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Abstract: The positive fractional and cone fractional
continuous-time and discrete-time linear systems are
addressed. Sufficient conditions for the reachability of
positive and cone fractional continuous-time linear
systems are given. Necessary and sufficient conditions
for the positivity and asymptotic stability of the
continuous-time linear systems are established. The
realization problem for positive fractional continuous-
time systems is formulated and solved.
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1. Introduction

In positive systems inputs, state variables and
outputs take only non-negative values. Examples of
positive systems are industrial processes involving
chemical reactors, heat exchangers and distillation
columns, storage systems, compartmental systems, water
and atmospheric pollution models. A variety of models
having positive linear systems behavior can be found in
engineering, management science, economics, social
sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive
systems is more complicated and less advanced. The
overview of a state-of-the-art situation in the field of
positive systems is given in the monographs [8, 9]. The
stability and robust stability of positive and fractional 1D
linear systems has been investigated in many papers and
books [1-9, 13, 23, 28]. Realization problem of a
positive continuous-time and discrete-time linear system
has been considered in [10, 12-15, 19, 20, 22]. Recently,
the reachability, controllability and minimum energy
control of positive linear discrete-time systems with
time-delays have been considered in [9, 16-18, 21, 24].

The first definition of the fractional derivative was
introduced by Liouville and Riemann at the end of the 19"
century [50-52, 54, 55]. This idea was used by engineers for
modeling different processes in the late 1960s. Mathematical
fundamentals of fractional calculus are given in the
monographs [23, 25-30]. The fractional order controllers
were developed in [29]. Some other applications of fractional
order systems can be found in [31, 32].

The main purpose of this paper is to give an overview of
some recent results on positive and cone fractional
continuous-time and discrete-time linear systems.

The paper is arranged as follows. In section 2 the
positive fractional linear continuous-time systems are
introduced. In section 3 the fractional cone systems are
discussed. Sufficient conditions for the reachability are
established in section 4. The realization problem for positive
fractional continuous-time linear system is investigated in
section 5. Positive fractional discrete-time linear systems are
addressed in section 6. Sufficient conditions for the
reachability of discrete-time linear systems are established in
section 7. Concluding remarks are given in section 8.

The following notation will be used: R - the set of

real numbers, R™™ - the set of nxm real matrices,
RTM - the set of nxm matrices with nonnegative

entries and R" =R™, M, - the set of nxn Metzler

matrices (real matrices with nonnegative off-diagonal
entries), I, - the nxn identity matrix.

2. Positivefractional continuous-timelinear syssems
The following Caputo definition of the fractional
derivative will be used [23, 25, 27, 29]
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Consider the continuous-time fractional linear
system described by the state equations
(;jt”‘ X(t) = Ax(t) + Bu(t), 0<a <1, (2a)
y(t) = Cx(t) + Du(t), (2b)

where x(t)eR", u(t)eR™, y(t)eRP are the state,

input and output vectors and AeR™", BeR™",
CeRP" DeRr™™,

Theorem 1. [23] The solution of equation (2.2a) is
given by

t
X(t) = Do (t)% + [@(t-7)Bu(r)dz, X(0) =X, (3)
0
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where
~ a 0 Akt ka
Dy (t) = E, (At") = kzom, 4)
0 Akt(k+1)a—l
"0 2 el ©

and E,(At*) is the Mittag-Leffler matrix function,
r(x) = Ie‘ttx‘ldt is the gamma function.
0

Definition 1. [23] The system (2) is cdled the
internally positive fractional system if and only if

Xxt)eR? and y(t)eRP fort>0 for any initia
conditions x, € R" and al inputs u(t) e R, t>0.
Theorem 2. [23] The continuous-time fractiona

system (2) isinternally positive if and only if the matrix
AisaMetzler matrix and

AeM,, BeRT™ CeRP" DeRP™. ()

3. Conefractional systems
Following [10, 23] the definitions are recalled.

]
Definition 2. Let P= e R™" be nonsingular
Pn
and py bethek-th (k=1,2,...,n) itsrow.
The set
n
@::{Xeil%”:ﬂpkxzo} @)
k=1

is called the linear cone generated by the matrix P.
Inasimilar way we may define the linear cone

m
Q::{u@ﬁm:ﬂqkuzo} (8)

k=1
&
generated by the nonsingular matrix Q= e jR™M
Um
for theinputsu, and the linear cone
p
V= ye‘ﬁp:ﬂvkyzo 9)
k=1
Vi
generated by the nonsingular matrix V = e RP*Pfor
v

the outputs Y .

Definition 3. The fractiona system (2) is called
(2,Q, ) cone fractional system if x(t)e® and
yt)ev,t>0 forevery xge®, u(t)eqQ, t>0.

The (®,Q,¥ ) cone fractiond system (2) will be
shortly called the cone fractional system. Notethat if = %",
Q=%M v=xD, then the (R}, R, RP) cone system is

equivalent to the classica positive system [18, 26].
Theorem 3. The fractional system (2) is (®,Q, )

acone fractional system if and only if
A=PAP'cR™, B=PBQeR™,
C=VCP ' eR™"

+

Proof isgivenin [23, 17].

D =VDQ ' e RP™. (10)
3. Reachability of positive fractional systems
Definition 4. The state x; e R} of the fractional

system (2) is called reachable in time t; if there exists an
input u(t) e R, te[0,t;] which steers the state of
system (2) from zero initial state x, =0 to the state x;. If
every state x; € R! isreachableintimet;, the systemis
caled reachable in time t;. If for every state x; e R"

there exists such a time t; that the state is reachable in
timet;, the system (2) is called reachable.

A real sguare matrix is called monomial if and only
if each its row and column contains only one positive
entry and the remaining entries are zero.

Theorem 4. The continuous-time fractional system
(2) isreachablein timet; if the matrix

R(t;) = Jf.(D(r) BB'®' (r)dr (11)

isamonomia matrix.
The input which steers the state of the system (2)
from x, =0 to x; isgiven by theformula

ut) =BTd" (t; —t)R*(t;)x (12)

where T denotesthe transposition. A proof isgivenin [21].
Definition 5. A state x; €@ of the cone fractional

system (2) is called reachable in time t; if there exists an
input ut)eq, te[0,t,] Which steers the state of the

system from zero initial state X, =0 to the desired state
X, 1.6 X(t;)=x,. If every state x5 e @ isreachablein

time t; , then the cone fractiona system is called
reachable in time t;. If for every state x5 €® there

exists atime t; , then the cone fractional system is called
reachable.
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Theorem 5. The cone fractional system (2) is
reachablein timet; if and only if the matrix

R(ts) =

te

-P[ 0B QB T (9d:PT @ = (@) (13)
0

isamonomial matrix. A proof isgivenin[21].
From Theorem 5 we have the following corollary.
Corollary 1. If Q=1 _, then R(t,)=PR(t,)P",

and the cone fractional system (2) is reachable in time t;
if the positive fractional system is reachable and P is a
monomial matrix.

Example 1. Consider the cone fractional system (2)
with

P:{l 1},Q=F O}, A:F 0}, B:{O 1](14)
-1 1 01 00 10

The @ -cone generated by the matrix P is shown in
Fig. 1.

A

X2

X1,
Fig. 1. @ -cone.
It is easy to show that
[ o e 5
<D(t)B—L)2(t) 0 } (15)
and

R(t,) = f (r)BBT®' (r)dr = ﬂq’f(” @g"(r)}df (16

where

© (ka1 a1

Dy(t) = kZOM' D, (t) T’ O<a<1(17)

The matrix (16) is monomia and according to Theorem
4 the positive fractiona system isreachablein timet;.
Inthe case Q = I, the matrix

R(tr) = PR(t;)PT =

tg

_J-'l 1} ®%(z) 0 {1 -1}”_
-1 0o @3t 1

0
t —
j ®2(z) + D3(r) @%(r)—@f(r)] »

| 03(r) - 0F(r) ®F(r) +D3(r)

(18)

0

is not monomial, since ®?(r) # ®3(z).

Therefore, the sufficient condition for the
reachability in timet; of Theorem 5 is not satisfied.

From this example and comparison of (11) and (13)
it follows that the sufficient condition for the reachability
of the cone fractional systems is much stronger than for
the positive fractional systems.

A state x, e @ of the cone fractiona system (2) is called

controllable to zero in time t; if there exist an input
u(t) eQ, te[0,t,] which steers the state of the system

from X, to the zero state x; = 0 Following [26] it is
possible to extend the considerations to the
controllability to zero of the cone fractional linear
system.

4. Realization problem for positive fractional
systems
Consider the continuous-time fractional linear system
described by the state equations

d;xa(t) = AX(t)+ Bu(t), O<a<1 (19a)
y(t) = Cx(t) + Du(t) (19b)

where x(t) eR", u(t)eR™, y()eRP are the state,

input and output vectors and AeR™", BeR™™,

CeRP" DeR™M
Applying the Laplace transform to (19), it is easy to
show that the transfer matrix of the system is given by

the formula
T(s)=C[l,s*-A'B+D. (20)

Thetransfer matrix is called proper if and only if

limT(s)=K e R (21
S—0
and it iscalled strictly proper if and only if K=0.
From (20) we have
limT(s)=D (22)
S—w
since
lim[l,s*-A™"=0. (23)
S—0

Definition 6. Matrices A, B, C, D are called a
positive fractional realization of a given transfer matrix
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T(s) if they satisfy the equality (20). A redlization is
called minimal if the dimension of A is minimal among
all realizations of T(s).

The positive fractional redlization problem can be
stated as follows. Being given a proper transfer matrix
T(s), findits positive realization.

First the realization problem will be solved for single-

input single-output (SISO) linear fractional systems with
the proper transfer function

T(s) = by (s*)" + Qq,l(sa)nfl +..+bs” +hy

(04 4 —. o (24)
(8™)" -2y 4(s)" — ..~ as” — &
Using (22), we obtain
D=1limT(s)=h,, (25)
S—0
and the strictly proper transfer function has the form
Tp(s)=T(s)-D =
b, 1(s*)" b, H(s*)" 2 4.+ bs* +by
= (26)
(s")" g (s") - —as” -5
where
b, =h +ah, k=01..,n-1. 27

From (27) it follows that if a, >0 and b, >0 for

k=01..,n,thenaso b, >0 for k=04,...,n—1.
Theorem 6. There exist positive fractional minimal
realizations of the forms

[0 1 0 .. 0] 0
0 01 .. 0 0
A=|.. .. . . .|, B=|i],
00 0 .. 1 0 (283)
18 & & an1 | 1]
C = [bo t)l bn—l]! D = bn,
[0 0 .. 0 & | _
10 0 & tlo
A=|0 1 0 & |, B= bl :
: (28b)
0 0 1 a,,] -
c=[o o .. 1 D=b,
-1 8n-2 & a 1
1 0 0 0 0
A=| 0 1 0 0] B=|.|,
: (28c)
0
0 0 1 0

(a,;, 1 0 0 O _
bn—l
a,, 01 0O _
A=| i ) B2
' ol (28d)
00 .. 1 _
& 0 0 .. 0] b
c=fL o 0 D=h,
of the transfer function (4.4) if
i) b,>0for k=01...,n,
i) a =0 for k=01...n-2 and

By 1+a4b, 2 0.

Proof isgivenin [37].

The matrices (28) are minimal redlizations if and
only if the transfer function (24) isirreducible.

If the conditions of Theorem 6 are satisfied then the
positive minima redizations (28) of the transfer
function (24) can be computed by use of the following
procedure.

Procedure 1.

Step 1. Knowing T(s) and using (25), find D and
the strictly proper transfer function (26).

Step 2. Using (28), find the desired realizations.

Example 1. Find the positive minimal fractional
realizations (28) of the irreducible transfer function

2(s*)? +58% +1

T(s) = 29
) (s*)?+2s% -3 ()
Using Procedure 1 and (29) we obtain the following:
Step 1. From (25) and (29) we have
ay\2 a
D= “mw= 2 (30)
sow (8%) 4+ 28" -3
and
s +7
T, (8)=T(s)-D=—o—w———. 31
(9T D= s (30)
Step 2. Taking into account that in this case

by=7,b,=1 and using (28), we obtain the desired
positive minimal fractional realizations

A{g _12}, B:m, Cc=[7 1, D=2, (329
A:E _32}, Bzm, c=[o 1, b=2, (32b)
A{_lz g} B:H, c=f 7] p=2, (320)

A:[_2 1}, B:H, c=[ 0] D=2. (32d)
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Let's consider a multi-input multi-output (MIMO) posit-
ivefractiona system (19) with aproper transfer matrix T(S) .

Using the formula
D=1imT(s)

S—w
we can find the matrix D and the strictly proper transfer
matrix which can be written in the form
Tp(s)=T(s)-D =

(33)

Ny1(s) Nim(S)
Dy(s) Dm(s)
=l .. .. |=N(sDHs), (34
N p1(s) N pm(S)
Dy(s) Dm(s)
Where
Ny1(s) Nim(s)
N(s) =| .. v
Npl(s) Npm(s)
D = diag[Dy(9), -, Din(9)] (35)

Nix (8) = G ()% + o+ g™+,
i=%.,p;k=1...m
Dic(8) = ()% —ay g, 1(s™) %" - ..~ 3qs” — 40 (36)

Theorem 7. There exists the positive fractional
realization

A=blockdiag [A,.... Ay € R,

0 1 o .. 0
0 0 1 . 0
A=l b gk
0 0 o .. 1
|7&O0 "1 T2 ~O,d1 |

k=12,..m n=d+..+dy,
B = blockdiag [B,..., Byl e R™,

0
By = (:) eR%, k=12,..,m, D=T(x)eRPM,
1
0 di-1 0 dm-1
C1 - Cf . Cm cm
c=| : fooL P e,
0 dp-1 0 dm-1
Cp1 cp}l w Cpm - Cph

of the transfer matrix T(s) if the following conditions
are satisfied:

i) T(o)eRPM

i) ay=0 for k=1..m
g, -1 Can be arbitrary

| =04,...d,—2 and

i) cl=0 for
k=1.,m.

A proof isgivenin[22].

If the conditions of Theorem 7 are satisfied, then the
positive fractiona realization of the transfer matrix T(s)

i=1..p; j=0L..d -1

can be computed by use of the following procedure.
Procedure 2.
Step 1. Knowing the proper transfer matrix T(s)

and using (33), compute the matrix D and the strictly
proper matrix Tg,(s).

Step 2. Find the minimal degrees d,,...,d,, of the
denominators  Dy(S),...,D,(s) and write the matrix
T (s) intheform (34).

Step 3. Using the equality

D(s) = diag[(s*)™,..., (s*)"] - diag[a,,....a,]S (38)
find a =[a,, aqy &g, 1] for k=1...m and the

matrix A.
Step 4. Knowing the matrix N(s) and using
N(9=CS

1 0 0
& 0 0
— _l’ :
T S A 0 S ()
0 0 .. &
0 0. hl

find the matrix C.
Example 2. Find the positive fractional realization
(37) of the transfer matrix

257 +1 ($)2+35" +2

s® (s*)2+2s* -3
T(s)= (40)
s +3 2s% +1
s +1  (s%)%+25*-3
Using the Procedure 2, we abtain the following.
Step 1. From (33), (34) and (40) we have
. 2 1
SUACE o
and
1 “+5 |
s (s%)2+28% -3
Tep(s)=T(9)-D= (42)
2 2s” +1
| s“+1 (s%)*+25% -3
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Step 2. In this case Dy(s)=(s*)*+5",
D,(s) = (s*)? +2s” -3, d; =d, =2 and the matrix (42)

takes the form

s¥+1 s*+5
(s*)?+s* (s%)?+2s"-3
Tp(s) = (43)
2s* 2s% +1
| (s)2+s"  (s%)?+2s" -3
Step 3. Using (38) we obtain
(s%)? +s* 0 B
0 (s%)? +2s% -3
1 0
, (44)
BICS) 0 0 -1 0 0f[s* O
| o (2|0 0 3-2]0 1
0 s
and

31=[alo 311]=[0 —1], az=[azo a21]=[3 —2] (45)

Therefore, the matrix A hasthe form

0O 1 0 O
0 -1 0 O
A= Dblock di = 46
oA Al= ) o .| @
0O 0 3 -2
Step 4. Using (39) we obtain
1 0
o 4 115 1|s* O
s“+1 s“+5 _ 47)
28 28 +1 02120 1
0 ¢
and
1151
C= (48)
0212
The matrix B in this case has the form
00
10
B= 49
0 0 (49)
01

The desired positive fractional realization (37) of
(40) isgiven by (41), (46), (48) and (49).

A dual approach for MIMO systemsis given in [37].
Necessary and sufficient conditions for the existence of
cone-realization with delays and a procedure for
computation of cone-realization are givenin [32].

5. Positive fractional discrete-time systems
In this paper the following definition of the fractional
discrete derivative will be used

Aaxkzi(_l)i[ﬂxkj, O<a<1l (50)
j=0

where a € R isthe order of thefractiond difference, and

1 for j=0
(51)

a(a-1)---(a—j+1 .
i for j=12,..

Consider the fractional discrete linear system
described by the state-space equations

A% =A% +Bu, keZ,

Y =Cx, + Duy

(529)
(52b)

where x, e R", u, eR", y, eRP are the state, input

and output vectors and AeR™", BeR™™
CeRP", DeRrP™

Using the definition (50) we may write the equations
(52) intheform

k+1 o
J

Xk+1+2(—1)j( ]ka=AXk+Buk, keZ, (539)
=1

Y, =Cx, +Du, (53b)

Definition 7. The system (53) is caled the (interndly)
positive fractiond system if and only if X, € R" and
Y, € RP, kez, forany initid conditions X, € R’ and
al input sequences U, € R, keZ, .

Theorem 8. The solution of equation (53a) isgiven by

k-1
X =(Dkxo+zq)k—i—lBui (54)
i=0
where @, isdetermined by the equation
k+1
(Dk+1 = (A+ Ina)q)k + 2 (_1 Hl[(izjq)kiﬁ (55)
i=2
with o =1,..
The proof isgivenin [16, 23].
Lemma 1. [16] If
O<a<l (56)
then
(-1)”{’7‘} >0 for i=12.. (57)
i
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Theorem 9. [16] Let 0<«a <1. Then the fractional
system (53) is positive if and only if
A+l aeRT", BeR"™, CeRP"

P

D e RP™. (58)

6. Reachability of postivefractional linear systems
Consider the positive fractional linear system (53).
Definition 8. A sate X, €R" of the positive

fractional system (53) is called reachable in q steps if
there exist an input sequence u, e R™, k=0,1...,q-1

which steers the state of the system from zero (xo = 0) to
the final state x;, i.€. X4 = Xr.
Lete, i =1,...,n bethei-th column of theidentity matrix
I. A column ag for a> 0 iscalled the monomid column.
Theorem 10. The positive fractiona system (53) is
reachable in g stepsif and only if the reachability matrix
R, =[B, ®,B,...,® ,B] (59

contains n linearly independent monomial columns.
Proof. Using (54) for k= g and X, = 0 we obtain

Uq71
g-1 uq72
Xf = XC] = ZQQ*ileui = Rq . (60)
i=0 .
uO

From Definition 8 and (60) it follows that for every
x, eR" there exist an input sequence u; e RT,
i=01..,g-1 if and only if the matrix (59) contains n

linearly independent monomial columns. o
From (5.6) it follows that for positive fractional systems

the coefficientsa;, i = 0,1,...,k—1inthe equality
D, =(A+1 ) +a_,(A+1,a)" +..

+a,(A+1,a)+ayl,

(61)

are nonnegative.
Theorem 11. The positive fractional system (53) is
reachable only if the matrix

[A+1,a,B] (62)

contains a least n linearly independent monomia columns.

Proof. From the form of the matrix (59) and the
equality (61) it follows that the number of linearly
independent monomia columns of (59) can not be
greater than of the matrix (62). o

The following example shows that the condition of
Theorem 11 is necessary but not sufficient.

Example 3. It is easy to show that the positive
fractional system (53) with the matrices

1 0 0
A= ,B= for O<a<l (63)
0 -« 1

is not reachable in spite of that in this case the matrix
1+ 00
|

0 01

contains two linearly independent monomial columns.
The following example shows that for positive

fractional systems the matrix (59) in Theorem 10 can not
be substituted by the matrix

R, =[B.(A+1,2)B,....(A+1,a)""B]

[A+1,a, B] :{ (64)

(65)

Example 4. Consider the positive fractional system
(53) with the matrices

0O 1 0O 0
A=|0 -a 1|, B=|0 (66)
1 0 -« 1
In this case
a 1 0
A+la={0 0 1|leR> (67)
1 00

and the matrix (65) has the form

001
F_23=[B,(A+Ina)B,(A+Ina)zB}: 01 0| (69
100

and it contains three linearly independent monomial
columns. Using (55) for k = 0,1 for (66) we obtain
a 1 0
®;=(A+l,2)={0 0 1|,
1 00

D, = (A+ |na)q>1—[';‘j|n - (69)

[a(a+1)
2

= 1

=

ala-1)

and the matrix (59) hasthe form

00 1
R; =[B, ®;B,®,B]=|0 1 0
a(a-1)

(70)
10

This matrix contains only two linearly independent
monomial columns.

Definition 9. Let the j-th column by, (j = 1,...,m) of the
matrix B be monomial. Thecolumn @, =db, (j =1,...,n)
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of the matrix @, is caled monomia column corresponding to
the j-th column of B if and only if it is monomial and linearly
independent of the monomial column b,

In the new test for checking the reachability of the
positive fractional systems a crucia role will play the
following procedure [11].

Procedure 3. (finding linearly independent mono-
mial columns).

Using Definition 9 find al monomia linearly indepen-
dent columns (starting from the first column of B)

O, =db for j=1...m; k=2..,q-1(71)

of the matrix (59). Stop the procedure if the last column
is not monomia or/and linearly dependent from the
previous monomial columns.

Theorem 12. The positive fractional system (53) is
reachable if and only if using Procedure 3 to the matrix
(59) it is possible to find its n monomia linearly
independent columns.

Proof. By Theorem 10 the positive fractional system
(53) isreachable in q steps if and only if the reachability
matrix (59) contains n monomial linearly independent
columns. Thus, the system is reachable if and only if
using the procedure it is possible to find n monomial
linearly independent columns of the matrix (59).

Example 5. Consider the positive fractional system
(53) with the matrices

101 1
A={1 0 0|, B=|0 (72)
0 al 0
fora> 0.
It is ey to shown tha for a=0,

rank[B, AB, A’B]=3 and the standard (nonpositive)

system is reachable in g = 3 steps. Now it will be shown
that the positive fractional system (53) with (72) for a >
0 isunreachable. Using the Procedure 3 for the matrix

R3 = [B, (DlB,q)zB] =

80
- {B,(A+ | .0)B, (A+ Ina)ZB—(ZJ B} (80)
we obtain only one monomial column B, since
[04
(A+l,2)B=| 1],
0
0((0! +1) (81)
o 2
(A+ Ina)ZB—{sz: 20
a

Thus, the positive fractional system is unreachable.

Theorem 13. The positive fractiona system (53) is
reachable if and only if the matrix
[B,(A+1,2)B] (82)
contains n monomial linearly independent columns.
Proof. From (55) for positive fractional systems we
have

k
©B= ai(A+1a) B for k=12,..,n-1(83)
i=0

where a; >0, k=1...,n-1; i=0,1...,k.

Note that besides the matrix B only the matrix ©®,B
may have additional monomia linearly independent
columns and the matrix (83) for k=2,3,...n—1 do not
introduce additional monomia linearly independent
columns to the matrix (59).

From Theorem 11 we have the following remark

Remark 1. If al m columns of the matrix B are
monomial linearly independent columns, then the matrix
(82) has n monomia linearly independent columns only

if the matrix (A+1 «a) has at least n — m monomial

linearly independent columns.
Example 6. Consider the positive fractional system
(53) with the matrix

2 1 0
ay —«a 0 1

H1-a
7l
azq azp - 0
a1 a2 0 -a
i=1234j=12
00

A=

0
00 0
a) B= (84)
01 0
10 1

Taking into account that

&1 &2
1 ax»
831 a3
a1 ag2

in the case @) we obtain the matrix

Atlpa= (85)

o O O
o O +» O

0
1
0
0

[ B, (DlB] = (80)

= O O O
o » O O
o O O -

which has n = 4 monomia linearly independent
columns. Therefore, in this case the system is reachable
ing=2steps.
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In the case b) using (59) and (85) we obtain the matrix

00 0
01 ax

[B,(I)lB,q)zB,...] =0 0 a23 (87)
10 a24 + a(lz_ a)

with only two monomial linearly independent columns.
By Theorem 10 in this case the positive fractional
system is unreachable.

It is well-known that the observability is a dua
notion to the reachability. All results presented in this
section for the reachability of positive fractional systems
can be applied for checking the observability of the
positive fractional systems.

7. Concluding remarks

The podtive fractiond linear continuoustime systems
have been addressed. The cone fractiond linear systems have
been introduced. Sufficient conditions for the reachability of
positive fractiona and cone fractiond linear sysems have
been edablished. The redization problem for postive
fractiona linear continuoustime systems has been
formulated and solved. The positive fractiond discrete-time
linear systems are o considered.

Extensions of these considerations for the following
classes of systems are open problems

1) 1D and 2D varying positive linear systems

2) 2D hybrid systems without and with delays

3) 2D Lyapunov systems

4) 1D and 2D postive fractiond switching systems.
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JOJATHI JIPOBOBI TA KOHIYHI JPOBOBI
JIITHIMHI CHCTEMHA

Taneym Kagopex

VY crarti po3riIsHYTO MoAaTHI ApoOOBI Ta  KOHIYHI
Ipo0OoBi HeNepepBHi Ta AUCKPETHI JiHiIHHI cucremu. HaBeneno
JIOCTAaTHI YMOBH JUISl JOCSDKHOCTI TaKMX CHCTEM. BCTaHOBIIEHO
HEOOXiZHI Ta JOCTATHI YMOBH JJIs IOJATHOCTI Ta aCHMITOTHY-
HOi cTabiTBbHOCTI HENMEepepBHUX Y dYaci JIIHIHHHUX CHCTEM.

ChopMynpoBaHO Ta pO3B’si3aHO  mpobieMy  pearmizariil
JOJATHUX IPOOOBHUX HEMEPEPBHUX Y Yaci CHCTEM.
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