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Abstract. A modified theory of coalescence induced by
extensional flow in polymer blends with Newtonian
droplets in viscoelastic matrix has been derived. Results
of this theory are compared with results of the theory of
shear flow induced coalescence. Eladticity of the matrix
leads to a decrease in the coal escence probability.
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1. Introduction

The competition between droplet breakup and
coalescence controls the phase structure evolution during
mixing and processing of immiscible polymer blends.
Therefore, a correct description of flow induced
coalescence is a necessary condition for reliable prediction
of the particle size achieved in polymer blends with
dispersed structure. As it is well known, the size of
dispersed particles is crucial for many mechanical
properties of polymer blends, e.g. their impact strength.

Coalescence in flowing polymer blends is a
complex process gill not satisfactorily described in spite
of extensive theoretica and experimental studies [1-21].
Hydrodynamic interaction between coalescing droplets is
of along range type. Moreover, in typical polymer blends
containing several tens of volume percent of the dispersed
phase, coalescing droplets interact with other droplets in
the system. After the approach to a short distance, the
droplets can be deformed. The shape and size of the
deformed parts of droplets have a crucial effect on the
drainage of the matrix film trapped between them during
the final stage of their approach. The state of the
description art of the matrix drainage between coalescing
droplets has been recently summarized by Janssen and
Anderson [22]. Before collision, most droplets in polymer
blends are not spherical; matrixes and droplets in polymer
blends are viscoelastic substances. A flow field in mixing
and processing equipments is complex and its proper
modelling is a difficult task.

Due to difficulty of modelling and experimental
determination of the coalescence in complex flow fields,
theoretical and experimental studies of the flow induced
coalescence have been focused on simple linear flows:
shear and extensional [23]. The shear flow in rotational
and capillary rheometers is most frequently used for
determination of flow properties of molten polymer
materials. In Cartesian coordinates, the shear flow can be
described as a flow with the velocity in x direction having
gradient in y direction; z is a neutral axis. In this
coalescence model, it is assumed that the velocity
gradient, i.e. shear rate, is constant. Measurements of
molten polymer materials in the extensional flow are
important for practice because extensional deformation
plays asignificant role in important processing operations,
such as fiber spinning, thermoforming, blow molding, and
foam production. Principles of the measurement and
construction of rheometers are described in ref. [23]. In
Cartesian coordinates, the velocity u, of steady uniaxial
extension can be expressed asu = & (-x, -y, 22), where the
rate of extension &, is constant.

The theory of coalescence in a dilute system of
Newtonian droplets in a Newtonian matrix induced by
linear flow fields was derived by Wang et al. [24] with the
assumption that the droplets kept spherical shape until
their fusion. Theories considering possible flattening of
droplets are based on “balligtic’ approximation [25], i.e.
inter-droplet interactions are neglected until their
approach to very short distances. Then, the coalescence is
controlled by the competition between the rates of droplet
approach, slowed down by drainage of the matrix film
trapped between deformed droplets, and of their rotation
around their common center of inertia. It is assumed that
the matrix film between droplets bursts rapidly when they
approach the critical distance h, and that droplets fuse
immediately thereafter [1-5, 26]. The probability P, that
the collision of droplets (calculated for non-interacting
droplets) is followed by their fusion is used for
characterization of the effect of the matrix drainage on
coal escence.
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The eguations for the rate of droplets approach
were derived for Newtonian droplets in a Newtonian
matrix with the assumption that the flattened parts of the
droplets were planes with a characteristic dimension much
larger than inter-droplet distance. These equations were
derived with various assumptions for the stress transfer at
the interface. They depend on mobility of the interface,
i.e. on the viscosity ratio p of the droplets and matrix for
blends without a compatibilizer [1-5, 26]. Theories for
fully maobile interface (FMI) partially mobile interface
(PMI) and immobile interface (IMI) reate to low, medium
and high p, respectively. Unfortunately, these expressions
show different dependences on system parameters and
limits of applicability of individual expressons are
unclear. The systematic experimental study of the effect
of p on P, of Gabriele et al. [21] shows that in the limit of
low and high p experimental results agree with theoretical
predictions for fully mobile and immobile conditions. In
the intermediate range of p, a smooth transition between
the limiting fully maobile and immobile states was found.

The Elmendorp theory [1, 2] is based on the
assumption that the resistance for the dropl et approach can
be expressed as a sum of resistances calculated for
flattened droplets with FMI, PMI or IMI and for hard
spherical  droplets.  This assumption leads to
overestimation of the matrix resistance against the droplet
approach. Therefore, this theory agrees with the
experiment only if the FMI model for flatted droplets and
unreliable large critical distance h, are considered. The
Janssen theory [4, 5] has frequently been used for
description of the shear flow induced coalescence in
polymer blends as it provides explicit expression for P,
for systems related to the FMI, PMI and IMI models. The
theory is based on the assumption that

P.= exp{ 'tc/ti} (1)
where t; is the coalescence time for the droplet approach
from the original distance, ho, to he and t; is the interaction
time equal to inversion value of the shear rate, ¢ . A weak

point of the theory is prediction of a higher P than that
calculated for spherical droplets with the same other
parameters for small droplet radius, R, and/or ¢.

However, this result is unphysical because the resistance
of the matrix against approach of flattened droplets cannot
be smaller than that for the related spherical ones.

Rother and Davis [27] generalized the theory of
Wang et al. [24] for deformable droplets considering the
droplet deformation as a small but singular perturbation.
They found that P, for small R and/or ¢ was the same as

for the related spherical droplets. At acertain Rand ¢, P.

steeply decreases to a very low value smilarly to the
Janssen theory. Similar dependence of P. on system
parameters was obtained for uniaxial extensional flow by
Fortelny and Zivny [28]. They considered that the formula
for the matrix resistance between spherical droplets could

be used if the ratio of radii of flattened part and
undeformed droplet was smaller than a certain value; the
formula for highly flattened droplet was used in the
opposite case.

So far, only few studies have been devoted to the
effect of eagtic properties of the blend components on the
flow induced coalescence. Y u and Zhou [29] modelled the
shear flow induced coalescence by the diffuse interface
method. They found that the matrix elasticity postponed
the coal escence process but the effect was significant only
if the matrix elasticity exceeded a certain critical value.
The study deals with coalescence between droplets placed
on the same streamlines at the coalescence origin, and it
does not provide P, as a function of system parameters.
Recently, Fortelny and Juza [30] have derived the theory
of the shear flow induced coalescence considering that
viscoelastic properties of the matrix can be described by
the Maxwell model. In describing the matrix drainage, the
switch between the chosen formula for highly flattened
droplets and the formula for spherical dropletsis used; i.e.
the formula predicting larger resistance for a certain set of
system parametersis applied.

The aim of this study is to derive a theory
describing the effect of matrix elagticity on the extensional
flow induced coalescence and to compare its results with
the theory of the shear flow induced coal escence. Further
aim of this study is to contribute to understanding the
effect of the model choice of interface mobility on P; by
comparing the results of the PMI model with the Jedlani-
Hartland (JH) model [31] which passes to the IMI model
forp® ¥.

2. Theoretical Background

For smplicity, coalescence of two Newtonian
droplets with the same radius R, in a viscoelastic matrix
described by the Maxwell model is considered. For drag
force F on the droplet moving with velocity u against this
matrix, the following equation was derived [ 32, 33]:

dF

F=c¢cu-r7,— 2

U= T 2
where z isthe frictional resistance of the particleand t ., is
the relaxation time of the matrix.

It leads us to the conclusion that the approach of
droplets in this system can be described if F in the
equations for the rate of the droplet approach in the
Newtonian matrix is substituted by F + t dF/dt [30, 34].
For close spherical droplets [26, 35], this subdtitution
leadsto:

dF 6
Zhﬁ:'ﬂ —_—
ahse & "dtg

“&dty,  3ph,Rg(m) @
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where h isan inter-droplet distance and g(m) is given by:

1+0.402m
m) = 4
o(m) 1+1.711m+ 0.461n7? “)
with m defined as;
_h, &R
5
“h, &2hg ®)

where h,, and hy are viscosities of the matrix and the
droplets, respectively. For highly flattened droplets with
partially mobile interface[3-5, 26], the following equation
isvalid for the droplet approach:
w h 0 B 4(2p )1IZS 3/2h2
g - 1/2 (6)
dt h R2%F 4y dFO

& " dt g

where s is an interfacial tension. The Jedlani-Hartland
model [26, 31] for highly flattened droplets leads to:

aho __ &s’h® 3 .h6
“&dt @, 31R2§:+t dpog he o

where C is the dimensionless circulation length of the
order of 1[31].

2.1. Shear Flow

For shear flow with unperturbed velocity up = (g,

0, 0), rotation of the spheres is described by the equations
[24, 30]

df s bo. b )
—:@D(f):@gi- Egsnzf +Ecoszf§ C)
dd? (1- b)sing >cosq >sinf >cosf 9

where g is polar angle, f is azimuth and b is a function of
distances between spheres centers and 2R [24].

It is assumed that Egs. (8) and (9) are aso
applicable in the case of droplet flattening and for a
viscoelastic matrix. F can be expressed as.

F = (K/2)phg'Risin’g sin2f
where K isafunction of p [30].

Droplet collision is followed by their fusion if they
approach the distance shorter than the critical distance h,,
for breakup of the matrix film earlier than the azimuth
f = p/2 is achieved. Combination of Egs. (3) and (6)-(10)
leads to the following equations for the dependence of the
inter-droplet distance on the azimuth [30].

For spherical droplets:

aho _ h Q@.f)+t,45@,f)

(10)

8df ® g(m) D(f) (11)
where
2
G, =2K (12

Q(q,f):%sinzqsinzc (13)

and

S@.f)=

For flattened droplets with partially mobile
interface [30]:
alho h?
'gﬁ+ = G 12 (15)
aa . DE)[Q@.f)+t,d5.)]
where

(sm2qsm2‘) +D(f)sin’qcos2f  (14)

4 \/ES 3/2
Kl/Zh h1/2@3/2R5/2
d'm
For flattened droplets with interface described by
the JH model [30]:

GF’MI = (16)

aho h?
=G (17)
&df g, " D()[Q@.F)+t,65@.0)]
where
8 h_ 0
G, =———cl+3C "= 18
" T3K(CaRZE  hy g (18)
and Caisacapillary number defined as:
Ca:hmsﬁ (19)
The polar angle can be expressed as[30]:
1/2
1-b smf+b/2u 0
q= arctg@tgqoe( ) T (0

¢~ - b)sin’f,+b/2g

where o and fo are polar angle and azimuth at the
beginning of coalescence.

In calculating h(p/2), EQ. (11) is combined with Eq.
(15) or (17). Smaller of the values —(dh/df) for the
spherical or the chosen model of flattened droplets is used
in the calculation.

2.2. Extensional Flow

For extensional flow with unperturbed velocity
Up = & (-X, -y, 22), rotation of the spheres is described by
the following equation [24, 28]:

dqg

E:_S(l_ b)ésing cosq (21)

and for driving force of the coalescence F, the following
equation isvalid [28]:
F = Kpe hyRé(1-3c0s°q) (22)
Combination of Egs. (21) and (22) with Egs. (3),
(6) or (7) leads to the equations describing the dependence
of inter-droplet distance on the polar angle. Analogically
to Eq. (11), we obtain for spherical droplets

alho _ h Q.@)+t.éS@)
&ga, “o(m  D.(a)

(23)
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where
Q.() =1- 3(cosq)’ (24)
5,@) =~ (t- b)(sn(a)) (25)
De(q):g(l- b)sin(2q) (26)
For flattened droplets with partially mobile
interface:
aho h?

—= =Gy, 12 27)
&dq g D.@)[Q.(@)+t,8S.@)]

analogicaly to Eq. (15); functions Q., S and D. are
defined in Egs. (24)-(26).
For flattened droplets described by the JH model
" 3
200 =g, - 28)
gdam " D@)[Q.@)+t,4S.)]
analogically to Eq. (17).

Callision of the droplets in extensional flow is
followed their fusion if their distance h decreases bellow
h. until the polar angle g* is achieved. Eq. (24) or (25) for
flattened droplets is combined with Eq. (23) for spherical
droplets in calculating of h(g*). Smaller of the dh/dg
values for spherical or flattened droplets is used in the
calculation. g* is given by the condition dh/dg = 0.

¢ :arctgg\/gt A1 b)+%+\/(a (L b)) 2 61 b)+%§(29)

For t=0isq* = arctg ((V).

2.3. Calculation of P,

The rate at which the droplets collide with the
following fusion is equal to the flux J., of pairs into the
contact surface. J. can be expressed as.

J, =-n? QuxndS (30)
A

where n is the droplet number in the unit volume, n isthe
outward unit normal to the spherical contact surface, A is
the upstream interception area, and dS is the surface

element. P, can be determined as;
Pe=JdJo (32)
where Jg is the flux of particles which do not interact until

collision. For shear flow, P, can be calculated as[30]:
7l 2 om

P. =3 Osing, cosp, sin’® 6,dp,dd,
0 0
where fo and o are azimuth and polar angle at the
beginning of coalescence and f y is the maximum azimuth
angle for a certain initial polar angle go a which the
droplets fuse. For extensional flow, the following equation
isvalidfor P, [28]:

(32)

P= ?(cosegm’ - cos* 0" )
where g™ is the minimum initial angle q at which the
droplets fuse.

Values of P, were determined by the numerical
calculation as described in the recent paper [30] or,
analogically:

1. The course of mutual position of the drop pairs
fromitsinitial value given by distance hy and angle g for
the extensional flow or angles f ¢ and o for the shear flow
has been calculated by integration of Egs. (11), (15) and
(17) or (23), (27) and (28) until the distance decreases
below its critica value h. or darts increasing (azimuth
reaches the right angle for shear flow or angle reaches g*
for extensional flow). Integration was performed by the
Cash-Karp embedded Runge Kutta method [ 36].

In the calculations, the following parameters have
been used: b = 0.075, K= 12.24, C =1, initid integration
step siizze is 10°, 6 of the embedded Runge K utta method
is10™.

2. For extensional flow, drop pairs coalesce for
initial angles in the range from the limit angle g™ to the
right angle; qo™ is higher than g*. For shear flow, drop
pairs coalesce (if ever) at a given initial polar angle qo
from zero azimuth to some limit value. Therefore,
coalescence for fo= 0and fo = n/2 isfirst tested using the
procedure on level 1 for each qg; the pairs not coalescing
at fo= 0 have f = 0, while the pairs coalescing even for
fo = n/2 have fy = n/2. Otherwise, the limit angle fy (or
do™) was determined by the bisection method combined
with the regula falsi method applied to a function
expressing the final distance of drops:. positive value h - h
at f = /2 for not coalesced drop pairs, negative number
proportional to f - 7/2 for coalesced drop pairs, where f ¢
is f for that drops approached h. distance. The final step
size of the method has been modiified between 10°and 10°
to get sufficiently precise results within reasonable time.

For extensona flow, steps 1-2 can be simply
replaced by integration from g* and supposed distance h
back to distance ho. However, sometimes this procedure
leads to inappropriate results.

3. For extensional flow, P. is obtained using Eq.
(33). For shear flow, Eq. (32) can be expressed as.

pl/2

p/2
P.= OP(a,)sin’q,da, = OfL- cos(2f ,, (a,))fsin’a, da, (34)
0 0

This equation is solved again numericaly, when
each fy is determined as described above. In fact, the
range of polar angles with nonzero fy is determined and
the integration is carried out only over this range.

The initial integration step size was 0.1, § of the
embedded Runge Kutta method was 10°. These relatively
large values cause imprecise results to be considered

(33)
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semiquantitative only; however, since each integration point
represents solving of an implicit equation of the function
resulted from ancther numeric integration, results of better
precision could not be obtained within reasonabletime.

3. Results and Discussion

Fig. 1 shows that P, for spherical drops somewhat
decreases with increasing R. It should be mentioned that
this decrease is a consequence of the choice of constant
nonzero h, [30]. P, independent of R is obtained for
spherical drops at t, = 0 in accordance with Wang et al.
[24] if he = 0 is considered. The same effect of h; is also
demonstrated for systems where flattening of drops is
considered. Besides this effect, the shapes of P; vs. R
dependences for flattening drops in Newtonian blends for
shear and extensional flows are also smilar to those
calculated by Rother and Davis [27], i.e. P; is a constant
relating to spherica drops for smal R and starts
decreasing steeply to a very low value for a certain critical
R.. For a set of parameters used in Fig. 1, the JH model
leads to steeper decrease at smaller R than the PMI model.
Fig. 1 shows that, if 4 = é is considered and other

parameters are the same, P is lower and R. is smaller for
the extensional than for the shear flow.

Elagticity of the matrix does not change the shape
of dependence of P, on R. Longer relaxation time tn,
reduces the probability of coalescence P, as well as R;
described above. Both decreases are more rapid for the
extensional than for the shear flow. The effect is not
significant for ty, < 1 s but it is pronounced for t, of the
order of seconds. It should be mentioned that a substantial
part of commercial thermoplastics has t,,<1s[37, 39].
Therefore, the effect of easticity on flow induced
coal escence seems to be important only for systems with a
high-molecular-weight matrix.

It can be seen from Fig. 2 that, while coalescence
probabilities P, are independent of eongation and shear
rates for spherical particles in Newtonian systems, longer
relaxation time leads to a decrease of P, with increasing
elongation and shear rates. The decrease is again more
profound for the extensional flow induced coal escence. The
P. decrease is nearly linear for short rdaxation times. For
longer relaxation times, the decrease is not uniform in the
whole range of shear or elongation rates. P, decreases
substantially for smaller rates; further rate growth brings
only dight decrease or even increase in P.. The models
taking into account drops flattening (PMI and JH) do not
differ from the spherical drops mode for very low shear and
elongation rates and later they provide P, decreasing to zero,
more steeply for longer relaxation time. For the chosen set of
parameters, the JH mode predicts steeper decrease of Pg
darting at lower g or é than the PMI model.

Formula Relax.t

spheres--0---0s—0—1s—e—3s—e—10s
P JH 0s-A—1s-4 3s—4A—10s
PMI Os 1s 3s 10s

,x\:'?jli g 8—0—0—6—&—5

Gy @~ 0— @— 6— o— o— @

A A
v a—%—0—0—0—0—0
S

‘ﬁ Extensional flow

p R/mm

R/mm
Fig. 1. Dependence of coal escence probability P,

on drop radius R, for different relaxation times for spherical
particles and for flattening particles described by the partially
mobileinterface (PM1) model or the Jeelani and Hartland (JH)

model: extensional flow (upper plot) and shear flow (lower

plot). Parameters used: viscosities of drops hy and of matrix

h.,, = 1 kPas; shear or elongation rateis 0.02 s interfacial
tension is 1 mN/m, relative initid distance hy/R = 10, critical

distance h,=5 nm

Simple test of viscosity influence on coalescence
induced by the extensional flow for Newtonian systemsis
presented in Fig. 3. P for spherical drops depends only on
viscosity ratio p. If the matrix is more viscous than drops,
P. is higher, and vice versa. P is controlled only by p also
for flattening drops in the range of small droplet radii. The
critical drop radius R, a which P, starts decreasing
steeply, decreases with rising values of viscosities at a
constant p. Steep decrease in P; is more pronounced for
systems with higher viscosities if the same p is
considered. For partidly mobile interface, R. increases
with decreasing viscosity of any phase. R; is affected
dlightly stronger by the change in drop viscosity than the
by change in matrix viscosity.

Fig. 4 shows what happens when the drop viscosity
decreases at a constant h,,,. For extensional flow induced
coalescence, the Jedlani and Hartland model provides
lower coalescence probabilities P, than partially mobile
interfaces for systems with equal viscosity of both phases.
P. approaches a limit value for immobile interface with
increasing drop viscosity for the Jedlani and Hartland
model, while it continues to decrease for the partially
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mobile interface and therefore becomes lower than for the
former model. The same result was obtained for the shear
flow induced coalescence [30]. It is clear that the JH
model is more reasonable than the PMI one for hg >> hy,
but reliability of these models for hgy » hy, should be the
subject of further investigation.

Formula Relax.t
spheres -0~ 0s -~0-~01s-0-1s—e—10s

JH 0s ~4A-01s—-A-1s—4—10s
PMI Os 0.1ls 1s 10s
P .
c Extensional flow
04+ (o0 O Onn OO Qe Qe Qe OO
b e
K o
‘E‘A& -0 -
X Xy O g
"N I \(..
20N
0.2 & A S
b 4 ~o-
E 3 ~0-._
AL oo
] e 0--0-—0
\5 \.\7
% ”\.\‘.777.777.77.77.
0.0
0.0 05 1.0 15 20 els
P Qe Qe Qe O Qi
VA ___e— 99—
®”"Q>.<$, -
0.4 «— D----0----

024 Shear flow

0.0 +—————
0.0 0.5 1.0 15 2.0

gl st
Fig. 2. Dependence of coal escence probability P, on elongation
rate (extensional flow — upper plot) or shear rate (shear flow —
lower plot) for the spherical particles model and for the
calculations switching between this mode and formulae of the
partialy mobile interface mode (PM1) or the Jeelani and
Hartland (JH) model and for different relaxation times. Drop
sizeR=0.2 um, other parameters are the same asin Fig. 1

Generally, the calculation of P based on the switch
between equations for drainage of the matrix trapped
between spherical or highly flattened droplets leads to the
same type of its dependence on system parameter both for
the shear and the extensional flow induced coalescence.
This method |eads to the same P; as the calculation for
spherical drops at small R At a certain droplet radius R,
P. starts decreasing steeply to a negligibly small value.
The value of R. depends, besides the values of system
parameters, on the model of interface mobility used for
flattened droplets. The same type of the dependence of P,
on system parameters comes from the Rother and Davis
theory [27] based on the assumption that flattening of the
droplets is small but singular perturbation. It seems that
both our theories and the Rother and Davis ones

overestimate the steepest of the decreases of P, with R
because flattening of droplets increases gradually from
zero to a high value with a rising driving force of the
coalescence. Therefore, the value of R, and the rate of
decrease of P, should be the subject of further
investigation together with attempts to establish areliable
model of the interfacial mobility for flattened droplets. P
decreases with increasing relaxation time, i.e. elasticity, of
the matrix at any parameters of the system. It has been
found that this decrease is not pronounced for t, smaller
than 1 s*, especially for shear flow induced coalescence.
Therefore, using the theory of flow induced coalescence
derived for Newtonian systems for polymer blends with
matrixes of low to medium molecular weight does not
cause substantial error. It should be mentioned that this
theory has been derived for drops with the same radius.
As a decrease in P. has been found with the increasing
ratio of radii of larger and smaller spherical droplets [24],
P. in blends with droplets polydisperse in size is smaller
than that predicted by thistheory.

Generally, the above approach to the description
of the flow induced coalescence can also be applied to
aggregation of solid particles in suspensions described,
e.g. in [39]. It should be mentioned, however, that the
resistance against matrix drainage between solid spheres
is substantially stronger than that between liquid droplets.
Zero P; is predicted for solid spheres, ie p ® ¥, if
molecular forces between them are not considered [24].
Therefore, non-negligible P, can only be found in systems
with strong attractive molecular forces. In this case,
molecular forces should be specified in detail and
explicitly added to the driving force of the coalescen-
ce (Eq. (10) or (22)) instead of their consideration by the

0.8 _RC e T P VIV -0y sphere
N v PMI
P, ; v,
D v hfkPa.s] - h [kPa.s]
0.6 6 : Ol-1
: v -0-01-1 10 -1
: v -e—-1-01 1-10
© —8—0.1-0.1 10- 10
2 ! S
0.4 " ez ! N %
B RAg—R B O T 1
- ; RRRSR -
8 . v % X‘X
0.2 o 1% \ Rt
e 5‘7 v, \Xy
“;"V%V'V;v—g—-—-—-—-—-—e—'-—;\{g - X>
AN
00 S, SR A= NN, i /S
0 2 4 6
R/nm

Fig. 3. Dependence of coal escence probability P, on drop size R.
Influence of changes of matrix and drop viscosities for spherical
drops and for flattening drops in extensiona flow described by
the partially mobile interface model (PMI). Zero relaxation time
(Newtonian system). The basic system with drop viscosity
hq= 1 kPa>s and matrix viscosity h,, = 1 kPaxs is compared with
systems where one or both of hg and h,, are 0.1 kPaxs
or 10 kPavs. Other parameters arethe sameasin Fig. 1.
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Form /h,
PMI 15 kPa.s J-H
PMI 20 kPa.s —4— J-H
--v--PMI 30 kPa.s —4— J-H

Ext.flow

V&
0.0 M'wﬁma;Li

T T T T T T T 1
0.6 0.7 0.8

R /nm
T\
Shear flow %A
EAS
0.0 Ebjz.g,i -y
T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
R/nmm

Fig. 4. Dependence of coal escence probability P, on drop
size R. Influence of drop viscosity change for the partially
mobileinterface (PM1) and for the Jeelani and Hartland (JH)
model. Upper plot — extensional flow, lower plot —shear flow.
Zero relaxation time (Newtonian system), other parameters are
thesameasin Fig. 1

choice of non-zero h. only. In the case of anisometric
solid particles, their rotation before collision should be
considered, which substantially complicates modelling of
their coalescence.

4. Conclusions

The coalescence probability, P, in the shear and
extensional flows has been calculated using the switch
between equations for drainage of the matrix trapped
between spherical or highly flattened droplets. For
Newtonian systems, the theory provides the same shape of
the dependences of P on the droplet size and shear or
elongation rates as the theory of Rother and Davis [27].
Drop radius R, for which flattening markedly reduces the
coalescence probability, is dramatically higher for lower
viscosities of any phase, and dlightly higher for the shear
flow induced coalescence than for the extensional flow.
The choice of the model of interfacial mobility used to
describe drainage of the matrix between flattened drops
(JH or PMI) has a strong effect on the calculated R; value.
Plausibility of these models for various systems should be
the subject of further investigation.

Increased matrix elasticity, related to the relaxation
time of its Maxwell model, reduces the coalescence
probability, causes its decrease with shear or elongation

rate even for spherical particles, and causes a decrease in
both critical droplet radius R. and minimal shear and
elongation rates from which P, starts decreasing steeply.
The effect of the mairix eadicity is stronger for
extensional than for shear flow if equa values of shear
and elongation rates and the same other system
parameters are considered.
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IOTOKOBA IHAYKOBAHA KOAJIECIHEHIIA
B NOJIMEPHHUX CYMIIIAX

Anomayin. Pospobiena mooughikosana meopis Koa-
Jecyenyii iHOYKOBAHOI eKCMEHCIOHAbHUM NOMOKOM 8 NONLMEPHUX
CYMIUAX 3 HLIOMOHIBCOKUMU KPANENbKAMU Y 6'513K0eNACUYHIL
Mmampuyi. Pe3ynomamu meopii nopienani 3 pe3ynvmamamu meopii
3cygy nomounoi inoykoeamoi koarecyenyii. Bcmanoeneno, wo
enacmuyHicms Mampuyi npugooums 00 3MEHULeHHS! TLMOBIDHOCT
KoanecyeHyii.

Knwuosi cnosa.  xoanecyenyis, nonimepHi
EeKCMEHCIOHANIbHULL NOMIK, 6'S3K0eNACMUYHICb.

cymiwdi,



