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Abstract. The cylindrical superlattices are redlized on a
basis of mixed-layer nanotubes SnS/SnS,. The superpe-
riod is formed due to the longitudinal goffering of nanctu-
bes dructure as a result of lattices disproportion of cylin-
drical layers SnS and SnS,. The ssimple model of structure
is proposed, specific diffraction effects are analyzed.

K eywor ds. nanotube, goffered nanotube, superlattice.

1. Introduction

The misfit mixed-layer nanotubes SnS,/SnS with
different degrees of order in cylindrica layers SnS, and
SnS alternation were synthesized in the Weizmann Ingtitute
of Science (Israel) by R. Tenne group [1]. Nanotubes were
synthesized on the bass of flat layered crystals SnS; by
extraction of a part of S atoms forming SnS layers. The
misfit of SnS, and SnS layers having nat only different
parameters of lattices but also layer symmetry results in a
curvature of flat packs and forming nanctubes.

During an experimental research the nanotubes
with rather original structure were found. The periodical
aternation in a longitudinal direction of nanotube light
and dark radia (or nearly radial) strips was observed at
the TEM-images (Figs. 1 and 2). More detailed analysis of
the TEM-images has shown that within the strips the
layers have a wavy character, and the radius of layers
curvature is approximately constant. Hence, to coordinate
the lattices the nanotubes layers are bent not only in the
cylinder circle direction, but also in the direction of its
axis, forming goffered nanotube in such a way. Originally
such nanotubes were named “ strained”, however the term
“goffered” is more right for the structure character.

It is obvious, that such way of coordination is
possible only for the layers with close longitudinal (along
a nanotube axis) parameters of lattices a [2]. The analysis

of microdiffraction patterns has shown that two types of
SnS; layers aways take place in SnS,/SnS nanotubes:
with a = 0.36 nm and developed on z/2 with a = 0.63 nm,
while the parameter a of SnS layer is equa to 0.58 nm.
Apparently, the additional bend in the nanotube axis
direction arisesin apair of SnS; and SnS layers, wherethe
SnS; layer has a= 0.63 nm. This layer is positioned on the
external side of the bend. Really, the goffering takes place
only in mixed-layer nanotubes OT (O — SnS layer, T —
SnS; layer) and is absent in OTT or OTOTT structures,
where the presence of an additional SnS; layer interferes
with a bend.

The "additional" layer lines with reflexes are digtin-
ctly observed in the microdiffraction petterns of goffered
nanotubes (Figs. 1 and 2). Similar additional layer lines
located close to the basic ones are known in superlattices
diffraction researches. It alows to offer the mode of
nanotube structure, based on a wavy superlattice in a
longitudinal direction, and to apply the known approaches
to interpretate its diffraction pattern. The measurements
have shown that the inverse value of distance As from the
basic layer line up to the additiona one (Fig. 1) wdl
corresponds to longitudinal periodicity in the TEM-image
equal to 5.4 nm, the same asin the usua superlattices.

The microdiffraction patterns in Figs. 1 and 2 are
rather similar; however there is an essential difference.
The distribution of additional layer line intensity near the
basic layer line 20l in Fig. 1 is similar to a profile of the
basic line. The analogous distributions of the goffered
nanotube on the microdiffraction pattern in Fig. 2 have
obvious displacements in the nanotube axis direction.

Interpretation of this effect requires theoretical
research of the problem. At first let us consider positions
of the lattice sites of circular orthogonal [2] goffered
nanotube, shownin Fig. 3 with the basic designations, and
basic features of diffractioninit.
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Fig. 1. TEM-image, microdiffraction pattern and sublattices scheme of SnS,-SnS nanotube
with thick radial CSR: zero layer line (1) and nanotube axis (2)

Fig. 2. TEM-image and microdiffraction pattern of SnS,-SnhS nanotubewith thin radial CSR:
zero layer line (1) and nanotube axis (2)

2. The Lattice of Goffered Nanotube

Let nanotube, oriented along z axis, congist of the
ordered aternating "goffered” pairs of layers of A and B
type, having the superperiod 4 and the radius of the goffer
bend ry. Let both layers of every m-th pair have the same
centre of goffer curvature located on the radius circle O,
(Fig. 3). Let theradius of internal layer point mostly remote
from nanotube axis be equal to po, da and dg — thickness of
layers A and B, correspondingly, and d = da + ds.

The discussed way of the coordination means that
Ae, an angle, under which the coordinated cell of layers
pair is vishble from the centre of pair curvature, becomes
the crystallographic constant. Longitudinal parameter a of
a lattice of coordinated layers pair has no definite value
and for convenience can be chosen on an internal surface
of the pair.

Let us number the sites of lattice formed by pairs
within the limits of superlattice wave by integer variablet,
and waves — by n. Then the angular position & of any pair
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sites concerning their curvature centre is possible to write
as
e =Det-e t=0,T-1

where De -2 e :arcsinl—

' 2(r, +d)
and coordinates of these sites and number of cells on the
length of wave as:
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Fig. 3. The basic designations
in the goffered nanotube

Radius of circles, on which the curvature centres of
an internal layer waves are located, is equal to pg — rg.
Hence, it is possible to write down the polar radiuses of
considered lattice sitesas:

Mg =T - Ty +r 008, r =r +md (3

Hence we can find an angle, under which the
circular parameter b at & = 0 is seen from the nanotube
axis, and then —the angular positions of sites:

jm,:iv+em v=0, p,-1 4
rm
2pr .
pm_ b

where v — the number of site on the cirde; pn — the
number of sites on the m-th pair circles (integer by
definition), ey — the initial azimuthal angular phase of the
appropriate layer. It is obvious, that the circular parameter
b has some variations within the limits of superlattice
wavelength 1 in the considered model. However it is
known [3] that this parameter does not influence the
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circular nanotube strong reflexes (k = 0), consideration of
which is the purpose of research.

3. The Strong Reflexes Amplitude

Let us write down an amplitude of diffraction by
lattice, defined by the expressions (1), (3) and (4), in
cylindrical coordinates system {R, ¢*, z*} in reciprocal
space:

A(Rj*,z*)= & exp{2p|gRr cos(j *)+zmz*§}:
"t . 5t &
=a exp(2pil z-n)gq expgzp

n=0 t=0

aé
g2
Mlpl

+b,52°G8 & eEDIR, cos(i i g O

Um=0 v=0
where b, =r,sine, (6)
M and N — the number of layer pairs in the nanotube and
its length (in units 4), correspondingly. The sum over
goffer periods (over n) is easly calculated and has the
sharp maxima, equal to N, at

pl z=hp b z’*:lﬂ h =0,x1%2,....(7)

The expression (7) defines the system of layer planes in
the reciprocal space, on which all sites of reciprocal lattice
take place. In the plane {R, z}, that is in the section of
these planes by Evald sphere corresponding to the usual
electron microdiffraction experiment, it gives the system
of close located to each other layer lines (7), which
numbering is the same with values of index h;. Let limit
by half plane z* > 0, that means h; > 0.

With taking into account (7) the amplitude
transformsin:

T-1 ..
A(Rj*h)=N(-1"3 exp?pilﬂbtf;-
t=0 [
Mirgt - : NN
- d eXpEpiRr , cos(j - *)H (8)
m=0 v=0

Let us expand the second exponent of (8) into a
series of cylindrical waves according to:

exp(ia cosg) = J,(@) + 28 i"cos{qg) J,@)  (9)

a=1

A(R-J *h)=N(-1)" x
l M 1 -1
expa% b, 28 Jo(20Rr )pg 1+
0 g ﬂm 0
T-1 GMrgt ¥
+2N(-1)“éexpa22pi 24 5 qi’-
t=0 g I ﬂmOqu—l

COSEA(i -] *)BJa (PR ) = A+ A
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where, in view of triviaity of the sum over v, the first
addendum looks like:

A (Rh)=N(-1)"
T-1 =M -1
8 epPpi bS8 P (PRT) (10
t=0 @m=0
and gives the amplitude of the so-called "strong " reflexes

[3].
With the purpose of estimation of strong reflexes
intensity distribution let’ s approximate the Bessd function

in (10) by cosine J,(x) » p—zxcosx and neglecting the
dependence of t on aradical, change the sums by places:
A(RR)» N(-1)* Ea__:p\/%jaoexp%pl By _cos(2p R )

Let us consider the sum over t, presenting cosinein
an exponential form:
T-1 =
%é expgipi Iﬁ b, Qéexp(ZpiRr )
t=0

+exp(- 2piRr . )=

-1

(§+%)

-

- oy ou
where Sl- peZplg b+er%

— u QJo

o

S = aexpe2p|aEhlb er%
t=0
Withregard to (3) and (6), thesum S;;
Slzexp82piR(rO—r +md)lil>

(11)

>aepr pir, Tl n(Det - e)H

-:eprZpirchos(Det -e)j (12)
|

Let us expand two last exponents into a series of
cylindrical waves according to:

exp(ia sing) = J,(@) + 28 cos(2q9)J,, @)+

gq=1
¥
+213 sin[(29+2)g] .. @)
q=0

5 17, (a)exp(iag).

q=-¥

Then S = exngmR( - T, +md) ($+S+S)

and exp(ia cosg) =

0
-- ¥
where  § =1 gJZpr é 3, (201,R):

-
-exp(—iq'e)a exp(iq'Det) =

=0

-
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hos

L7 a i .(2p r R)exp(- iq'e)G, (q'De) (13)

:Jogip

S =4, aEﬁpr
q=1

C

_a 19, (20r,R)>

{apéi(Q'+ZQ)euchq +2q) Deg+
+expgi(a*- 2q)epG, ga* 2q) DeE} :

3 hl
S =a .
pat 2q 18

(14)
_a i1, (2prgR)><

>{expéL i(q+2q +1)e|¢3](3S gq'+2q+1) Deg-

-expgi(a*- 29- YepG, ga- 29- 1)De§ (15)
Here, aswell as earlier, the following sum is used:

. MXx
M-1 Smf
G(x) =g exp(ixm) =

m=0

e XU
exp —

(16)

which has a sharp maximum at X, equal to an integer of
2z, the height of a maximum is equal to M, and its width
isinversely proportional to this value. For example, in the
case of . X = Ag, M = T, the maximum of function is
realized at:
f_n 2P
a'=h- (17)

However addendum S, of the amplitude also contains
the multiplier, depending on the index of summation over
nanotube layers (over m). This summation, after rejection
of factorsinggnificant for this analysis, gives the amplitude
multiplier G(2zRd), which looks like (16). Hence, the
amplitude of drong reflexes represents a number of
addendums, each of which contains the product of the
functions of the kind (16): G(2zRd) on the one hand, and
one of the functions Go(q' A¢), GJ (0’ + 20)As] and G4 (g £
2q £ 1)A¢] — on the other one. Three last functions do not
depend on spatial variable R, but influence a choice of the
members of series over (, the Bessel functions of which
contain this variable.

Thus, the character of an arrangement of amplitude
maxima in a scale R depends on the correlation between
the widths of the functions of the kind (16), which are
determined by parameters T and M, in each product: the
narrower function determines the form and position of
diffraction pattern maxima and the wider one modulates
their intensities. Let us consider extreme cases of thick
and thinradial CSR.

3.1. The Thick Radial CSR (M >>T)

In this case maxima of the function G(2zRd) are
narrow, intensive and positioned in points of its
extremum:

h, =01 +2;+3 ..
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2pRd = 2pl [ =— |1 =0,£1,+2,... (18)

It means that the arrangement of strong reflexes is
identical on all layer lines of such nanotube. Such
microdiffraction pattern is given in Fig. 1 with the only
difference, that it belongs not to a circular nanotube,
which lattice is considered for analysis simplification, but
to the longitudinal monoclinic [2, 3] one. Let us compare
the relative intensities of layer lines, determined by
addendums &, S and S,

Let us consider addendum &. Maxima of the
function Go(q'Ae) are in the points (17). On the other
hand, the main maximum of Bessel function Jy (27rgR) is
close to the value of argument equal to its index, that
means, that in the points (18) the main maxima of Bessel
functions with g’ = 2xryl/d are positioned. It is obvious
that generally this condition cannot be satisfied
simultaneously with the condition (17). It means that
addendum & practicaly does not influence the relative
intensity of layer lines.

Addendum & in the points (18) looks like:
S =S;+S;

¥
where S =4, ?pr

cl

_al

q=1

.?p

"y 5 <P i (a+20)efG, ga+ 20) Dej

équgZpr _a i1, gJZpr

opgi(a*- 2q)efG, ga*- 2q) Dey

The main maxima of addendum S; Besse

functions are located close to the points q' = 2xfr4l/d and
2q = 2arg/i. On the other hand indexes g and g are
connected with each other by the area of noticeable values
of the function G[(q" + 2g)Ag]. Its rather wide maximum
is in the point (0 + 2q)Ae¢ = 2xh,. Thus, we obtain
approximate equality:

I h h, aeh2 I 6
2pr,—+2pr,~»2p = b —=-—> (19
Py 20, > 2 >l d;'a()
As A = Ta then in the last equality
»Tagg- I— =» Th, - —I the integer value of h; is

provided only at | =0. In view of (7) it means that the
layer line (the basic layer line) is of the greatest intensity
and located closeto

z* »E»m (20)
a |

ath, >0, asitisobserved in Fig. 1.
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As maxima of function G[(q" + 2q)A¢] have some
width, the layer lines getting in the appropriate interval
have also appreciable intensity (additional layer lines). Let
us take differential from both parts of (19) at the constant
index hy that is closeto (20):

Dh ~-D (21)
where the approximate equality is replaced with a mark of
proportionality, as the interval of intensive layer lines
depends on experimental conditions too. From (21) it is
visible that the quantity of additional layer lines is
proportional to the value of index | also observed in Fig. 1.
Addendum S, givesthe similar result for h, <O.

Addendum S in the points (18) looks like
S=S-5S
s sl sl

where

¥
S;—anqﬂg:Zpr —a i

q=1

R

_expgL i(q'+2q+1)epG, g q'+2q+1)Def

¥
I
S, = équﬂaPZpr _a RN gJZpgd‘EZ-

-;expg i(9- 29- 1)epG, ga* 2q- 1) Dey

Maxima of Bessdl functionsin S; take place under
conditions: ¢ =~ 2arg/d and 2q + 1 = 2argh,/A, and
maximum of function G[(q’ + 2g)A¢] isinthe point (0 +
+2q + 1)Ae¢ = 2rh,, that gives again (19) and all its
consequences.

3.2. The Thin Radial CSR (M < T)

The basis for such model consideration is the
diffraction pattern in Fig. 2, radialy lengthened basal
reflexes of which allow to speak about the small CSR
sizes in this direction. In this case maxima of functions
Go(q Ae), G(q = 20)A¢] and G (0" £ 2q + 1)A¢] in (13),
(14) and (15), correspondingly, are narrower and
intensive, than those of G(27zRd), and it is possible to be
limited to their peak values.

Let us consider an addendum & at peak value of '
from (17).

So(hz)»"‘TJoa%pr 93, (207, R)exp(-iq'e)

Main maximum of the second Bessdl function takes
place at:
s h,
2pr,R»q hZDe b ha»a
But on the other hand the summation over layers
(over m) gives condition (18) again, though with a little
wider maxima. However it is obvious that in this case
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these two conditions are incompatible too. Hence, adden-
dum & has not essential influence on positions of strong
reflexes.

A condition of the maximum of functions GJ[(q +
+ 20)A¢] included in S 1ooks like:

(9'+2q)De =2ph, b a?ph, .6

20=+ -
q gDe q‘.a

and function &, under thiscondition, S,, =S, +S;,

X L.
where S}, =T (- 1)Thz ai"J, (2p rgR)Jﬂ_ql?p r, |—9
q=-¥ De 7]
¥ I3
Sf;hz :T (_ :I')Th2 a iq ‘]q' (2p rg R)Jﬂm ?p rg %9
q=-¥ De 7]

and is used: &/Ac = T/2. As before, let us write down for
S, the approximate equality from conditions of Bessdl

functions maxima at the peak value (18) of functions

G(27Rd):

2prg|ﬁ»2p%

| .
-Zprgab hl»l — - —

We have again obtained (19), that means, asin this
case the basic layer lineis close to z*, determined by (20),
too. However the function G(2zRd) in this case is a
modulating one, the positions of peaks on the layer line
are determined by maxima of function GJ(q + 20)A¢].
Then, substituting the current value of argument R instead
of its peak valuel/d in the latter equality, we obtain:

e N
ha » 2

This expression differs from its analogue (18) for
the case of thick radia CSR in two aspects. Firdt, the
positions of strong reflexes on the layer line are
determined not by “basal” interlayer spacing d, but
“longitudinal” lattice parameter a. Secondly, the positions
of al series displaces on the distance hy/A at trangtion
from one layer line to ancother, that is observed on the
diffraction patternin Fig. 2.

Expresson (21) that is also observed on the
diffraction pattern in Fig. 2 gives again the estimation of
interval width near the value (20), in which the additional
layer lines take place, similar to the previous item.

Addendum S, from (11) gives similar expressions
for other combination of indexes hy, h, and | Signs.
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4. Conclusions

The analysis of strong reflexes formed from the
offered multiwall circular orthogonal mixed-layer
goffered nanotube lattice model, consisting of alternating
layers of type A and B, has shown:

1. All reflexes are located on the system of layer
lines ¢ = hy/A, where hy — index of layer line (integer),
and A — period of goffering. However the greatest intensity
has reflexes of basic layer lines, which are close to value
Z* appropriate to the coordinated longitudinal period a, i.e.
Z* = hy/a, where h, —integer.

2. With the increase of the strong reflex index | the
intensity of additional layer lines become appreciable, so
the width of the layer lines interval (lengthways z*)
having appreciable intensity is proportional to thisindex.

3. Inthe case of thick radial CSR the strong reflexes
are located on the layer line as those from not goffered
lattice. In the case of thin radial CSR the series of strong
reflexes are displaced lengthways a layer line depending
onitsindex h;.
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OUJIIHAPUYHI HAAPEIIITKH SnS/SnS,: MOAEJIb
CTPYKTYPHU TA JUDPAKIIA

Anomauia. Cmeopeno yuninopuuni HaOpewimxKu Ha OCHO8I
smiwano-waposux  Hawompyook NINS,  Haonepioo  ymso-
PIOEMbCA  6HACTIOOK  NOB3006MHCHLO2O  20PPYBAHHS  CIPYKIYPU
HAHOMPYOKU 3A605KU HECNi8POIMIPHOCI PewimoK YuniHOpU4HUX
wapie NS i NS,. 3anpononosana npocma mooers cmpykmypu,
npoananizosami cneyughiuni ougparyitini echexmu.

Knrouosi cnosa:. nanompybra, cogposana nanompyoxa,
Haopewimxa.



