction energy , where V = 167°a’c* / (¢, (1+ ka)),
for two identical spheres with constant and equal charges
versus parameter kH at ka = 1 (Fig. 2) and at ka = 4
(Fig. 3).

It follows from this data that at xH > 3 formulae H.
Oshima (25) and our formulae for zero approximation
give the neighbor values, but Derjaguin’s formula gives
a too high value. All the results begin to agree at large
values of parameter xH. Our results strongly differ from
results of Hiroyuki Oshima and Derjaguin, especially
at very small values of xH, because and V/, — o and
Vo — ©, when kH — 0.

CONCLUSIONS

The exact solution for interaction of a system
of small spherical particles in electrolyte is obtained.
On the basis of the exact solutions the handily closed
formulae for calculating ion-electrostatic energy of two
spheres are derived. Our results correspond to the results
of other authors in simple cases and generalized ones
in range of small values parameter xa. In this article we
have considered the case when surfaces’ charges are
given, but the problem of spherical particles interaction
with giving surface potentials can be solved similarly.

10.
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