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Abstract. The cylindrical superlattices are realized on a 
basis of mixed-layer nanotubes SnS/SnS2. The superpe-
riod is formed due to the longitudinal goffering of nanotu-
bes structure as a result of lattices disproportion of cylin-
drical layers SnS and SnS2. The simple model of structure 
is proposed, specific diffraction effects are analyzed. 
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1. Introduction  

The misfit mixed-layer nanotubes SnS2/SnS with 
different degrees of order in cylindrical layers SnS2 and 
SnS alternation were synthesized in the Weizmann Institute 
of Science (Israel) by R. Tenne group [1]. Nanotubes were 
synthesized on the basis of flat layered crystals SnS2 by 
extraction of a part of S atoms forming SnS layers. The 
misfit of SnS2 and SnS layers having not only different 
parameters of lattices but also layer symmetry results in a 
curvature of flat packs and forming nanotubes. 

During an experimental research the nanotubes 
with rather original structure were found. The periodical 
alternation in a longitudinal direction of nanotube light 
and dark radial (or nearly radial) strips was observed at 
the TEM-images (Figs. 1 and 2). More detailed analysis of 
the TEM-images has shown that within the strips the 
layers have a wavy character, and the radius of layers 
curvature is approximately constant. Hence, to coordinate 
the lattices the nanotubes layers are bent not only in the 
cylinder circle direction, but also in the direction of its 
axis, forming goffered nanotube in such a way. Originally 
such nanotubes were named “strained”, however the term 
“goffered” is more right for the structure character. 

It is obvious, that such way of coordination is 
possible only for the layers with close longitudinal (along 
a nanotube axis) parameters of lattices a [2]. The analysis 

of microdiffraction patterns has shown that two types of 
SnS2 layers always take place in SnS2/SnS nanotubes: 
with a = 0.36 nm and developed on π/2 with a = 0.63 nm, 
while the parameter a of SnS layer is equal to 0.58 nm. 
Apparently, the additional bend in the nanotube axis 
direction arises in a pair of SnS2 and SnS layers, where the 
SnS2 layer has a = 0.63 nm. This layer is positioned on the 
external side of the bend. Really, the goffering takes place 
only in mixed-layer nanotubes OT (O – SnS layer, T – 
SnS2 layer) and is absent in OTT or OTOTT structures, 
where the presence of an additional SnS2 layer interferes 
with a bend. 

The "additional" layer lines with reflexes are distin-
ctly observed in the microdiffraction patterns of goffered 
nanotubes (Figs. 1 and 2). Similar additional layer lines 
located close to the basic ones are known in superlattices 
diffraction researches. It allows to offer the model of 
nanotube structure, based on a wavy superlattice in a 
longitudinal direction, and to apply the known approaches 
to interpretate its diffraction pattern. The measurements 
have shown that the inverse value of distance Δs from the 
basic layer line up to the additional one (Fig. 1) well 
corresponds to longitudinal periodicity in the TEM-image 
equal to 5.4 nm, the same as in the usual superlattices. 

The microdiffraction patterns in Figs. 1 and 2 are 
rather similar; however there is an essential difference. 
The distribution of additional layer line intensity near the 
basic layer line 20l in Fig. 1 is similar to a profile of the 
basic line. The analogous distributions of the goffered 
nanotube on the microdiffraction pattern in Fig. 2 have 
obvious displacements in the nanotube axis direction.  

Interpretation of this effect requires theoretical 
research of the problem. At first let us consider positions 
of the lattice sites of circular orthogonal [2] goffered 
nanotube, shown in Fig. 3 with the basic designations, and 
basic features of diffraction in it. 
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2. The Lattice of Goffered Nanotube 

Let nanotube, oriented along z axis, consist of the 
ordered alternating "goffered" pairs of layers of A and B 
type, having the superperiod λ and the radius of the goffer 
bend rg. Let both layers of every m-th pair have the same 
centre of goffer curvature located on the radius circle Om 
(Fig. 3). Let the radius of internal layer point mostly remote 
from nanotube axis be equal to ρ0, dA and dB – thickness of 
layers A and B, correspondingly, and d = dA + dB. 

The discussed way of the coordination means that 
Δε, an angle, under which the coordinated cell of layers 
pair is visible from the centre of pair curvature, becomes 
the crystallographic constant. Longitudinal parameter a of 
a lattice of coordinated layers pair has no definite value 
and for convenience can be chosen on an internal surface 
of the pair. 

Let us number the sites of lattice formed by pairs 
within the limits of superlattice wave by integer variable t, 
and waves – by n. Then the angular position εt of any pair 

      
Fig. 1. TEM-image, microdiffraction pattern and sublattices scheme of SnS2-SnS nanotube 

with thick radial CSR: zero layer line (1) and nanotube axis (2) 

      
Fig. 2. TEM-image and microdiffraction pattern of SnS2-SnS nanotube with thin radial CSR:  

zero layer line (1) and nanotube axis (2) 

Δs 

Δs 
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1 
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sites concerning their curvature centre is possible to write 
as: 

t tε ε ε= ∆ −  0 1t T= ÷ −  

where 
g

a
r

ε∆ =  
( )

arcsin
2 gr d

λ
ε =

+
 

and coordinates of these sites and number of cells on the 
length of wave as: 

 sin
2nt g tz n rλ

λ ε= + +  
2 grT

a
ε

=              (1) 

under obvious condition 2 grλ ≤ . 
 

     z   dA          dB  
 
 
 
      a 
 
 
 

        Δε 
        rg           λ 
 ρ0 
         
 
 
 
 
 
 
  rg 
     Om-1     Om         d 

 

 
 

Fig. 3. The basic designations  
in the goffered nanotube 

 

Radius of circles, on which the curvature centres of 
an internal layer waves are located, is equal to ρ0 – rg. 
Hence, it is possible to write down the polar radiuses of 
considered lattice sites as: 

cosmt m g g tr rρ ρ ε= − + ,   0m mdρ ρ= +                (3) 
Hence we can find an angle, under which the 

circular parameter b at εt = 0 is seen from the nanotube 
axis, and then – the angular positions of sites: 

 mv m
m

b vϕ ε
ρ

= +    0 1mv p= ÷ −   (4) 

2 m
mp

b
πρ

=  

where v – the number of site on the circle; pm – the 
number of sites on the m-th pair circles (integer by 
definition), εm – the initial azimuthal angular phase of the 
appropriate layer. It is obvious, that the circular parameter 
b has some variations within the limits of superlattice 
wavelength λ in the considered model. However it is 
known [3] that this parameter does not influence the 

circular nanotube strong reflexes (k = 0), consideration of 
which is the purpose of research. 

3. The Strong Reflexes Amplitude 

Let us write down an amplitude of diffraction by 
lattice, defined by the expressions (1), (3) and (4), in 
cylindrical coordinates system {R, φ*, z*} in reciprocal 
space: 

( ) ( ){ }
, , ,

, *, * exp 2 cos * *mt mv nt
m n v t

A R z i R z zϕ π ρ ϕ ϕ= − + =  ∑  

 ( )
1 1 1

0 0 0 0
exp 2 * exp 2 * exp 2 cos *

2

N T M

n t m v
i z n i z iRλ

π λ π β π ρ ϕ ϕ
− − −

= = = =

  = + −    
∑ ∑ ∑ ∑  

( )
11 1 1

0 0 0 0
exp 2 * exp 2 * exp 2 cos *

2

mpN T M

t mt mv
n t m v

i z n i z iRλ
π λ π β π ρ ϕ ϕ

−− − −

= = = =

  = + −       
∑ ∑ ∑ ∑        (5) 

where      sint g trβ ε=                       (6) 
M and N – the number of layer pairs in the nanotube and 
its length (in units λ), correspondingly. The sum over 
goffer periods (over n) is easily calculated and has the 
sharp maxima, equal to N, at 

1*z hπλ π=  ⇒  1* hz
λ

=      1 0, 1, 2,...h = ± ± . (7) 

The expression (7) defines the system of layer planes in 
the reciprocal space, on which all sites of reciprocal lattice 
take place. In the plane {R, z*}, that is in the section of 
these planes by Evald sphere corresponding to the usual 
electron microdiffraction experiment, it gives the system 
of close located to each other layer lines (7), which 
numbering is the same with values of index h1. Let limit 
by half plane z* ≥ 0, that means h1 ≥ 0. 

With taking into account (7) the amplitude 
transforms in: 

 ( ) ( ) 1
1 1

1
1

0 0 0
, *, 1 exp 2 exp 2 cos *

T M
h

t mt mv
t m v

h
A R h N i iRϕ π β π ρ ϕ ϕ

λ

− −

= = =

 = − − 
 

∑ ∑ ∑· 

· ( )
11 1

0 0 0
, *, 1 exp 2 exp 2 cos *

mpT M

t mt mv
t m v

A R h N i iRϕ π β π ρ ϕ ϕ
−− −

= = =

 = − −     
∑ ∑ ∑             (8) 

Let us expand the second exponent of (8) into a 
series of cylindrical waves according to: 

0
1

exp( cos ) ( ) 2 cos( ) ( )q
q

q
i J i q Jα γ α γ α

∞

=

= + ∑       (9) 

 
( ) ( )

( )

1

1

11 1
1

0
0 0 0

, *, 1

exp 2 2 1
m

h

pT M

t mt
t m v

A R h N

hi J R

ϕ

π β π ρ
λ

−− −

= = =

= − ⋅

 ⋅ + 
 

∑ ∑ ∑
 

( ) 1
11 1

1

0 0 0 1
2 1 exp 2 cos * 2

mpT M
h q

t mv q mt S D
t m v q

h
N i i q J R A Aπ β ϕ ϕ π ρ

λ

−− − ∞

= = = =

 + − − = + 
 

∑ ∑ ∑ ∑ · 

· ( ) ( )2 1 exp 2 cos * 2q
t mv q mt S DN i i q J R A Aπ β ϕ ϕ π ρ+ − − = +  ∑ ∑ ∑ ∑  
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where, in view of triviality of the sum over v, the first 
addendum looks like: 

( ) ( ) 1
1 0, 1 exp 2 2h

S t m mtA R h N i p J R= −  

( )1
1 1

1
1 0

0 0
, 1 exp 2 2

T M
h

S t m mt
t m

h
A R h N i p J Rπ β π ρ

λ

− −

= =

 = −  
 

∑ ∑   (10) 

and gives the amplitude of the so-called "strong " reflexes 
[3]. 

With the purpose of estimation of strong reflexes 
intensity distribution let’s approximate the Bessel function 

in (10) by cosine ( )0
2 cosJ x x
xπ

≈  and neglecting the 

dependence of t on a radical, change the sums by places: 

( ) ( ) ( )1
1 1

1
1

0 0

, 1 exp 2 cos 2
M T

h m
S t mt

m tm

p hA R h N i R
R

π β π ρ
λπ ρ

− −

= =

 ≈ −  
 

∑ ∑  

Let us consider the sum over t, presenting cosine in 
an exponential form: 

( )
1

1

0

1 1exp 2 exp 2 exp 2
2 2

T

t mt mt
t

h
i iR iR S Sπ β π ρ π ρ

λ

−

=

  + − = +     
∑  

( ) ( )1 2
1 1exp 2 exp 2 exp 2
2 2t mt mti iR iR S Sπ β π ρ π ρ+ − = +   , 

where 
1

1
1

0
exp 2

T

t mt
t

h
S i Rπ β ρ

λ

−

=

  = +  
  

∑     

1
1

2
0

exp 2
T

t mt
t

h
S i Rπ β ρ

λ

−

=

  = −  
  

∑                    (11) 

With regard to (3) and (6), the sum S1: 
( )1 0exp 2 gS iR r mdπ ρ = − + ⋅   

( )
1

1

0

exp 2 sin exp 2 cos
T

g g
t

h
ir t ir R tπ ε ε π ε ε

λ

−

=

 ⋅ ∆ − ∆ −  
∑ · 

· ( )exp 2 sin exp 2 cosg gir t ir R tπ ε ε π ε ε   × ∆ − ∆ −    
            (12) 

Let us expand two last exponents into a series of 
cylindrical waves according to: 

0 2 2 1
1 0

exp( sin ) ( ) 2 cos(2 ) ( ) 2 sin (2 1) ( )q q
q q

i J q J i q Jα γ α γ α γ α
∞ ∞

= =

= + + +∑ ∑ 
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∞

=−∞
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Then ( ) ( )1 0 0exp 2 g c sS iR r md S S Sπ ρ = − + + +   
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2 2q

c q g q g
q q

h
S J r i J r Rπ π

λ

∞ ∞

= =−∞
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∑ ∑  

( ) ( ){exp ' 2 ' 2 exp ' 2 ' 2c ci q q G q q i q q G q qε ε ε ε⋅ − + + ∆ + − − − ∆               

( ) ( ) }exp ' 2 ' 2 exp ' 2 ' 2c ci q q G q q i q q G q qε ε ε ε× − + + ∆ + − − − ∆               ,     (14) 

 ( )'1
2 1 '

0 '
2 2q

s q g q g
q q

h
S J r i J r Rπ π

λ

∞ ∞

+
= =−∞
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∑ ∑  

 ( ) ( ){exp ' 2 1 ' 2 1 exp ' 2 1 ' 2 1s si q q G q q i q q G q qε ε ε ε⋅ − + + + + ∆ − − − − − − ∆               

( ) ( ) }exp ' 2 1 ' 2 1 exp ' 2 1 ' 2 1s si q q G q q i q q G q qε ε ε ε× − + + + + ∆ − − − − − − ∆                      (15) 
Here, as well as earlier, the following sum is used: 

( ) ( ) ( )
1

0

sin
2exp exp 1

2sin
2

M

m

Mx
xG x ixm i M

x

−

=

 = = −  
∑  (16) 

which has a sharp maximum at x, equal to an integer of 
2π, the height of a maximum is equal to M, and its width 
is inversely proportional to this value. For example, in the 
case of S0: x = q’Δε, M = T, the maximum of function is 
realized at: 

 2
2'q h π

ε
=

∆
 2 0; 1; 2; 3;...h = ± ± ±  (17) 

However addendum S1 of the amplitude also contains 
the multiplier, depending on the index of summation over 
nanotube layers (over m). This summation, after rejection 
of factors insignificant for this analysis, gives the amplitude 
multiplier G(2πRd), which looks like (16). Hence, the 
amplitude of strong reflexes represents a number of 
addendums, each of which contains the product of the 
functions of the kind (16): G(2πRd) on the one hand, and 
one of the functions G0(q’Δε), Gc[(q’ ± 2q)Δε] and Gs[(q’ ± 
2q ± 1)Δε] – on the other one. Three last functions do not 
depend on spatial variable R, but influence a choice of the 
members of series over q', the Bessel functions of which 
contain this variable. 

Thus, the character of an arrangement of amplitude 
maxima in a scale R depends on the correlation between 
the widths of the functions of the kind (16), which are 
determined by parameters T and M, in each product: the 
narrower function determines the form and position of 
diffraction pattern maxima and the wider one modulates 
their intensities. Let us consider extreme cases of thick 
and thin radial CSR. 

3.1. The Thick Radial CSR (M >> T) 

In this case maxima of the function G(2πRd) are 
narrow, intensive and positioned in points of its 
extremum: 
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2 2Rd lπ π=  ⇒  l
lR
d

=  0, 1, 2,...l = ± ±   (18) 

It means that the arrangement of strong reflexes is 
identical on all layer lines of such nanotube. Such 
microdiffraction pattern is given in Fig. 1 with the only 
difference, that it belongs not to a circular nanotube, 
which lattice is considered for analysis simplification, but 
to the longitudinal monoclinic [2, 3] one. Let us compare 
the relative intensities of layer lines, determined by 
addendums S0, Sc and Ss. 

Let us consider addendum S0. Maxima of the 
function G0(q’Δε) are in the points (17). On the other 
hand, the main maximum of Bessel function Jq’(2πrgR) is 
close to the value of argument equal to its index, that 
means, that in the points (18) the main maxima of Bessel 
functions with q’ = 2πrgl/d are positioned. It is obvious 
that generally this condition cannot be satisfied 
simultaneously with the condition (17). It means that 
addendum S0 practically does not influence the relative 
intensity of layer lines. 

Addendum Sc in the points (18) looks like: 
l
c cl clS S S+ −= +  

where         '1
2 '

1 '
2 2 exp ' 2 ' 2q

cl q g q g c
q q

h
S J r i J r i q q G q qπ π ε ε

λ

∞ ∞
+

= =−∞

 = − + + ∆ 
 

∑ ∑ · 

· ( ) ( )2 '2 2 exp ' 2 ' 2cl q g q g c
lS J r i J r i q q G q q
d

π π ε ε = − + + ∆         
 

 '1
2 '

1 '
2 2 exp ' 2 ' 2q

cl q g q g c
q q

h lS J r i J r i q q G q q
d

π π ε ε
λ

∞ ∞
−

= =−∞

   = − − − ∆     
∑ ∑ · 

· ( ) ( )2 2 exp ' 2 ' 2cl q g q g c
lS J r i J r i q q G q q
d

π π ε ε = − − − ∆         
 

The main maxima of addendum clS +  Bessel 
functions are located close to the points q’ ≈ 2πrgl/d and  
2q ≈ 2πrgh1/λ. On the other hand indexes q' and q are 
connected with each other by the area of noticeable values 
of the function Gc[(q’ + 2q)Δε]. Its rather wide maximum 
is in the point (q’ + 2q)Δε = 2πh2. Thus, we obtain 
approximate equality: 

1 22 2 2g g
h hlr r

d
π π π

λ ε
+ ≈

∆
⇒  2

1
h lh
a d

λ  ≈ − 
 

  (19) 

As λ ≈ Ta, then in the last equality 
2

1 2
h l Tah Ta Th l
a d d

 ≈ − ≈ − 
 

 the integer value of h1 is 

provided only at l = 0. In view of (7) it means that the 
layer line (the basic layer line) is of the greatest intensity 
and located close to  

2 2* h Thz
a λ

≈ ≈             (20) 

at h2 > 0, as it is observed in Fig. 1. 

As maxima of function Gc[(q’ + 2q)Δε] have some 
width, the layer lines getting in the appropriate interval 
have also appreciable intensity (additional layer lines). Let 
us take differential from both parts of (19) at the constant 
index h2 that is close to (20): 

1 ~h l∆ −∆             (21) 
where the approximate equality is replaced with a mark of 
proportionality, as the interval of intensive layer lines 
depends on experimental conditions too. From (21) it is 
visible that the quantity of additional layer lines is 
proportional to the value of index l also observed in Fig. 1. 
Addendum clS −  gives the similar result for h2 < 0. 

Addendum Ss in the points (18) looks like 
l
s sl slS S S+ −= −  

where       '1
2 1 '

1 '
2 2 exp ' 2 1 ' 2 1q

sl q g q g s
q q

h
S J r i J r i q q G q qπ π ε ε

λ

∞ ∞
+

+
= =−∞

 = − + + + + ∆ 
 

∑ ∑ · 

· ( ) ( )2 1 '2 2 exp ' 2 1 ' 2 1sl q g q g s
lS J r i J r i q q G q q
d

π π ε ε = − + + + + ∆         
 

 '1
2 1 '

1 '
2 2 exp ' 2 1 ' 2 1q

sl q g q g s
q q

h lS J r i J r i q q G q q
d

π π ε ε
λ

∞ ∞
−

+
= =−∞

   = − − − − − ∆     
∑ ∑ · 

· ( ) ( )2 2 exp ' 2 1 ' 2 1sl q g q g s
lS J r i J r i q q G q q
d

π π ε ε = − − − − − ∆         
 

Maxima of Bessel functions in slS +  take place under 
conditions: q’ ≈ 2πrgl/d and 2q + 1 ≈ 2πrgh1/λ, and 
maximum of function Gs[(q’ + 2q)Δε] is in the point (q’ + 
+ 2q + 1)Δε = 2πh2, that gives again (19) and all its 
consequences. 

3.2. The Thin Radial CSR (M < T) 

The basis for such model consideration is the 
diffraction pattern in Fig. 2, radially lengthened basal 
reflexes of which allow to speak about the small CSR 
sizes in this direction. In this case maxima of functions 
G0(q’Δε), Gc[(q’ ± 2q)Δε] and Gs[(q’ ± 2q ± 1)Δε] in (13), 
(14) and (15), correspondingly, are narrower and 
intensive, than those of G(2πRd), and it is possible to be 
limited to their peak values. 

Let us consider an addendum S0 at peak value of q' 
from (17). 

( ) ( ) ( )' 1
0 2 0 '2 2 exp 'q

g q g
h

S h i TJ r J r R iqπ π ε
λ

 ≈ − 
 

 

Main maximum of the second Bessel function takes 
place at: 

2
22 'gr R q h π

π
ε

≈ =
∆

 ⇒  
2

2
h

hR
a

≈  

But on the other hand the summation over layers 
(over m) gives condition (18) again, though with a little 
wider maxima. However it is obvious that in this case 
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these two conditions are incompatible too. Hence, adden-
dum S0 has not essential influence on positions of strong 
reflexes. 

A condition of the maximum of functions Gc[(q’ ± 
± 2q)Δε] included in Sc looks like: 

( ) 2' 2 2q q hε π± ∆ =  ⇒  22
2 '

h
q q

π
ε

 = ± − ∆ 
 

and function Sc, under this condition, 
2 2 2ch ch chS S S+ −= +  

where ( ) ( )2

2 2

' 1
' 2

''
1 2 2Th q

ch q g h g
qq

h
S T i J r R J rπ

ε

π π
λ

∞
+

−=−∞ ∆

 = −  
 

∑  

( ) ( )2

2 2

' 1
' 2

''
1 2 2Th q

ch q g h g
qq

h
S T i J r R J rπ

ε

π π
λ

∞
−

− +=−∞ ∆

 = −  
 

∑  

and is used: ε/Δε ≈ T/2. As before, let us write down for 

2chS + the approximate equality from conditions of Bessel 
functions maxima at the peak value (18) of functions 
G(2πRd): 

1 22 2 2g g
h h lr r

d
π π π

λ ε
≈ −

∆
⇒ 2

1
h lh
a d

λ  ≈ − 
 

 

We have again obtained (19), that means, as in this 
case the basic layer line is close to z*, determined by (20), 
too. However the function G(2πRd) in this case is a 
modulating one, the positions of peaks on the layer line 
are determined by maxima of function Gc[(q’ + 2q)Δε]. 
Then, substituting the current value of argument R instead 
of its peak value l/d in the latter equality, we obtain:  

1

2

2 1h
h

h hR
a λ

≈ −  

This expression differs from its analogue (18) for 
the case of thick radial CSR in two aspects. First, the 
positions of strong reflexes on the layer line are 
determined not by “basal” interlayer spacing d, but 
“longitudinal” lattice parameter a. Secondly, the positions 
of all series displaces on the distance h1/λ at transition 
from one layer line to another, that is observed on the 
diffraction pattern in Fig. 2. 

Expression (21) that is also observed on the 
diffraction pattern in Fig. 2 gives again the estimation of 
interval width near the value (20), in which the additional 
layer lines take place, similar to the previous item. 

Addendum S2 from (11) gives similar expressions 
for other combination of indexes h1, h2 and l signs. 

4. Conclusions 

The analysis of strong reflexes formed from the 
offered multiwall circular orthogonal mixed-layer 
goffered nanotube lattice model, consisting of alternating 
layers of type A and B, has shown: 

1. All reflexes are located on the system of layer 
lines z* = h1/λ, where h1 – index of layer line (integer), 
and λ – period of goffering. However the greatest intensity 
has reflexes of basic layer lines, which are close to value 
z* appropriate to the coordinated longitudinal period a, i.e. 
z* = h2/a, where h2 – integer. 

2. With the increase of the strong reflex index l the 
intensity of additional layer lines become appreciable, so 
the width of the layer lines interval (lengthways z*) 
having appreciable intensity is proportional to this index. 

3. In the case of thick radial CSR the strong reflexes 
are located on the layer line as those from not goffered 
lattice. In the case of thin radial CSR the series of strong 
reflexes are displaced lengthways a layer line depending 
on its index h1. 
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ЦИЛІНДРИЧНІ НАДРЕШІТКИ SnS/SnS2: МОДЕЛЬ 

СТРУКТУРИ ТА ДИФРАКЦІЯ 
 

Анотація. Створено циліндричні надрешітки на основі 
змішано-шарових нанотрубок SnS/SnS2. Надперіод утво-
рюється внаслідок повздовжнього гофрування структури 
нанотрубки завдяки неспіврозмірності решіток циліндричних 
шарів SnS і SnS2. Запропонована проста модель структури, 
проаналізовані специфічні дифракційні ефекти. 

 
Ключові слова: нанотрубка, гофрована нанотрубка, 

надрешітка. 
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