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MATHEMATICAL MACROMODELING
OF DYNAMIC SYSTEMS
AND EXAMPLES OF MACROMODELS

Yaroslav Matviychuk

The summary - The problems of macromodeling of continuous
nonlinear dynamic systems with lumped constant parameters are
considering. The common modeling structure in the form of the
system of ordinary differential equations is shown. The
regularised methods of its identification are described. The
examples of macromodels of different complexity and nature are
given.
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model, prognostic model of the rate of exchange.

|. THEORETICAL SUBSTANTIATION

We designate as macromodels the mathematical models of
arrangements and systems which can be more simple than
original but represent enough exactly the appreciable external
peculiarities of modeling objects behavior.

On the whole the task of model construction is composed
in: selection of the valid macromodels structures in the form of
system of differential equations of the define class; normalized
identification of the macromodels.

In the general case the mathematical macromodel is the
operator, which connects the input, output and internal
variables:
where: u=(Uy,...,Ur), Y=(Y,....Ys), X=(X1,....Xs) are the vectors
of input, output and internal values; p=(pi,...,pn) — vector of
operator parameters.

To identificate the mathematic model of the system means
to find under the known vectors u(te[to,t;]) and y(te[to,t])

the vector p of the model ®( u, y, x; p) such one in order to:
mgn||y(t)—§(t; p)| forall teft,t], )

where Y(t; ) is the solution of the equation (1).
In practice the vectors u(t) and y(t) are given on the

discrete set of values of the {t}, k=1,...,M. In this case the
criterion of identification (2) looks as:

min[y(4) -V P k=L M. 3)

The selection of the definite norm determines the method
of the optimization task solution (3). The routine method is the
least-squares method

M
mpinZ(V(tk)—vak;ﬁ»z, k=1,..,M 4
k=1
and Tchebyshev minimax method
min max |(t,) -yt B)| . k=1,..M. (5)
p k=M

If y(t.;P) is a linear function of components of the
parameters vector p, then (4) comes to the solution of s
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systems of linear algebraic equations of N order, and (5) solves
by linear programming methods.

Macromodeling lies in the selection of mathematical
operator structure in (1) and in the identification the parameters
of the selected structure by the given sets { u(ty) }, { y(t) },
k=1,...,M. At that the mathematical operator in (1) has to be the
most simple.

The theorem which validates the common structure of
dynamic systems macromodels is proved [1].

Theorem. Let the non-linear system admits the description
with ordinary algebro-differential equations

X = f(X,0,1),
y=0(x,0,t),
where: U(t),X(t), y(t) are vectors of the input, states and output

(6)

variables; vector-function ¢(X,U,t) is differentiated by t; total
dimensionality of vectors X(t), y(t) is equal to k.

The equivalent by input-output system is that one, which
consists of linear stationary dynamic and non-linear non-
stationary non-dynamic subsystems according to equations

a)y =Dy, y?,..y* P v v . v* D aat. @)

The matrix of the transfer functions W(A)=D(\)/a(r)
describes the linear subsystem with output vectors

7,...,7(k‘1),\7,...,\7(k_2) and input vector V, and the non-linear
vector-function x(.) responds to the non-linear subsystem

with input vector ¥,..., & v,...v&2 0,0 and output
vector V.

The system (7) responses to the block diagram on Fig.1

v® (k-2
Sl N (R S —T — V__[Linear stationary _y;
_"’| WYY y© vV, v ,u,u,t)|"" subsystem

Fig.1. The structure of non-linear system

In [1] the communications of the structure (7) with different
known structures of the mathematical models are analyzed. In
particular the Hammerstein model is a special case of the
structure (7), and the Wiener model do not arise from it.

The practical value of structure (7) depends on the presence
of the identification methods. The identification of the non-
linear systems structures consists in the identification of the
linear dynamic subsystem, determination of the internal vector
vV and approximation of non-linear vector-function jx(.).

There are two methods of macromodels identification: long
time known method of non-linear statics and small-signal
dynamics; relatively new method of the inverse linear
subsystem [1].

So the goal of the macromodeling after the structure (7)
comes to the approximation of the linear dynamic system
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(more simple task) and non-linear vector function of many
arguments ¥ (.) (the task is significantly complicate).

For the second approximation the choice of the basis-
functions is very important. The multidimensional power
polynomials are spread:

r r r

1@ =YD oy EEd gy, i+ kST, (8)

i=0 j=0 k=0

The basis for this gives the known theorem of Stone-
Weyerstrass, which determines the principal attainability of
any accuracy of approximation when the power r of the
multidimensional power polynomial increases (8).

However the immediate solution of the tasks (4) or (5) at
the approximation (8) reveals the incorrectness from the
viewpoint of Hadamard for sufficiently large r. In particular
the small shanges (noises) of the vectors & v cause the
significant changes of the values cj; .

There exist the methods of incorrectness elimination which
are based on the theory of regularization of incorrect tasks [2].
In particular the author elaborated the methods of
regularization based on the spectrum of the compound signal
splitting [1], reduction of approximating polynomial [6],
choice of the approximating basis [5], use of the Lyapunov
second method [7].

I1. EXAMPLES OF THE MACROMODELLING

Author synthesized many original models of the non-linear
dynamic systems of the different complexity and nature:
electronic oscillators and detectors; rotating synchronous gene-
rator; realization of the random process; the operating ampli-
fier; block of TV chromaticity, prognostic macromodels of
finance and economic system at rate of exchange etc. [1,3-8].

Let us use the method inverse linear subsystem for the
development of the macromodel of generator of
monoharmonic signal.

First let us choose the linear subsystem. We can choose it
in the form of conservative linear system with complex
eigenvalues which in pairs correspond to the known frequency
components of the signal generator. Then considering the
requirements of the transit process, the required form of the
signal, stability of the boundary cycle or others, remains to
choose the non-linear vector-function.

The diagram of the generator on one transistor which is the
subject of modeling is shown on Fig.2 with MICROCAP
language.

Generator

T=0433e-6  WHMA={Z*pIM*2=2 106814

02580 V(8)*D.2589/2.10681 4+v(4)

() ==, N =,

= 23080147V ZFVIIY VD)

Its Macromodel

alfa=0.05

POLY(2)11 0100 45437e-001 O 1} 1} 1}
o o

1}
4.3143e-001 O 1}

1} 1}
o o -19343e-013 1.0573e-018 0 -5.4322e-033

Fig.2. The diagram of the generator with the
differentiating links and macromodel diagram

The equations of macromodel are the following:
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Y=Y
.2 2,
Yy =-0"y+ oV, ) 9)
5 .
v=Y kiy'y; i+]j<5.
i,j=0

where two first equations describe the linear dynamic
subsystem and the last one — the non-linear subsystem.

The diagram of the equations is shown on Fig. 3 and it
completely corresponds to the structure shown on Fig.1.
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Fig.3. The diagram of the macromodel equations

The electric circuit of the macromodel which consists of
two integrators composed of ideal current sources and unitary
capacities and non-linear voltage source E, polynomial
coefficients of which are under the macromodel diagram, is
shown on Fig.2.

After the generator output signal (the voltage of the node 5
on Fig.2) the period of the oscillations after the transit process
finishes 7=0.433e-6 is determined. The correspondent value of
frequency square ®?=2.106¢14 is the only parameter for linear
conservative subsystem of the second order with unit transfer
in statics:

V+ 0’y =0V, (10)

For calculation of the internal signal v as the output one of
the inverse linear subsystem the second derivative § (the
voltage of the node 8 on Fig.2) is calculated by the successive
differentiation. Then the macromodel internal signal v (the
voltage of the node 9) is calculated by the equation (10).

The sequence of M values of signals Y, Y and v, to
which the voltages of the nodes 4, 7 and 9 on Fig .2
correspond, is used for normalized by Tikhonov calculations of

the two-dimensional power polynomial of the non-linear
function in model (9) correspondingly to (11).

2
M 5 i . 5
min Z Vm_zkijyr'n% +oc§ kijg , 1+j<5. (11)
K lmal o i 70

The combined method of the approximating polynomial
reduction founded in [1] was used. The idea of reduction lies in
the reveal and elimination of the “unnecessary” terms of the
approximation power polynomial. For that the small random
excitations are introduced in the multitude of the signals
readings and the task (11) is solving twice: without excitations
and with excitations. That term of the polynomial is deleted
which coefficient received the largest relative deviation owing
to excitation

é‘ij :|(Izij _kij)/lzij| J

where |ZU. ,k;; are the approximation coefficients of the excited

and unexcited tasks (11).
The multiple repetition of reduction procedure decreases
the coefficient vector length and can improve significantly the

(12)
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macromodel quality (9) from the point of view of the given
dependence representation. The reduction stops when between
the relative derivations (12) there are no such ones which signi-
ficantly exceed others and the quality of the model is satisfac-
tory. In our task the reduction decreases the quantity of appro-
ximation coefficients of the non-linear function from 20 to 5.

The transition process in the generator and in the
macromodel is shown on Fig. 4. On the top the projection of
the phase-plane portrait onto the plane (V(4), V(4)") and the
phase-plane portrait of the macromodel.
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Fig.4. The transition in the generator and macromodel

The established mode represents with maximum relative
error equal to 6%.

The combined method of normalization is used for the pro-
gnostic macromodels of socio-economic systems. The depen-
dence of the rate of exchange on time is given in the discrete
consequence form:

Yo(t,); i=1m. (13)

Let us represent this dependence by the reaction of the
macromodel with the structure given with a system of ordinary
differential equations (14). Because there is no information
about a linear dynamic subsystem it is chosen as a sequention
of the ideal integrators.

Yo = Y15
y1 =Y.,
: (14)
Y, = Coi VoY g+ ti <1
i smnip =0

The parametric identification of the macromodel (14)
consists in the calculation of n+1 derivatives of the discrete
dependence (13) using the spline-interpolation and
determination of the of the coefficient approximation vector C
with normalized after Tikhonov linear task of minimization:

mgn[ [ynai)— > ay c} (15)

ig venin =0 ig.in =0

But the coefficients vector T from (15) does not ensure the

desired quality of macromodel (14). So the additional

normalization of the task (15) is used — the reduction method
described in the preceding example.

If it is succeed to represent well the dependence (13) with

the help of equations (14), it will have the prognostic

m

2

i=1

Cig‘...,i,‘ y(iJO (ti) yri: (ti )j

25

properties. The solution of the system (14) outside the range of
identification boundary (t,t,) keeps the dynamic properties of
the identification object if the macromodel represents well the
given consequence (13). So the prognosis is reliable till the
conditions at which the dependence (13) is recorded.

For macromodeling the rate of exchange of US dollar to
Ukrainian hryvna during the year 1998 (Fig. 5).

B EANEEHICTE A1 TON.
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Fig.5. Prognostics diagram of ($US)/(UA hryvna) quotation

The best results were received at n=2 and r=3 with
reduction of polynomial till 17-18 elements. By the observed
dependence (70 days) the prognosis for 30 days was realized.
As the initial conditions of the system of differential equations
the means of derivatives in the last node of the observed
dependence were taken.

Usually the prognosis applies to the unknown future. The
received model allows to find easy the retrospective prognosis
(to the past). It is enough for that to invert the sign of the right
part in all equations of the developed macromodel (14) what
responds to the time inversion, to realize the integration at
chosen initial conditions and to invert the time in the received
solution.
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