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MATHEMATICAL MACROMODELING  

OF DYNAMIC SYSTEMS  

AND EXAMPLES OF MACROMODELS  
Yaroslav Matviychuk 

  
The summary - The problems of macromodeling of continuous 

nonlinear dynamic systems with lumped constant parameters are 

considering. The common modeling structure in the form of the 

system of ordinary differential equations is shown. The 

regularised methods of its identification are described. The 

examples of macromodels of different complexity and nature are 

given.  
Keywords - macromodelling, regularization, self-oscillator 

model, prognostic model of the rate of exchange. 

I. THEORETICAL SUBSTANTIATION 

We designate as macromodels the mathematical models of 

arrangements and systems which can be more simple than 

original but represent enough exactly the appreciable external 

peculiarities of modeling objects behavior.  

On the whole the task of model construction is composed 

in: selection of the valid macromodels structures in the form of 

system of differential equations of the define class; normalized 

identification of the macromodels.  

In the general case the mathematical macromodel is the 

operator, which connects the input, output and internal 

variables: 

( ( ), ( ), ( ); ) 0u t y t x t p  , (1) 

where:u=(u1,…,ur),y=(y1,…,ys),x=(x1,…,xn) are the vectors 

of input, output and internal values; p=(p1,…,pn) – vector of 

operator parameters.  

To identificate the mathematic model of the system means 

to find under the known vectors u(t[t0,t1])  and y(t[t0,t1])  

the vector p of the model (u,y,x;p) such one in order to: 

min ( ) ( ; )
p

y t y t p     for all   0 1[ , ]t t t , (2) 

where ( ; )y t p  is the solution of the equation (1). 

In practice the vectors u(t)  and y(t)  are given on the 

discrete set of values of the {tk}, k=1,...,M.  In this case the 

criterion of identification (2) looks as:  

min ( ) ( ; )k k
p

y t y t p   ,   k=1,...,M. (3) 

The selection of the definite norm determines the method 

of the optimization task solution (3). The routine method is the 

least-squares method  

2

1

min ( ( ) ( ; ))
M

k k
p

k

y t y t p


  ,   k=1,...,M (4) 

and Tchebyshev minimax method 

1,
min max ( ) ( ; )k k

p k M
y t y t p


  ,   k=1,...,M . (5) 

If ( ; )ky t p  is a linear function of components of the 

parameters vector p, then (4) comes to the solution of s 
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systems of linear algebraic equations of N order, and (5) solves 

by linear programming methods. 

Macromodeling lies in the selection of mathematical 

operator structure in (1) and in the identification the parameters 

of the selected structure by the given sets {u(tk) }, {y(tk) }, 

k=1,...,M.  At that the mathematical operator in (1) has to be the 

most simple.  

The theorem which validates the common structure of 

dynamic systems macromodels is proved [1]. 

Theorem. Let the non-linear system admits the description 

with ordinary algebro-differential equations  

( , , ),

( , , ),

x f x u t

y x u t



 


 (6) 

where: ( ), ( ), ( )u t x t y t  are vectors of the input, states and output 

variables; vector-function ( , , )x u t  is differentiated by t; total 

dimensionality of vectors ( ), ( )x t y t  is equal to k. 

The equivalent by input-output system is that one, which 

consists of linear stationary dynamic and non-linear non-

stationary non-dynamic subsystems according to equations  
(1) ( 1) (1) ( 2)( ) ( ) ( , ,..., , , ,..., , , , ).k ka y D y y y v v v u u t       (7) 

The matrix of the transfer functions W()=D()/a() 

describes the linear subsystem with output vectors 
( 1) ( 2),..., , ,...,k ky y v v 

 and input vector v , and the non-linear 

vector-function (.)  responds to the non-linear subsystem 

with input vector 
( 1) ( 2),..., , ,..., , ,k ky y v v u u     and output 

vector v . 

The system (7) responses to the block diagram on Fig.1  

 

 

 

 

 

 

 

 

In [1] the communications of the structure (7) with different 

known structures of the mathematical models are analyzed. In 

particular the Hammerstein model is a special case of the 

structure (7), and the Wiener model do not arise from it.  

The practical value of structure (7) depends on the presence 

of the identification methods. The identification of the non-

linear systems structures consists in the identification of the 

linear dynamic subsystem, determination of the internal vector 

v  and approximation of non-linear vector-function (.).  

There are two methods of macromodels identification: long 

time known method of non-linear statics and small-signal 

dynamics; relatively new method of the inverse linear 

subsystem [1]. 

So the goal of the macromodeling after the structure (7) 

comes to the approximation of the linear dynamic system 

u  

( 1) (1)........ky y

 

(1) ( 2)......... kv v   

y  v  
Linear stationary 

subsystem 

u  
(1) ( 1) (1) ( 2)( , ,..., , , ,..., , , , )k ky y y v v v u u t  

 

/d dt

 

Fig.1. The structure of non-linear system 

macromodel. 



 

TCSET’2006, February 28 – March 4, 2006, Lviv-Slavsko, Ukraine 

24 

(more simple task) and non-linear vector function of many 

arguments (.)  (the task is significantly complicate). 

For the second approximation the choice of the basis-

functions is very important. The multidimensional power 

polynomials are spread: 

... 1 2
0 0 0

( ) ... , ...
r r r

ji k
ij k n

i j k

c i j k r
  

           . (8) 

The basis for this gives the known theorem of Stone-

Weyerstrass, which determines the principal attainability of 

any accuracy of approximation when the power r of the 

multidimensional power polynomial increases (8).  

However the immediate solution of the tasks (4) or (5) at 

the approximation (8) reveals the incorrectness from the 

viewpoint of Hadamard for sufficiently large r. In particular 

the small shanges (noises) of the vectors,v  cause the 

significant changes of the values  cij...k. 

There exist the methods of incorrectness elimination which 

are based on the theory of regularization of incorrect tasks [2]. 

In particular the author elaborated the methods of 

regularization based on the spectrum of the compound signal 

splitting [1], reduction of approximating polynomial [6], 

choice of the approximating basis [5], use of the Lyapunov 

second method [7]. 

ІІ. EXAMPLES OF THE MACROMODELLING  

Author synthesized many original models of the non-linear 

dynamic systems of the different complexity and nature: 

electronic oscillators and detectors; rotating synchronous gene-

rator; realization of the random process; the operating ampli-

fier; block of TV chromaticity, prognostic macromodels of 

finance and economic system at rate of exchange etc. [1,3-8].  

Let us use the method inverse linear subsystem for the 

development of the macromodel of generator of 

monoharmonic signal.  

First let us choose the linear subsystem. We can choose it 

in the form of conservative linear system with complex 

eigenvalues which in pairs correspond to the known frequency 

components of the signal generator. Then considering the 

requirements of the transit process, the required form of the 

signal, stability of the boundary cycle or others, remains to 

choose the non-linear vector-function.  

The diagram of the generator on one transistor which is the 

subject of modeling is shown on Fig.2 with MICROCAP 

language. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equations of macromodel are the following: 

1

2 2
1

5

1

, 0

;

;

; 5.i j
ij

i j

y y

y y v

v k y y i j




  

  



 , (9) 

where two first equations describe the linear dynamic 

subsystem and the last one – the non-linear subsystem.  

The diagram of the equations is shown on Fig. 3 and it 

completely corresponds to the structure shown on Fig.1.  

 

 

 

 

 

 

 

 

 

 

 

The electric circuit of the macromodel which consists of 

two integrators composed of ideal current sources and unitary 

capacities and non-linear voltage source E, polynomial 

coefficients of which are under the macromodel diagram, is 

shown on Fig.2.  

After the generator output signal (the voltage of the node 5 

on Fig.2) the period of the oscillations after the transit process 

finishes Т=0.433е-6 is determined. The correspondent value of 

frequency square ω
2
=2.106е14 is the only parameter for linear 

conservative subsystem of the second order with unit transfer 

in statics: 
2 2y y v   . (10) 

For calculation of the internal signal v as the output one of 

the inverse linear subsystem the second derivative  y  (the 

voltage of the node 8 on Fig.2) is calculated by the successive 

differentiation. Then the macromodel internal signal v (the 

voltage of the node 9) is calculated by the equation (10).  

The sequence of М values of signals ,y y  and v, to 

which the voltages of the nodes 4, 7 and 9 on Fig .2 

correspond, is used for normalized by Tikhonov calculations of 

the two-dimensional power polynomial of the non-linear 

function in model (9) correspondingly to (11). 

2
5 5

2

1 , 0 , 0

min , 5
M

i j
m ij m m ij

k
m i j i j

v k y y k i j
  

  
     

  
  

   . (11) 

The combined method of the approximating polynomial 

reduction founded in [1] was used. The idea of reduction lies in 

the reveal and elimination of the “unnecessary” terms of the 

approximation power polynomial. For that the small random 

excitations are introduced in the multitude of the signals 

readings and the task (11) is solving twice: without excitations 

and with excitations. That term of the polynomial is deleted 

which coefficient received the largest relative deviation owing 

to excitation 

( )ij ij ij ijk k k  
 

, (12) 

where  ,ij ijk k


 are the approximation coefficients of the excited 

and unexcited tasks (11).  

The multiple repetition of reduction procedure decreases 

the coefficient vector length and can improve significantly the 

Fig.2. The diagram of the generator with the 

differentiating links and macromodel diagram 
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Fig.3. The diagram of the macromodel equations 
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Fig.4. The transition in the generator and macromodel  

macromodel quality (9) from the point of view of the given 

dependence representation. The reduction stops when between 

the relative derivations (12) there are no such ones which signi-

ficantly exceed others and the quality of the model is satisfac-

tory. In our task the reduction decreases the quantity of appro-

ximation coefficients of the non-linear function from 20 to 5.  

The transition process in the generator and in the 

macromodel is shown on Fig. 4. On the top the projection of 

the phase-plane portrait onto the plane (V(4), V(4)`) and the 

phase-plane portrait of the macromodel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The established mode represents with maximum relative 

error equal to 6%.  

The combined method of normalization is used for the pro-

gnostic macromodels of socio-economic systems. The depen-

dence of the rate of exchange on time is given in the discrete 

consequence form: 

0 ( ); 1,iy t i m . (13) 

Let us represent this dependence by the reaction of the 

macromodel with the structure given with a system of ordinary 

differential equations (14). Because there is no information 

about a linear dynamic subsystem it is chosen as a sequention 

of the ideal integrators.  

0

0

0

0 1

1 2

... 0 0

,..., 0

;

;

... ; ... ;n

n

n

r
i i

n i i n n

i i

y y

y y

y c y y i i r










    












 (14) 

The parametric identification of the macromodel (14) 

consists in the calculation of n+1 derivatives of the discrete 

dependence (13) using the spline-interpolation and 

determination of the of the coefficient approximation vector c  

with normalized after Tikhonov linear task of minimization: 

0

0 0

0 0

2

2

,..., 0 ...

1 ,..., 0 ... 0

min ( ) ( ) ... ( )n

n n

n n

m r r
i i

n i i i i n i i i
c

i i i i i

y t c y t y t c
  

  
         

    (15) 

But the coefficients vector c  from (15) does not ensure the 

desired quality of macromodel (14). So the additional 

normalization of the task (15) is used – the reduction method 

described in  the preceding example.  

If it is succeed to represent well the dependence (13) with 

the help of equations (14), it will have the prognostic 

properties. The solution of the system (14) outside the range of 

identification boundary (t1,tm) keeps the dynamic properties of 

the identification object if the macromodel represents well the 

given consequence (13). So the prognosis is reliable till the 

conditions at which the dependence (13) is recorded.  

For macromodeling the rate of exchange of US dollar to 

Ukrainian hryvna during the year 1998 (Fig. 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The best results were received at n=2 and r=3 with 

reduction of polynomial till 17-18 elements. By the observed 

dependence (70 days) the prognosis for 30 days was realized. 

As the initial conditions of the system of differential equations 

the means of derivatives in the last node of the observed 

dependence were taken.  

Usually the prognosis applies to the unknown future. The 

received model allows to find easy the retrospective prognosis 

(to the past). It is enough for that to invert the sign of the right 

part in all equations of the developed macromodel (14) what 

responds to the time inversion, to realize the integration at 

chosen initial conditions and to invert the time in the received 

solution. 
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Fig.5. Prognostics diagram of ($US)/(UA hryvna) quotation  

 


