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In this survey paper applications of par alld metaheuristicsto solving graph coloring problems
are described. The Graph Coloring Problem (GCP), Graph Coloring Sum Problem (GCSP) and
Robust Graph Coaloring Problem (RGCP) are known to be NP-complete. They do not have any
polynomial algorithms. Therefore, a number of approximation, iterative and hybrid algorithms was
deveoped for ther solving. Recently a number of paralld algorithms was proposed for GCP and
related coloring problems, including parallel metaheuristics like Parallel Genetic Algorithm (PGA),
Parallel Tabu Search (PTS), Parallel Simulated Annealing (PSA) etc. DIMACS benchmar ks as well
as random graphs were used for their experimental verification. The results obtained for GCSP
contributed to finding better lower and upper bounds on chromatic sum and chromatic sum number
for many DIMACS graph instances, outper for ming results known from the literature. Thereported
data support a conclusion, that parallel metaheuristics can be used efficiently for approximate
solving of many graph coloring problems and for finding better upper bounds of many hard-to-
compute graph parameters.

Key words: graph coloring, graph coloring sum, robust graph coloring, parallel
metaheuristics, parallel iterative algorithms, chromatic sum, chromatic sum number.

Hageneno orusja 3acTocyBaHb mapajelbHHX METAeBPUCTHK /sl BUPilIeHHS NMpodiem
Kkosiopu3anii rpadis. Ipodaemu konopu3sauii rpadis (GCP), cymapHoi kosopu3sanii rpagis
(GCSP) Ta pobacrnoi xonopu3sauii rpagis (RGCP) € NP-nmoBHumu i He MaloTh moJiiHOMiaJIb-
HUX ajaroputMiB. 3 wHi€i MPUYMHU U1 Pi3BHUX BapiaHTIB OCHOBHOI MPo00JieMH KOJIOpU3amii
rpa¢giB po3podieHo 0arato HAGJUKEHUX AJITOPUTMIB, iTepauilinux i riopuanux. OcranHim
yacoMm AJd 3aiadi koJsopusauii rpadis i moxionux iii npodJsem 0yau po3podJieHi nmapasnenabHi
AJTOPUTMH, 30KpeMa mapajiejbHi MeTaeBPHCTHKH, 30KpeMa MapajieJIbHUIl ajaropuTM tady
nomyky (PTS), napanenbHuii reneruunnii anroput™ (PGA) i mapanenbHuii aaropur™m imira-
uii Bigmany (PSA). B ekcnepuMeHTaNIbHIN NepeBipui aaropuTMiB BUKOpHCTAaHO rpadm 3i
cxoBumem DIMACS, a takox Bunaakosi rpapu. JocainkenHs 3acrocyBaniss PGA s 3ana4
CyMapHOi KoJiopu3alii CHPUYHHUIO BH3HAYEHHSI HOBHX BepXHiX i HIKHIX ouIiHOK
XPOMATHYHOI CYMH i YHCJIa XpOMATHYHOI CyMH JIJIs1 kJiacy TectiB 3 6a3u DIMACS, siki € TouHi-
IIMMH Bil BiTOMHX TeopeTHYHHUX OLiHOK. OTpUMaHi pe3yJbTaTH MiATBEPAKYIOTH IYMKY, 1110
napajejbHi MeTaeBPHCTHKH MOXKYTh CTATH MOTYKHUM iHCTPYMEHTOM /sl HAOJMKEHOro
PO3B’fAA3yBaHHSA 3a7a4 KoJiopu3auii rpagiB y NpakTHYHHMX 3aCTOCYBAHHAX, a TAKO0XK [Js
€KCMEePUMEHTATBHOT0 BH3HAYEHHSI BePXHbOI ONIiHKH O00paHMX NapaMeTpiB  BakKKO
00YHCITIOBAILHUX Ipagis.

KiouoBi ciioa: kosopu3aunisi rpagis, cymapHa koJiopu3ailisi, po6acTHa KoJOpPH-
3allisi, mapaJjieJibHA MeTaeBPUCTHKA, NapaJieJibHUil iTepauiiiHui aJaropuTm, XxpomaTny-
Ha CyMa, YU CJI0 XPOMATHYHOI CYMU.

Introduction
Graph coloring is a popular mathematical model for solving combinatorial optimization prablems. In
this survey paper applications of paralle iterative algorithms to graph coloring problems are described.
Graph k-colorability problem (GCP) belongs to the class of NP-hard combinatorial problems [17]. The
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graph coloring was the subjects of the Second DIMACS Implementation Challenge in 1993 [23] and
Computational Symposium on Graph Coloring and Generalizations in 2002. Numerous classes of graph
colorings were defined and characterized in [22, 28], among them classical vertex and edge colorings,
distance coloring, on-line coloring, equitable coloring, sum coloring, T-coloring, harmonious coloring,
circular coloring, list coloring, total coloring etc. Most graph coloring problems are NP-hard. Graph
coloring is strongly related to scheduling problems [18, 36].

The sequential approximation algorithms for GCP are given in [28]. Parald approximation
algorithms for GCP adapted efficiently for modern multi-core multithreaded architectures are shownin [4].

Metaheuristics are versatile iterative algorithms capable of solving a wide class of optimization
problems. Several known iterative algorithms were also applied to graph coloring problem [2, 5, 16, 20].
Hybrid algorithms combining known metaheuristics were also developed [37, 38, 40].

Graph benchmarks for GCP include:

- DIMACS benchmark suite — graphs recommended for DIMACS computing challenges, at

present almost all graphs have known chromatic numbers »(G)

random graphs (various generation schemes) — usually with unknown value of »(G) ;

R-MAT graphs — a new class of scalable parametrized random graph instances, defined
recursively (virtually any possible sizes are available) —no x(G) is known.

Parallel metaheuristics are complex methods combining at least two metaheuristics of the same type
that search for a solution either independently or in cooperation (with information exchange). The first
book devoted soldly to parallel metaheuristics was published in 2005 by Alba [1]. At that time the only
research paper on application of a parallel metaheuristic to graph coloring was [25]. Since then, many new
results in that area were reported in the literature. Parallel metaheuristics used for several graph coloring
problems are listed and characterized in the following sections. The new original results include time-
efficient optimal or suboptimal coloring algorithms for the benchmark graphs and also new bounds found
experimentally for such hard-to-compute graph parameters like chromatic humber, chromatic sum and
chromatic sum number. The present survey reports the latest results from this fast growing research area.

1. Vertex coloring

GCP is defined for an undirected graph G(V,E) as an assignment of available colors {1, . . ., k} to
graph vertices providing that adjacent vertices receive different colors and the number of colors Kk is
minimal. Theresulting coloring is called conflict—free and k is called the graph chromatic number x(G).

Modes and properties of parald gendic algorithms were described in [3]. The first population-based
metaheurigtic, i.e PGA for solving the classical Graph Coloring Problem (GCP) in migration modds was
published by Kokosinski at all. [25]. Migration modds of PGA consist of afinite set of digoint populations that
co-evolve and occasionally exchange gendtic information under control of a migration operator. Populations are
built of individuals of the same type and are ruled by the one adaptation function. In the paper new recombination
operators. Sum-Product Partition Crossover (SPPX) and Conflict Elimination Crossover (CEX) were introduced
and compared with UISX and GPX aperators. In computer experiments DIMACS benchmark graphs were used
[41-43]. An extended version of the paper was published in[26]. Another version of PGA for GCP was deve oped
by Domagata [10]. In diffusion modd of PGA the overlapping subpopulations are placed in the nodes of a mesh.
The population size, the mesh size and architecture and other factors have to be considered in that modd. The
optimal tuning of the algorithm for the given problems can be achieved. An MPI implementation of PGA for GCP
was described in [20].

In the following years many other parallel metaheuristics for GCP and related coloring problems
were devel oped.

Three Parallel Tabu Search (PTS) algorithms (master-sleve search, independent search, cooperative
search) on the basis of TABUCOL for GCP (Herz, de Werra) was proposed by Dabrowski [8]. They were
implemented on two different high cluster architectures. DIMACS graphs and random graphs with various
node densities are used for experiments. PTS for GCP outperforms popular greedy DSATUR heuristic.
The obtained experimental results showed the limited applicability of PTS for GCP due to problem
complexity. Another PTS algorithm for GCP was devel oped by Kirsz [24].
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The first Paralld Simulated Annealing Algorithm (PSA) for GCP was proposed by Lukasik et all.
[32]. In synchronous master-slave model with periodic solution update two basic techniques were used:

1. multiple threads for computing independent chains of solutions and exchanging the aobtained
results on aregular basis;

2. parald moves, where single Markov chain is being evaluated by multiple processing units
calculating possible moves from one state to another.

The paper contains recommendations for optimal parameters settings. A comparison of PSA to PGA
metaheuristic was provided which is not favorable for any of those two methods.

A Paralld Immune System (PIS) for graph coloring was proposed by Dabrowski [9]. The algorithm
is based on the mechanism of a clonal selection. Every processor operates on its own pool of antibodies
and a migration operator is used to allow processors to exchange information.

2. Minimum sum coloring

GCSis defined for an undirected graph G(V,E) as an assgnment of available colors {1, . . ., h} to graph
vertices providing that sum of al color numbers in a conflict—free coloring must be minimal. The minimum
number of colors h in aminimum-sum coloring is called chromatic sum number S(G), S(G) > x(G).

The problem was introduced by Kubicka and Schwenk [29]. Theoretical properties and bounds can
befindin [32]. New theoretical lower bounds were givenin [27].

The best lower bounds on Y (G) are as follows:

(1)
)
The best upper bounds on Y (G) are the following:
©)
(4)
Table 1
MSCP —research results (part I)
2(G)
G(V,E) n m | xG) | G theoretical bounds experimental bounds
L.B.| rue | UB. | rule | L.B. | source | UB. | source | gap[%]
anna 138 | 493 | 11 | 11 |193| 2 | 631 | 3 [ 272 | [39 | 277 | [35 181
david 87 | 406 | 11 | 11 | 142 | 2 | 494 | 3 | 234 | [35 | 237 | [40] 127
huck 74 301 11 11 129 2 375 3 243 [39] 243 [27] 0
jean 80 | 254 | 10 | 10 |125| 2 | 334 | 3 | 216 | [35 | 217 | [30] 046
queen5.5 25 160 5 5 36 1 75 4 75 [359] 75 [27] 0
queen6.6 36| 20 | 7 | 78| 57| 2 | 144 | 4 | 126| [35 | 138 | [27] 8,70
queen?.7 49 476 7 7 70 2 196 4 196 [359] 196 [27] 0
queen8.8 64 | 728 | 9 9 |100] 2 | 320 | 4 | 28| [35 | 201 | [40] 1,03
ganesl20 | 120 | 638 | 9 9 |156| 2 | 600 | 4 | 442 | [35 | 443 | [40] 0,23
miles250 128 | 387 8 8 156 | 2 515 3 316 [359] 328 [40] 3,66
miles500 128 1170 | 20 | 20 [ 318| 2 | 1298 | 3 | 677 | [35 | 709 | [40 451
mycid3 1 | 20 4 4 | 17 | 2 27 4 | 16 | [39 | 21 | [27) 19,05
mycid4 28| 7 5 5 | 33| 2 69 | 4 | 34 | [35 | 45 | [27] | 2444
myciel5 47 | 236 | 6 6 | 62| 2 | 164 | 4 | 70| [359 | 93 | [27] 24,73
mycid6 9% | 755 | 7 7 |16 2 | 380 | 4 | 142 | [35 | 189 | [27] | 2486
mycie7 191 | 2360 | 8 8 | 219 2 | 859 | 4 |28 | [35 | 38| [30] 24,93
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An application of PGA to Graph Coloring Sum Problem (GCSP) was shown in Kokosinski and
Kwarciany [27]. That paper initialized the intensive international research on experimental finding of
better upper bounds on chromatic sum and chromatic sum number for a class of DIMACS graph instances.

The recent methods and results are given in [11-15, 30, 34, 35]. Local search heuristic for GCSP
was described in [21]. In [40] a new hybrid algorithm EXSCOL is presented which incorporates a TS
metaheuristic for finding a vertex partition into large independent sets. EXSCOL was tested on a set of 52
DIMACS graphs. For 17 out of 28 previously examined problem instances better colorings and bounds
werefound (cf. Tables 1 and 2).

Table 2
MSCP —research results (part 1)
2(G)
G(V,E) n m | xG) | (6 theoretical bounds experimental bounds
LB rule UB. rule L.B. source UB. source gap[%0]
fpeol2..1 496 11654 65 65 2576 2 12150 4 2590 [14] 3405 [10] 239
inithx.i.1 864 18707 54 54 2295 2 19571 4 2801 [14] 3679 [10] 238
mug88-1 88 146 4 4 94 2 220 4 163 [14] 190 [10] 142
mug88-25 88 146 4 4 94 2 220 4 162 [14] 187 [10] 133
mug100-1 100 166 4 4 106 2 250 4 187 [14] 21 [10] 113
mug100-25 100 166 4 4 106 2 250 4 185 [14] 214 [10] 135
2-Inser 3 37 72 4 4 43 2 92 4 55 [14] 63 [10] 127
3nser3 56 110 4 4 62 2 140 4 84 [14] %) [10] 870
zeroini.2 211 3541 30 30 646 2 3270 4 1003 [14] 1013 [10] 0,9
zeraini.3 206 3540 30 30 641 2 3193 4 997 [14] 1007 [10] 099

The research on MSCP brought the following results :
The theoretical gap between L.B. and U.B. for M SCP was reduced,
DIMACS benchmarks for GCP has been accepted for examination of MSCP;
Parallel metaheuristic can be used for finding unknown hard-to-compute parameters of
benchmark graphslike x(G) and s(G);
The gap between L.B. and U.B. for most examined graph problems was significantly reduced.

3. Robust graph coloring

RGCP is defined for undirected graph G(V,E) as an assignment of available colors {1, . . ., k} to
graph vertices, providing that
"W E :(py, =1 P c(u)t c(v), 5)
and
(6)

where p, — is an edge eu,v) weight in [0, 1]; p, may be considered as a probability of an edge
existence, in the classical vertex coloring p,, T {0, ; T — isan assumed threshold of robustness.

The robust graph coloring problem (RGCP) was introduced in [39]. Some applications of basic
metaheuristics for RGCP was reported in [6,31]. They include uncertainty management, crew assignment
problem and robust energy supply. Metaheuristics for RGCP [31] were tested for simple random graphs.

Thefirg parale metaheuristic — PGA for RGCP — was devel oped by Chrzaszcz [6]. In the dgorithm the
efficient Best Crossover (BCX) recombination operator [36] was used in addition to those tested in [25, 26].
For computer experiments parametrized problem instances were generated by a random modification of
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sdected DIMACS graphs. A given number of p =1 in adjacency matrix representation was replaced
with p,, in (0,1). No other parallel metaheuristic for RGCP is available for comparison.

Conclusions

PGA, PSA, PTS and PIS are well known paralldl iterative algorithms that are often applied for
solving approximate solution of NPO problems. Efficient use of paralld metaheuristics requires careful
design of details, proper tuning of paralld scheme, hybridization etc. Parallel metaheuristics are well suited
for solving graph coloring problems and new algorithms can still be designed for graph colorings, f.i.
PACO. Paralld metaheuristic can also be used for computing unknown hard-to-compute parameters of
benchmark graphs.

Few classes of graph colorings has been carefully tested with computers but research in this areais
prospective. It seems that for many coloring problems DIMACS graphs will be gradually replaced by
random problem instances, in particular R-MAT graphs [4]. On the other hand DIMACS benchmarks shall
be of the first choice when we look for the test graphs with known parameters. They can be modified with
alittle effort according to the particular needs.

There are many open questions concerning parallelization of computations using new techniques
and modern multi-core computers. In particular, parallel metaheuristics may be more difficult to implement
on massively paralld architectures then dedicated approximation algorithms [4].
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