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Abstract. A modified theory of coalescence induced by 
extensional flow in polymer blends with Newtonian 
droplets in viscoelastic matrix has been derived. Results 
of this theory are compared with results of the theory of 
shear flow induced coalescence. Elasticity of the matrix 
leads to a decrease in the coalescence probability. 
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1. Introduction 

The competition between droplet breakup and 
coalescence controls the phase structure evolution during 
mixing and processing of immiscible polymer blends. 
Therefore, a correct description of flow induced 
coalescence is a necessary condition for reliable prediction 
of the particle size achieved in polymer blends with 
dispersed structure. As it is well known, the size of 
dispersed particles is crucial for many mechanical 
properties of polymer blends, e.g. their impact strength.  

Coalescence in flowing polymer blends is a 
complex process still not satisfactorily described in spite 
of extensive theoretical and experimental studies [1-21]. 
Hydrodynamic interaction between coalescing droplets is 
of a long range type. Moreover, in typical polymer blends 
containing several tens of volume percent of the dispersed 
phase, coalescing droplets interact with other droplets in 
the system. After the approach to a short distance, the 
droplets can be deformed. The shape and size of the 
deformed parts of droplets have a crucial effect on the 
drainage of the matrix film trapped between them during 
the final stage of their approach. The state of the 
description art of the matrix drainage between coalescing 
droplets has been recently summarized by Janssen and 
Anderson [22]. Before collision, most droplets in polymer 
blends are not spherical; matrixes and droplets in polymer 
blends are viscoelastic substances. A flow field in mixing 
and processing equipments is complex and its proper 
modelling is a difficult task.  

Due to difficulty of modelling and experimental 
determination of the coalescence in complex flow fields, 
theoretical and experimental studies of the flow induced 
coalescence have been focused on simple linear flows: 
shear and extensional [23]. The shear flow in rotational 
and capillary rheometers is most frequently used for 
determination of flow properties of molten polymer 
materials. In Cartesian coordinates, the shear flow can be 
described as a flow with the velocity in x direction having 
gradient in y direction; z is a neutral axis. In this 
coalescence model, it is assumed that the velocity 
gradient, i.e. shear rate, is constant. Measurements of 
molten polymer materials in the extensional flow are 
important for practice because extensional deformation 
plays a significant role in important processing operations, 
such as fiber spinning, thermoforming, blow molding, and 
foam production. Principles of the measurement and 
construction of rheometers are described in ref. [23]. In 
Cartesian coordinates, the velocity u, of steady uniaxial 
extension can be expressed as u = ε& (-x, -y, 2z), where the 
rate of extension ε& , is constant.  

The theory of coalescence in a dilute system of 
Newtonian droplets in a Newtonian matrix induced by 
linear flow fields was derived by Wang et al. [24] with the 
assumption that the droplets kept spherical shape until 
their fusion. Theories considering possible flattening of 
droplets are based on “ballistic” approximation [25], i.e. 
inter-droplet interactions are neglected until their 
approach to very short distances. Then, the coalescence is 
controlled by the competition between the rates of droplet 
approach, slowed down by drainage of the matrix film 
trapped between deformed droplets, and of their rotation 
around their common center of inertia. It is assumed that 
the matrix film between droplets bursts rapidly when they 
approach the critical distance hc and that droplets fuse 
immediately thereafter [1-5, 26]. The probability Pc that 
the collision of droplets (calculated for non-interacting 
droplets) is followed by their fusion is used for 
characterization of the effect of the matrix drainage on 
coalescence. 
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The equations for the rate of droplets approach 
were derived for Newtonian droplets in a Newtonian 
matrix with the assumption that the flattened parts of the 
droplets were planes with a characteristic dimension much 
larger than inter-droplet distance. These equations were 
derived with various assumptions for the stress transfer at 
the interface. They depend on mobility of the interface, 
i.e. on the viscosity ratio p of the droplets and matrix for 
blends without a compatibilizer [1-5, 26]. Theories for 
fully mobile interface (FMI) partially mobile interface 
(PMI) and immobile interface (IMI) relate to low, medium 
and high p, respectively. Unfortunately, these expressions 
show different dependences on system parameters and 
limits of applicability of individual expressions are 
unclear. The systematic experimental study of the effect 
of p on Pc of Gabriele et al. [21] shows that in the limit of 
low and high p experimental results agree with theoretical 
predictions for fully mobile and immobile conditions. In 
the intermediate range of p, a smooth transition between 
the limiting fully mobile and immobile states was found.  

The Elmendorp theory [1, 2] is based on the 
assumption that the resistance for the droplet approach can 
be expressed as a sum of resistances calculated for 
flattened droplets with FMI, PMI or IMI and for hard 
spherical droplets. This assumption leads to 
overestimation of the matrix resistance against the droplet 
approach. Therefore, this theory agrees with the 
experiment only if the FMI model for flatted droplets and 
unreliable large critical distance hc are considered. The 
Janssen theory [4, 5] has frequently been used for 
description of the shear flow induced coalescence in 
polymer blends as it provides explicit expression for Pc, 
for systems related to the FMI, PMI and IMI models. The 
theory is based on the assumption that 

Pc = exp{-tc/ti}                                (1) 
where tc is the coalescence time for the droplet approach 
from the original distance, h0, to hc and ti is the interaction 
time equal to inversion value of the shear rate, γ& . A weak 
point of the theory is prediction of a higher Pc than that 
calculated for spherical droplets with the same other 
parameters for small droplet radius, R, and/or γ& . 
However, this result is unphysical because the resistance 
of the matrix against approach of flattened droplets cannot 
be smaller than that for the related spherical ones. 

Rother and Davis [27] generalized the theory of 
Wang et al. [24] for deformable droplets considering the 
droplet deformation as a small but singular perturbation. 
They found that Pc for small R and/or γ&  was the same as 
for the related spherical droplets. At a certain R and γ& , Pc 
steeply decreases to a very low value similarly to the 
Janssen theory. Similar dependence of Pc on system 
parameters was obtained for uniaxial extensional flow by 
Fortelny and Zivny [28]. They considered that the formula 
for the matrix resistance between spherical droplets could 

be used if the ratio of radii of flattened part and 
undeformed droplet was smaller than a certain value; the 
formula for highly flattened droplet was used in the 
opposite case. 

So far, only few studies have been devoted to the 
effect of elastic properties of the blend components on the 
flow induced coalescence. Yu and Zhou [29] modelled the 
shear flow induced coalescence by the diffuse interface 
method. They found that the matrix elasticity postponed 
the coalescence process but the effect was significant only 
if the matrix elasticity exceeded a certain critical value. 
The study deals with coalescence between droplets placed 
on the same streamlines at the coalescence origin, and it 
does not provide Pc as a function of system parameters. 
Recently, Fortelny and Juza [30] have derived the theory 
of the shear flow induced coalescence considering that 
viscoelastic properties of the matrix can be described by 
the Maxwell model. In describing the matrix drainage, the 
switch between the chosen formula for highly flattened 
droplets and the formula for spherical droplets is used; i.e. 
the formula predicting larger resistance for a certain set of 
system parameters is applied. 

The aim of this study is to derive a theory 
describing the effect of matrix elasticity on the extensional 
flow induced coalescence and to compare its results with 
the theory of the shear flow induced coalescence. Further 
aim of this study is to contribute to understanding the 
effect of the model choice of interface mobility on Pc by 
comparing the results of the PMI model with the Jeelani-
Hartland (JH) model [31] which passes to the IMI model 
for p → ∞. 

2. Theoretical Background 

For simplicity, coalescence of two Newtonian 
droplets with the same radius R, in a viscoelastic matrix 
described by the Maxwell model is considered. For drag 
force F on the droplet moving with velocity u against this 
matrix, the following equation was derived [32, 33]: 

m
dς τ
dt

= −
FF u                                  (2) 

where ζ is the frictional resistance of the particle and τm is 
the relaxation time of the matrix.  

It leads us to the conclusion that the approach of 
droplets in this system can be described if F in the 
equations for the rate of the droplet approach in the 
Newtonian matrix is substituted by F + τmdF/dt [30, 34]. 
For close spherical droplets [26, 35], this substitution 
leads to: 

2

d2
d d
d 3 g( )

m

Sp m

Fh F
h t
t R m

τ

πη

 +    − = 
 

                      (3) 
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where h is an inter-droplet distance and g(m) is given by: 

2

1 0.402g( )
1 1.711 0.461

mm
m m

+
=

+ +
                  (4) 

with m defined as: 
1/ 2

2
m

d

Rm
h

η
η

 =  
 

                            (5) 

where ηm and ηd are viscosities of the matrix and the 
droplets, respectively. For highly flattened droplets with 
partially mobile interface [3-5, 26], the following equation 
is valid for the droplet approach: 

1/ 2 3 / 2 2

1/ 2
3 / 2

d 4(2 )
d d

d
PMI

d m

h h
t FR F

t

π σ

η τ

 − = 
   + 

 

 (6) 

where σ is an interfacial tension. The Jeelani-Hartland 
model [26, 31] for highly flattened droplets leads to: 

2 3

2

d 8 1 3
dd 3
d

m

JH d
m m

h h C
Ft R F
t

ηπσ
ηη τ

  − = +       + 
 

  (7) 

where C is the dimensionless circulation length of the 
order of 1 [31].  

2.1. Shear Flow 

For shear flow with unperturbed velocity u0 = ( γ& y, 
0, 0), rotation of the spheres is described by the equations 
[24, 30] 

( ) 2 2d D 1 sin cos
d 2 2t
φ β β

γ φ γ φ φ
  = = − +    

& &  (8) 

( )d 1 sin cos sin cos
d t
θ

γ β θ θ φ φ= − ⋅ ⋅ ⋅&   (9) 

where θ is polar angle, φ is azimuth and β is a function of 
distances between spheres centers and 2R [24].  

It is assumed that Eqs. (8) and (9) are also 
applicable in the case of droplet flattening and for a 
viscoelastic matrix. F can be expressed as: 

F = (K/2)πηmγ˙R2sin2θ sin2φ                       (10) 
where K is a function of p [30].  

Droplet collision is followed by their fusion if they 
approach the distance shorter than the critical distance hc, 
for breakup of the matrix film earlier than the azimuth  
φ = π/2 is achieved. Combination of Eqs. (3) and (6)-(10) 
leads to the following equations for the dependence of the 
inter-droplet distance on the azimuth [30]. 

For spherical droplets: 

( )
mQ( , ) S( , )d

d g( ) DSp
Sp

h hG
m

θ φ τ γ θ φ
φ φ

+ 
− = 

 

&
 (11) 

where 
2
3SpG K=                                     (12) 

21Q( , ) sin sin 2
2

θ φ θ φ=                      (13) 

and 

( )2 21S( , ) sin 2 sin 2 D( ) sin cos 2
8

β
θ φ θ φ φ θ φ

−
= +  (14) 

For flattened droplets with partially mobile 
interface [30]: 

[ ]

2
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where 
3 / 2

1/ 2 1/ 2 3 / 2 5 / 2
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PMI
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G
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σ
η η γ

=
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                      (16) 

For flattened droplets with interface described by 
the JH model [30]: 

[ ]
3d

d D( ) Q( , ) S( , )JH
mJH

h hG
φ φ θ φ τ γ θ φ

 
− =  +  &

       (17) 

where 

2

8 1 3
3 (Ca )

m
JH

d

G C
K R

η
η

 
= + 

 
                 (18) 

and Ca is a capillary number defined as: 
mCa Rη γ
σ

=
&

                                   (19) 

The polar angle can be expressed as [30]: 
1/ 22

0 2
0

(1 )sin / 2arctg tg
(1 )sin / 2

β φ β
θ θ

β φ β

  − + =   − +  
 (20) 

where θ0 and φ0 are polar angle and azimuth at the 
beginning of coalescence.  

In calculating h(π/2), Eq. (11) is combined with Eq. 
(15) or (17). Smaller of the values –(dh/dφ) for the 
spherical or the chosen model of flattened droplets is used 
in the calculation. 

2.2. Extensional Flow 

For extensional flow with unperturbed velocity  
u0 = ε&  (-x, -y, 2z), rotation of the spheres is described by 
the following equation [24, 28]: 

( )d 3 1 sin cos
d t
θ

β ε θ θ= − − &                 (21) 

and for driving force of the coalescence F, the following 
equation is valid [28]: 

F = Kπε˙ηmR2(1-3cos2θ)                     (22) 
Combination of Eqs. (21) and (22) with Eqs. (3), 

(6) or (7) leads to the equations describing the dependence 
of inter-droplet distance on the polar angle. Analogically 
to Eq. (11), we obtain for spherical droplets  

( )
e m e

e

Q ( ) S ( )d
d ( ) DSp

Sp

h hG
g m

θ τ ε θ
θ θ

+  = 
 

&
         (23) 
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where  
( )2

eQ ( ) 1 3 cosθ θ= −                          (24) 

( ) ( )( )2
e

9S ( ) 1 sin 2
2

θ β θ= − −                  (25) 

( ) ( )e
3D ( ) 1 sin 2
2

θ β θ= −                    (26) 

For flattened droplets with partially mobile 
interface: 

[ ]

2

1/ 2
e e m e

d
d D ( ) Q ( ) S ( )

PMI
PMI

h hG
θ θ θ τ γ θ

  = 
  + &

    (27) 

analogically to Eq. (15); functions Qe, Se and De are 
defined in Eqs. (24)-(26). 

For flattened droplets described by the JH model 

[ ]
3

e e

d
d D ( ) Q ( ) S ( )JH

JH e m

h hG
θ θ θ τ γ θ

  =  +  &
 (28) 

analogically to Eq. (17).  
Collision of the droplets in extensional flow is 

followed their fusion if their distance h decreases bellow 
hc until the polar angle θ* is achieved. Eq. (24) or (25) for 
flattened droplets is combined with Eq. (23) for spherical 
droplets in calculating of h(θ*). Smaller of the dh/dθ 
values for spherical or flattened droplets is used in the 
calculation. θ* is given by the condition dh/dθ = 0. 

 

( ) ( )( ) ( )2*
m m m

1 9arctg 9 1 9 1 9 1
2 4

θ τ ε β τ ε β τ ε β
 
 = − + + − + − +
 
 

& & & (29) 

For τm=0 is θ* = arctg (√2). 

2.3. Calculation of Pc 

The rate at which the droplets collide with the 
following fusion is equal to the flux Jc, of pairs into the 
contact surface. Jc can be expressed as: 

2

c

c
A

J n dS= − ⋅∫ u n                              (30)           

where n is the droplet number in the unit volume, n is the 
outward unit normal to the spherical contact surface, Ac is 
the upstream interception area, and dS is the surface 
element. Pc can be determined as: 

Pc = Jc/J0                                    (31) 
where J0 is the flux of particles which do not interact until 
collision. For shear flow, Pc can be calculated as [30]: 

2
3

0 0 0 0 0
0 0

3 sin cos sin
Mφπ/

cP φ φ θ dφ dθ= ∫ ∫  (32) 

where φ0 and θ0 are azimuth and polar angle at the 
beginning of coalescence and φM is the maximum azimuth 
angle for a certain initial polar angle θ0 at which the 
droplets fuse. For extensional flow, the following equation 
is valid for Pc [28]: 

( )3
0 0

3 3 cos cos
2

(m) (m)
cP θ θ= −  (33) 

where θ0
(m) is the minimum initial angle θ at which the 

droplets fuse. 
Values of Pc were determined by the numerical 

calculation as described in the recent paper [30] or, 
analogically: 

1. The course of mutual position of the drop pairs 
from its initial value given by distance h0 and angle θ0 for 
the extensional flow or angles φ0 and θ0 for the shear flow 
has been calculated by integration of Eqs. (11), (15) and 
(17) or (23), (27) and (28) until the distance decreases 
below its critical value hc or starts increasing (azimuth 
reaches the right angle for shear flow or angle reaches θ* 
for extensional flow). Integration was performed by the 
Cash-Karp embedded Runge Kutta method [36].  

In the calculations, the following parameters have 
been used: β = 0.075, K = 12.24, C = 1, initial integration 
step size is 10-5, δ of the embedded Runge Kutta method 
is 10-12.  

2. For extensional flow, drop pairs coalesce for 
initial angles in the range from the limit angle θ0

(m) to the 
right angle; θ0

(m) is higher than θ*. For shear flow, drop 
pairs coalesce (if ever) at a given initial polar angle θ0 
from zero azimuth to some limit value. Therefore, 
coalescence for φ0 = 0 and φ0 = π/2 is first tested using the 
procedure on level 1 for each θ0; the pairs not coalescing 
at φ0 = 0 have φM = 0, while the pairs coalescing even for 
φ0 = π/2 have φM = π/2. Otherwise, the limit angle φM (or 
θ0

(m)) was determined by the bisection method combined 
with the regula falsi method applied to a function 
expressing the final distance of drops: positive value h - hc 
at φ = π/2 for not coalesced drop pairs, negative number 
proportional to φc - π/2 for coalesced drop pairs, where φc 
is φ for that drops approached hc distance. The final step 
size of the method has been modified between 10-5 and 10-9 
to get sufficiently precise results within reasonable time. 

For extensional flow, steps 1–2 can be simply 
replaced by integration from θ* and supposed distance hc 
back to distance h0. However, sometimes this procedure 
leads to inappropriate results.  

3. For extensional flow, Pc is obtained using Eq. 
(33). For shear flow, Eq. (32) can be expressed as: 

( ) ( )( )
/ 2 / 2

3 3
0 0 0 0 0 0

0 0

sin d 1 cos 2 sin dc MP P
π π

θ θ θ φ θ θ θ = = − ∫ ∫ (34) 

This equation is solved again numerically, when 
each φM is determined as described above. In fact, the 
range of polar angles with nonzero φM is determined and 
the integration is carried out only over this range. 

The initial integration step size was 0.1, δ of the 
embedded Runge Kutta method was 10-5. These relatively 
large values cause imprecise results to be considered 
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semiquantitative only; however, since each integration point 
represents solving of an implicit equation of the function 
resulted from another numeric integration, results of better 
precision could not be obtained within reasonable time. 

3. Results and Discussion 

Fig. 1 shows that Pc for spherical drops somewhat 
decreases with increasing R. It should be mentioned that 
this decrease is a consequence of the choice of constant 
nonzero hc [30]. Pc independent of R is obtained for 
spherical drops at τm = 0 in accordance with Wang et al. 
[24] if hc = 0 is considered. The same effect of hc is also 
demonstrated for systems where flattening of drops is 
considered. Besides this effect, the shapes of Pc vs. R 
dependences for flattening drops in Newtonian blends for 
shear and extensional flows are also similar to those 
calculated by Rother and Davis [27], i.e. Pc is a constant 
relating to spherical drops for small R and starts 
decreasing steeply to a very low value for a certain critical 
Rc. For a set of parameters used in Fig. 1, the JH model 
leads to steeper decrease at smaller R than the PMI model. 
Fig. 1 shows that, if γ&  = ε&  is considered and other 
parameters are the same, Pc is lower and Rc is smaller for 
the extensional than for the shear flow. 

Elasticity of the matrix does not change the shape 
of dependence of Pc on R. Longer relaxation time τm 
reduces the probability of coalescence Pc as well as Rc 
described above. Both decreases are more rapid for the 
extensional than for the shear flow. The effect is not 
significant for τm < 1 s, but it is pronounced for τm of the 
order of seconds. It should be mentioned that a substantial 
part of commercial thermoplastics has τm < 1 s [37, 38]. 
Therefore, the effect of elasticity on flow induced 
coalescence seems to be important only for systems with a 
high-molecular-weight matrix. 

It can be seen from Fig. 2 that, while coalescence 
probabilities Pc are independent of elongation and shear 
rates for spherical particles in Newtonian systems, longer 
relaxation time leads to a decrease of Pc with increasing 
elongation and shear rates. The decrease is again more 
profound for the extensional flow induced coalescence. The 
Pc decrease is nearly linear for short relaxation times. For 
longer relaxation times, the decrease is not uniform in the 
whole range of shear or elongation rates: Pc decreases 
substantially for smaller rates; further rate growth brings 
only slight decrease or even increase in Pc. The models 
taking into account drops flattening (PMI and JH) do not 
differ from the spherical drops model for very low shear and 
elongation rates and later they provide Pc decreasing to zero, 
more steeply for longer relaxation time. For the chosen set of 
parameters, the JH model predicts steeper decrease of Pc 
starting at lower γ˙ or ε&  than the PMI model. 

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

Formula   Relax.τ
spheres  0 s  1 s  3 s  10 s
JH          0 s  1 s  3 s  10 s
PMI        0 s  1 s  3 s  10 s

Pc

R / µm

Extensional flow

Pc

R / µm

Shear flow

 
Fig. 1. Dependence of coalescence probability Pc  

on drop radius R, for different relaxation times for spherical 
particles and for flattening particles described by the partially 
mobile interface (PMI) model or the Jeelani and Hartland (JH) 

model:  extensional flow (upper plot) and shear flow (lower 
plot). Parameters used: viscosities of drops ηd and of matrix  
ηm = 1 kPa⋅s; shear or elongation rate is 0.02 s-1; interfacial 

tension is 1 mN/m, relative initial distance h0/R = 10, critical 
distance hc = 5 nm 

 
Simple test of viscosity influence on coalescence 

induced by the extensional flow for Newtonian systems is 
presented in Fig. 3. Pc for spherical drops depends only on 
viscosity ratio p. If the matrix is more viscous than drops, 
Pc is higher, and vice versa. Pc is controlled only by p also 
for flattening drops in the range of small droplet radii. The 
critical drop radius Rc, at which Pc starts decreasing 
steeply, decreases with rising values of viscosities at a 
constant p. Steep decrease in Pc is more pronounced for 
systems with higher viscosities if the same p is 
considered. For partially mobile interface, Rc increases 
with decreasing viscosity of any phase. Rc is affected 
slightly stronger by the change in drop viscosity than the 
by change in matrix viscosity. 

Fig. 4 shows what happens when the drop viscosity 
decreases at a constant ηm. For extensional flow induced 
coalescence, the Jeelani and Hartland model provides 
lower coalescence probabilities Pc than partially mobile 
interfaces for systems with equal viscosity of both phases. 
Pc approaches a limit value for immobile interface with 
increasing drop viscosity for the Jeelani and Hartland 
model, while it continues to decrease for the partially 
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mobile interface and therefore becomes lower than for the 
former model. The same result was obtained for the shear 
flow induced coalescence [30]. It is clear that the JH 
model is more reasonable than the PMI one for ηd >> ηm 
but reliability of these models for ηd ≈ ηm should be the 
subject of further investigation.  
 

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

Extensional flow

Formula  Relax.τ
spheres  0 s   0.1 s  1 s  10 s
JH          0 s   0.1 s  1 s  10 s
PMI        0 s   0.1 s  1 s  10 s

Pc

ε / s-1

Shear flow

Pc

γ / s-1  
Fig. 2. Dependence of coalescence probability Pc on elongation 
rate (extensional flow – upper plot) or shear rate (shear flow – 

lower plot) for the spherical particles model and for the 
calculations switching between this model and formulae of the 

partially mobile interface model (PMI) or the Jeelani and 
Hartland (JH) model and for different relaxation times. Drop 
size R = 0.2 μm, other parameters are the same as in Fig. 1 

 
Generally, the calculation of Pc based on the switch 

between equations for drainage of the matrix trapped 
between spherical or highly flattened droplets leads to the 
same type of its dependence on system parameter both for 
the shear and the extensional flow induced coalescence. 
This method leads to the same Pc as the calculation for 
spherical drops at small R. At a certain droplet radius Rc, 
Pc starts decreasing steeply to a negligibly small value. 
The value of Rc

 depends, besides the values of system 
parameters, on the model of interface mobility used for 
flattened droplets. The same type of the dependence of Pc 
on system parameters comes from the Rother and Davis 
theory [27] based on the assumption that flattening of the 
droplets is small but singular perturbation. It seems that 
both our theories and the Rother and Davis ones 

overestimate the steepest of the decreases of Pc with R 
because flattening of droplets increases gradually from 
zero to a high value with a rising driving force of the 
coalescence. Therefore, the value of Rc and the rate of 
decrease of Pc should be the subject of further 
investigation together with attempts to establish a reliable 
model of the interfacial mobility for flattened droplets. Pc 
decreases with increasing relaxation time, i.e. elasticity, of 
the matrix at any parameters of the system. It has been 
found that this decrease is not pronounced for τm smaller 
than 1 s-1, especially for shear flow induced coalescence. 
Therefore, using the theory of flow induced coalescence 
derived for Newtonian systems for polymer blends with 
matrixes of low to medium molecular weight does not 
cause substantial error. It should be mentioned that this 
theory has been derived for drops with the same radius. 
As a decrease in Pc has been found with the increasing 
ratio of radii of larger and smaller spherical droplets [24], 
Pc in blends with droplets polydisperse in size is smaller 
than that predicted by this theory. 

Generally, the above approach to the description 
of the flow induced coalescence can also be applied to 
aggregation of solid particles in suspensions described, 
e.g. in [39]. It should be mentioned, however, that the 
resistance against matrix drainage between solid spheres 
is substantially stronger than that between liquid droplets. 
Zero Pc is predicted for solid spheres, i.e. p → ∞, if 
molecular forces between them are not considered [24]. 
Therefore, non-negligible Pc can only be found in systems 
with strong attractive molecular forces. In this case, 
molecular forces should be specified in detail and 
explicitly added to the driving force of the coalescen- 
ce (Eq. (10) or (22)) instead of  their  consideration  by the  
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Fig. 3. Dependence of coalescence probability Pc on drop size R. 
Influence of changes of matrix and drop viscosities for spherical 
drops and for flattening drops in extensional flow described by 

the partially mobile interface model (PMI). Zero relaxation time 
(Newtonian system). The basic system with drop viscosity  

ηd = 1 kPa⋅s and matrix viscosity ηm = 1 kPa⋅s is compared with 
systems where one or both of ηd and ηm are 0.1 kPa⋅s  

or 10 kPa⋅s. Other parameters are the same as in Fig. 1. 
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Fig. 4. Dependence of coalescence probability Pc on drop  
size R. Influence of drop viscosity change for the partially 

mobile interface (PMI) and for the Jeelani and Hartland (JH) 
model. Upper plot – extensional flow, lower plot – shear flow. 
Zero relaxation time (Newtonian system), other parameters are 

the same as in Fig. 1 
 
choice of non-zero hc only. In the case of anisometric 
solid particles, their rotation before collision should be 
considered, which substantially complicates modelling of 
their coalescence. 

4. Conclusions 

The coalescence probability, Pc, in the shear and 
extensional flows has been calculated using the switch 
between equations for drainage of the matrix trapped 
between spherical or highly flattened droplets. For 
Newtonian systems, the theory provides the same shape of 
the dependences of Pc on the droplet size and shear or 
elongation rates as the theory of Rother and Davis [27]. 
Drop radius Rc, for which flattening markedly reduces the 
coalescence probability, is dramatically higher for lower 
viscosities of any phase, and slightly higher for the shear 
flow induced coalescence than for the extensional flow. 
The choice of the model of interfacial mobility used to 
describe drainage of the matrix between flattened drops 
(JH or PMI) has a strong effect on the calculated Rc value. 
Plausibility of these models for various systems should be 
the subject of further investigation.  

Increased matrix elasticity, related to the relaxation 
time of its Maxwell model, reduces the coalescence 
probability, causes its decrease with shear or elongation 

rate even for spherical particles, and causes a decrease in 
both critical droplet radius Rc and minimal shear and 
elongation rates from which Pc starts decreasing steeply. 
The effect of the matrix elasticity is stronger for 
extensional than for shear flow if equal values of shear 
and elongation rates and the same other system 
parameters are considered. 
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ПОТОКОВА ІНДУКОВАНА КОАЛЕСЦЕНЦІЯ  

В ПОЛІМЕРНИХ СУМІШАХ 
 

Анотація. Розроблена модифікована теорія коа-
лесценції індукованої екстенсіональним потоком в полімерних 
сумішах з ньютонівськими крапельками у в'язкоеластичній 
матриці. Результати теорії порівняні з результатами теорії 
зсуву поточної індукованої коалесценції. Встановлено, що 
еластичність матриці приводить до зменшення ймовірності 
коалесценції. 

 
Ключові слова: коалесценція, полімерні суміші, 

екстенсіональний потік, в'язкоеластичність. 
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