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Abstract: Two objectives have been formulated: to
guarantee the invariance of algebraic analogues of
integral-differential equations corresponding to the
invariance of the original integral-differential equations
system and to include boundary conditions directly into
approximating dependences (shape functions) describing
the field inside finite elements pertaining to the border.
The above problem has been solved using the technique
of invariant approximation of functions. As it has been
shown, this approach reduces the order of the original
system of equations.

1. Introduction

The finite element method was introduced in
electrical engineering calculations in 1970 and, since
then, it has been applied to the simulation of a great
variety of electromagnetic problems in static and
transient state in two and three dimensions:
electrostatics, magnetostatics, eddy current, wave
propagation phenomena, etc. Nowadays, it is the basis of
several commercial codes such us Ansys, Femlab,
Magnet, MSC/Emas, Opera, etc. The development of
different finite element methods and mathematical tools
to analyze and numerically solve Maxwell equations has
been one of the main directions of research during the
past decades.

The fundamental idea of the finite elements method
[1] is to subdivide a domain under consideration into
small sub-domains called finite elements (FE). Sought
scalar and vector functions are approximated within each
finite element by simple functions called shape
functions. A shape function is a continuous function
defined over a single FE. The shape functions of
individual FE’s are combined into global shape
functions, also called basis functions. Since first
mathematical analysis of the method in the 1960’s [2] it
has been developed by introducing new shape functions
[3] and rigorous analysis of their stability, accuracy,
reliability, and adaptability. Nodal and edge finite
elements are widely used but their properties do not
provide the possibility to “embed” the discontinuities of
electromagnetic field variables, caused by abrupt
changes in electric conductivity and magnetic
permeability, in their configuration. Vector field

variables have a physical and mathematical identity that
goes beyond their representation in any particular
coordinate frame. By dividing the vector into three
Cartesian parts, node-based elements fail to take this into
account. For boundary conditions in
electromagnetics often take the form of a specification of
only the part of the vector function that is tangential to
the boundary. With node-based elements, this physical
constraint must be transformed into linear relationships
between the Cartesian components what increases the
number of equations and, consequently, the
computational error.

The aim of our research is to develop such shape
functions that automatically take into account boundary
conditions on the edges of two-dimensional FE or on the
faces of three-dimensional FE. Those shape functions are
called “surface” functions because they are used for
modeling the sub-domains adjacent to boundaries
between regions with different electromagnetic
properties.

example,

2. Statement of problem

The main problematic tasks that are encountered by
a researcher while applying FEM to electromagnetic
field analysis are:

e  Formulation of simplified assumptions

e  The choice of the primary unknown in each
subdomain (terms of certain scalar and magnetic
potentials, terms of the electric field or the magnetic
field)

e  Definition of adequate boundary conditions

e  The choice of FE for each subdomain.

Nodal and edge finite elements are widely used but
their properties do not provide the possibility to “embed”
the discontinuities of electromagnetic field variables,
caused by abrupt changes in electric conductivity and
magnetic permeability, in their configuration.

Inside each nodal finite element, a scalar or a
vector function is approximated by a linear combination
of shape functions associated with nodes. Within an
element, a scalar function u is approximated as

P
u=7yus,,
i=1
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where S; is the nodal shape function corresponding to
node i. The index P is the number of nodes in the

element. The coefficient u; - the degree of freedom - is

the value of « at the node i.

A vector function # is treated simply as a
combination of three scalar components, u,, u, and u; in
a Cartesian x, y, z coordinate system. Each node then has
three degrees of freedom instead of one, and # is
approximated as

P - ~
u=usS, = u, tu,j +u_k)S,,

M~

I
—_

1

where the coefficient #; is the value of % at node 7, and

uxi > uyi >

and u_; are the three components of #,. When

two elements share a node 7, the nodal values #,; at node

i are set to be equal. Applying this procedure throughout
a mesh makes the vector function u normally and
tangentially continuous across all element interfaces.
However, vectors are not simply triplets of numbers.
They have a physical and mathematical identity that goes
beyond their representation in any particular coordinate
frame. By dividing the vector into three Cartesian parts,
node-based elements fail to take this into account. For
example, boundary conditions in electromagnetics often
take the form of a specification of only the part of the
vector function that is tangential to the boundary. With
node-based elements, this physical constraint must be
transformed into linear relationships between the
Cartesian components what increases the number of
equations and, consequently, the computational error.

Inside each edge finite element, a vector function is
approximated by a linear combination of shape functions
associated with edges. Within an element, a vector
function u is approximated as

e —
U=2u;S,,
i=1
where the coefficient #,, is the degree of freedom at edge i

and gei is the edge shape function corresponding to edge i.

The line integral of 5@' along edge i equals unity, yiel-

ding that the line integral of # along edge i can be written as

S.dl =u,.

ti~ei

fﬁdizju

Thus, u,, ,; is the line integral of u along edge i, and
the degrees of freedom, instead of being components of
the vector function at element nodes, are to be
interpreted as the line integrals of the approximated
vector function along element edges. When two elements
share an edge 7, the degrees of freedom u,; at edge i are

set to be equal. Applying this procedure throughout a
mesh makes the vector function # tangentially
continuous across all element interfaces. The vector
function thus constructed is not normally continuous.

The aim of our research is to develop such shape
functions that automatically take into account boundary
conditions on the edges of two-dimensional FE or on the
faces of three-dimensional FE. Those shape functions are
called “surface” functions because they are used for
modeling the sub-domains adjacent to boundaries
between regions with different electromagnetic
properties. Within such “surface” element, a scalar

function u is approximated as
P=b b

u=y, uiSi+zngbja
j

i=1 j=1
where the index b is the number of boundary conditions
given for the discussed FE. The coefficient g, is the

value of imposed boundary condition at node j and S b
is the “surface” shape function corresponding to edge ;.

3. Development of “surface” elements

The distinctive features of proposed approach are:

e Application of invariant shape functions that
preserve the tensor character of original differential
operators after the transformation of the set of
differential equations into the corresponding set of
algebraic equations

e  Development of special “surface” shape
functions that allow us to take into account boundary
conditions in implicit form what reduces the order of the
set of algebraic equations.

Let Q be a bounded open setin R", 7 eQ, ke 3T,
and assume that u € C*(Q) can be extended from € to

a continuous function on §_2, the closure of the set Q,
where u is the sought function described by partial
differential equations supplemented by one of the
following boundary conditions, with g denoting a given
function defined on the boundary 0Q:

u = g on 0Q (Dirichlet boundary condition);

Ou/on=g on 0Q, where n denotes the unit

outward normal vector to 0Q (Neumann boundary
condition);

Ou/on+ou=g on 0Q, where o(x) > 0 on 0Q
(Robin boundary condition).

In accordance with invariant approximations
technique the sought function and its derivative can be
represented within m-th finite element in the form

ulF1=T[FIT,'U,,. (1)

du/ on=T[FJA[FINT,'U ., ©)
where T[7] is Taylor’s vector; T,;I is inverse Taylor’s
matrix for m-th FE; Um* is the column of nodal values
for m-th FE; #[F] consists of cosines of the angles

between unit outward normal vector to 0Q and a

corresponding axis.
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In case of, for example, Robin boundary condition
given on one or more faces of a finite element
constructed in the form of an invariant polyhedron we
receive a set of equations

T[71A[ZINT,'U, . + T[FIT,'U, . =g;, i=1,...,5 (3)

where s is the number of nodes located on the

appropriate faces of the m-th finite element. The solution
of (3) gives us the sought shape function comprising
both nodal values in inside nodes and boundary
conditions in surface nodes.

4. An illustrative example
Let us show the application of the proposed
approach to a triangular FE.

We assume that the node with the coordinates
(h/ 2,3/ 2) belongs to a boundary and the value g

of normal derivative of the sought function is given for
this node:

du /| dn=du/ dxcos(ii,i)+du/ dycos(ii, j) = g.(4)
For such mesh Taylor’s vector for any point with

radius-vector 7 = ix + jy has the form

fz”l x y x*/2 xy y2/2H ®)
The Taylor’s matrix for the FE looks like

Loy w» X /2 xy pi/2
Lx, v 5/2 %y, 112
T=1 X3 s x32/2 X3 J/32/2:
Uoxy vy X /2 xy, yil2
Loxg ys x/2 xgp5 y3/2
U oxg ve % /2 Xeys ve!2

1 0 0 0 0 0
1 —h 0 W2 0 0
1 —h/2 hJ3/2 W*/8 -h\3/4 3h*/8
oo B o 0 )2
1 h/2 hf3/2 K/8 K3/4 3n2/8
1 & 0 W2 0 0
(6)

Let’s invert the Taylor’s matrix using blockwise
inversion:

A B
C D
AT +ATB(D-CA'B)'CA™! -A'B(D-CA'B)”
—-(D-CA'B)'CA™! (D-CA™'B)™
As a result of corresponding consequence of

mathematical operations we receive the inverse Taylor’s
matrix:

-1

1 0 0 0 0 0
o =L 0 0 0 1
2h 2h
B R | 2 -1 2 -1

B 23k ah Bh B o) D

T2 o 0 0

W W /'
0 1 i 0 L -1
NEVERENEY 'S NEYERENEY 'S
1 -4 4 -4 1
3 3K 3K 3KE 3KE 3K

The expression of the sought function, in accordance
with (1), within the standard nodal FE takes the form

1 1 . x
u=u, —i—(—Eu2 +Eu6)Z+

1 1
+(—2u, —Euz + 2uy —uy + 2us _E%)ﬁJr
1 1 X’
+(—u] +Eu2 +Eu6)?+

Xy

+(uy — 2uy + 2u; u6)\/§h2 +
P
3n?

As we can see, the expression contains only nodal
values without regard to boundary values.

The equation (3) can be written for the given
example in the form

T[7JA[7INT U, = ¢ ©)

®

1 1
+(u, +Eu2 —2uy +2u, — 2u; +Eu6)
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and in unfolded form:

H1 hi2 372 K18 K3/4 342/8

0 7 ] 0 0 O
000 i 5O
- - 00 00 i
(i3/2+712) LI
000 0 0 O
0 00 0 0 O
0 000 0 O
1 0 0 0 0 0
- 0 0 0 1
2h 2h |,
2 12 12 A
B 2Bk B B Bh 23k (10)
-2 1 1 3 =g
h7 //7 0 0 0 }7 u,
0 1 2, 2 -1 |
\/§h2 \/ghz \/§h2 \/ghz U
2 1 4 4 41
3 3K 3K 3K 3K 3K
Thus
~23 1/ Bhyuy +~/3 1 Bhyuy — 233 1 Bhyuy + 0

+3 1 (6h)uy + 23 1 Bhyus ++/3 1 (6h)u, = g.

The combination of standard nodal shape function
(8) and the boundary condition (11) gives us the
“surface” shape function that combines the nodal values
and boundary condition value:

u=u +(—lu +lu )£+

S 2 2

NEIRE NCRNC I )
H——uy +—uy ———u, ———
2 3 2 3

2
X

+(—u +lu +lu )—+
1 2 2 2 6

e
243 NE) NG

X
U, 6 4 _71’{6 +gh)h—)2/+

Uy Ug +gh)%+

3 5 y
+(—u, +Eu2 —4u, +§u4 +ug —\/ggh)ﬁ (11)

The proposed algorithm gives a researcher the
possibility not to stick rigidly to existing shape function
and construct most appropriate for a task “surface” shape
functions with regard to given boundary conditions.

5. Conclusion

New shape functions that are invariant with respect
to linear transformations of local and global coordinate
frames and automatically satisfy boundary conditions on
edges of two-dimensional and faces of three-dimensional
FE’s have been developed. Their utilization reduces the
order of equation system and, subsequently, the
computational error.
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MOBYJIOBA «[IOBEPXHEBHX» ®YHKIIII
®OPMH HA NIICTABI METOIOJIOT I
THBAPIAHTHHUX HABJIN’KEHD

Mapis ['oBukoBIY

Ilepen namu Oyno 3aBJIaHHS:
3a0e3Me THTH IHBaPIaHTHICTE aNreOpHTHHX AHAIOTIE IHTETrpO-
mapepeHIiifHNX piBHAHB, [IO BIANOBIiTa€ IHBAPIaHTHOCTI
BUXITHOI IHTeTpo-AM(epeHIifHOl CHCTeMHM pIiBHSHB;, Bpa-
XyBaTH TPAHUTIHI YMOBH GE3MI0CEPETHEO Y AMPOKCHMAIIHHIX
3aeKHOCTAX, II0 OIHCYKOThL T0Jie BCEPeAMHI CKIHUeHHHX
CJIEMEHTIB, AOTHYHMX A0 TrpaHuii. Bkasani 3aBmanHsa Oyio
pO3B’S3aHO  3aCTOCYBAHHSM  METONNKH  iHBapiaHTHOTO
Habmmkennss Qyuxmiit. Y pe3yiasTari moKazaHo, MmO TaKHi
miaxioz sabesmedyc 3HIDKEHHS TOPSIKY BHXigHO! cHcTeMH
PIBHSHE.
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