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Abstract: On the basis of electrodynamic analysis a 

considerable nonuniformity of the current density 
distribution on the perimeter of a cylindrical conductor 
of a waveguide exciter has been detected. It has been 
proved that the above mentioned nonuniformity mostly 
affects the input reactance of the exciter. Such effect is 
minimum at central location of the exciter in the 
waveguide. It rises sharply when the exciter is diplaced. 
Therefore, we come to conclusion that it is necessary to 
take into consideration the nonuniformity of the current 
density distribution when analyzing a vibroexciter. 

Key words: waveguide vibroexciter, the connection: 
line – waveguide. 

1. Introduction  
Modern programs for analyzing VHF devices are 

intended to ensure adequate accuracy of specific 
calculations. Such a necessity requires that all the 
possible impacting factors be taken into account. The 
given paper considers the nature of nonuniformity of the 
current density distribution on the surface of a 
cylindrical vibrator, and the influence of this 
nonuniformity on the input impedance of the vibrator as 
an exciter of a rectangular waveguide.  

The current density distribution over the perimeter 

of a thin vibrator ( 03,0
A

a
 ; a is the radius of the 

vibrator’s conductor; A  is the crosscut width of the 
rectangular waveguide) is practically uniform. The 
influence of a nonuniformity manifests itself in vibrators 

of enlarged diameter ( 07,0
A

a
03,0  ), as well as of 

large diameter ( 07,0
A

a
 ). It is obvious that 

inaccuracy of the input impedance’s calculation leads to 
inaccuracy in the determination of all other parameters 
of the exciter [6]. 

The current density distribution over the surface of a 
passive inductive vibrator in a rectangular waveguide 
was described in some scientific works [2 - 5]. It was 
established that in the vibrator of this type, the 

distribution of the surface current density is 
unsymmetrical with respect to the transverse coordinate 
of the waveguide. The given work considers an active 
vibroexiter when the symmetry of the structure ensures 
symmetrical distribution of the current density with 
respect to the coordinate mentioned. The reciprocity 
theorem has been applied to avoid singularity of the 
Green’s functions and to simplify the analysis. 

2. Application of the reciprocity theorem 
It has been assumed that the waveguide walls and 

the vibrator’s conductor are ideal conductors. In such 
case we may consider the vibrator’s current as a surface 

current with the density   ,x , where x  is the 

coordinate of the vibrator’s height ( 0x   on the wide 

wall of the waveguide), and the angle   is the angular 
coordinate of a point on the perimeter of the cylindrical 
vibrator, measured in the polar coordinate system 
centered on the vibrator’s axis. The elementary 

longitudal current    ad,xdIx   flows thruogh 

the elementary arc ad . The volume density of the 
current can be represented as threads of the current with 
the help of the following delta functions: 

     iixx zzyydI,x             (1) 

where y  is the transverse coordinate of the 

waveguide’s width ( 0y   on the narrow wall of the 

waveguide); z  is the coordinate of the waveguide’s 

length ( 0z   on the vibrator’s axis );  ii z,y  are the 

coordinates of the current threads’ location on the 
perimeter of the vibrator.  

It is known that the reciprocity theorem may be 
written in the form [1]: 

    
1 2V V

22x1x11x2x dV,xEdV,xE  .          (2) 

The theorem (2) is true in the given structure 
because the surface integral of the electric field intensity 
on the waveguide walls is equal to zero, and two 
symmetric arms are considered to be infinitely long. The 
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volume 1V - is the volume of a current thread on the 

vibrator surface with the current density   ,x1x ; the 

volume 2V - is the volume of a thread with the unknown 

current density   ,x2x , located on the vibrator’s axis. 

Obviously, these volumes are equal: 21 VV  . Later in 

the article, we substantiate that the electric field 

intensities are equal  2x1x EE   if the first intensity, 

induced by the current on the vibrator’s axis, is 
determined on the vibrator’s surface, and the second one, 
induced by the elementary current on the vibrator’s 
surface, is determined on the vibrator’s axis.  Thus, as 
the theorem (2) proves, the densities of elementary 
current threads both on the axis and on the surface of the 

vibrator are also equal:     ,x,x 1x2x  . The 

result obtained will serve to model the current threads on 
the vibrator’s perimeter. 

The distribution of the current density on the 
vibrator’s surface may be approximated by the sum of 

the current  oI , distributed uniformly over the 

perimeter, and of two currents  21 I,I , distributed 

harmonically, what ensures the similar distribution at 

 2 . To satisfy symmetry condition the distribution 

function must be of the same sign for 0z,0z  , 

Otherwise, when analyzing, integration provides zero 
result. The harmonic functions of this kind can be 

















2

3
sin,

2
sin


, etc., or 








2
cos


, etc. The 

longitudal current density distribution can be represented 
by the fundamental harmonic of the space distribution. 
So, the uniformly distributed component of the 
elementary current takes the following form: 

     ,xdiIadxdI oooox  , (3) 

where 

    


 dxh
h2

sin
2

1
,xdio 






  . (4) 

Similarly, we obtain  

    


 dxh
h2

sin
2

sin
2

1
,xdi1 






 






 ; 

    


 dxh
h2

sin
2

cos
2

1
,xdi2 






  ,     (5) 

where h  is the vibrator’s height. The surface current 
density now equals:  

    

 d

2

,xI
,x x ;  

        ,xiI,xiI,xiI,xI 2211oox  .  (6) 

The goal of our analysis  the currents 21o II,I . The 

necessary equations are obtained from the boundary 

condition on the vibrator’s surface: 0dEx  . The 

electric field intensity xdE  comprises not only field 

intensities induced by the current’s components in the 
vibrator, but also that of the vibrator’s power sourse. Let 
us utilize the structural model of the vibrator’s power 

source, supplying the voltage U , in the form of a delta 
generator; then the field intensity is expressed by the 

delta function:    d')x(UdEcx  . The 

boundary condition looks like:  

.0dEdEdEdE cxx2x1ox                 (7) 

Given that the field intensities can be written as 

products  d),x(eIdE oooox  , etc, where 

 120o   Ohm is the wave impedance of free space, 

their scalar products with the current ),x(dio   may be 

written for such normalized unknown values: 

UIXUIX oooo /;/ 11   , etc. Thus, the 

equation (7) takes the following form:  

 

     
   

     

1 1

2 2

( , ) , , , , ,

, , ,

' , ,

o o o o

o

o

X e x d di x X e x d di x

X e x d di x

x d di x

     

  

     

 

 

 

(8) 

The scalar products in the equation (8) are 
determined by the surface integral taken through the 

vibrator’s surface  h...0x;2...0   . Such 

products can be considered as the sum of the scalar 
products of all elementary currents on the vibrator’s 
perimeter and the elementary electric field intensity for 
the x-coordinate only. The iterated integration of the 
equation (8) over the vibrator’s perimeter is the very sum 
of scalar products of the elementary intensities induced 
by all elementary currents. As a result the equation (8) is 
expressed as: 

1AXAXAX 3,122,111,1o               (9) 

Equations similar to (9) can be written for all the 
three vibrator’s currents, and their solutions provide 
sought unknown values. The input impedance of the 

vibrator is determined as the ratio of the voltage U  to 
the mean perimeter value of the current.  

148

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Distribution of Current Density on the Perimeter of a Cylindrical Conductor… 

3. Uniform distribution of current density  
Let us show the application of the above-mentioned 

algorithm on the example of uniform distribution of the 
current density (3), (4) over the vibrator perimeter. We 

count the angular coordinate   off from the transversal 

axis of the waveguide  y . We choose an elementary 

current (a thread) at the point ii z,y  on the vibrator’s 

perimeter where 

 ;cosadyi  sinazi  . (10) 

where d is the distance between the vibrator’s axis and 
the narrow waveguide’s wall (i.e. the origin of the 
coordinate system). We express the volume current 
density on the vibrator’s axis according to the formula 
(4) by using delta functions: 

        2 , sin
2 2

o
x

I
x h x d y d z

h

   


    
 

(11) 

Both the magnetic vector potential and the electric 
field intensity may be found by using the known 
formulae [1]:  

   ;'dV'r)'r|r(GA x
'V

xox    

 










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 x
2

2
x

2

oo
x Ak

x

A

j

1
E


, (12) 

where   is the circular frequency of the current; 

oo ,  are the permittivity and permeability of free 

space; oo
2k  ;  'r|rGx  is the component of 

the tensor Green’s function for a rectangular waveguide 
[1]:  
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m y n x n x
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 

 

    
 

            
     


,(13) 

where B  is the height of the waveguide wall 

 AB  ; 2/1n   for 0n  , 1n   for 0n  ; 

 z,y,xr  are the coordinates of a point of the field, 

 'z,'y,'x'r  are the coordinates of a point of the power 

source;  'z,'y,'x'V  is the volume taken by the 

source currents;   is the propagation constant of the 

wave in the waveguide: 

 2
22

k
B

n
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m

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
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 . (14) 

On the basis of the expressions (10) - (14) we obtain 

the electric field intensity at the point 
 ii z.y

 of the 
vibrator’s perimeter, induced by the electric current on 
the vibrator’s axis: 
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where  
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
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B
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  (16) 

The expression (15) also is true in the case of 
determination of the electric field intensity on the 
vibrator’s axis. In such case the vector potential is 

determined at 0z,dy ii  , and the coordinates of the 

field point  z,y  are given by the formulae (10). This 

has proved the appropriateness of the reciprocity 
theorem application. 

The scalar product in the equation (8) can be 
obtained by integrating the products of the expressions 
(15) and (4) through the vibrator’s surface 

(  2...0;h...0x  ): 
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

 , (17) 

where  

     

dzexp
A

ym
sinn,mF i

2

0

i
o 






  . (18) 

The iterated integration over the angle   gives us 

the coefficient 1,1A  that is present in the equation (9): 

    
2

2 2
1,1

1 0

2
sin ,

2
n

o
m n

j B n m d
A F n k F m n

A B A
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 

 

              
  (19) 

The right part of the equations (8) and (9) has the 
form: 

  


 d
2

1
,xdi,d)'()x( o  ; (20) 

The solution of the equation (9), if 0II 21  , 

gives the ratio oX , its inverse negative value is equal to 

the normalized input vibrator’s impedance 

  1,1oo AX/1/Z   
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if the current density is uniformly distributed. The 

obtained result characterizes the influence of a vibrator’s 

conductor radius. By using the above given algorithm 

one can determine the input vibrator’s impedance, whose 

conductor has a cross section other than circular. 

4. Nonuniform distribution of current density 
It has been suggested above to describe the 

nonuniform distribution of the current density by the 

sum of the current (3), (4), distributed uniformly, and 

two other currents (5), distributed harmonically. 
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Fig. 1. The distribution of the current density 

maxxx I/)(I)t(F   over the vibrator’s perimeter 

 

for 17,0s  ; ot  . )t(1F  

for ;3,0e;6,0q  )t(2F , )t(3F   

for 4,0e  ; .8,0;6,0q     

In a linear system, the fields induced by each 

particular current can be considered separately. Let us 

apply the above suggested algorithm to determine the 

current 1I . As a result, the function  2/sin   of the 

current distribution over the perimeter appears in the 

expression for the electric field intensity (15). That is 

why the scalar product  ,xdi,dE 1x1  is 

complemented by the factor  n,mF1 : 
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dzexp
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  . (21) 

Obviously, the scalar product  ,xdi,dE 1ox  

includes the factor  n,mF 1o  with the function 









2
sin


 raised to the first power, and the product 

 ,xdi,dE 1x2  includes the factor  n,mF12 : 

    

dzexp
A

ym
sin

2
cos

2
sinn,mF i

2

0

i
12   .(22) 

For the extranal intensity we obtain: 

  



2

d

2
sinU,xdi,dE 1cx 






 . (23) 

After the second integration, the right part of the 

expression (22) equals /2U  both for the function 

2
sin


 and the function

2
cos


.  

The given recommendations allow us to formulate 
for each distribution function an equation like (9), and 
the solution of the simultaneous equations provides the 

sought currents 21o I,I,I . 

5. Numerical examples and conclusions 
According to the above considered algorithm the 

distribution of the current density over the surface of a 
cylindrical vibrator located in a rectangular waveguide 
has been computed. The parameters of the structure are 

written in the normalized form: 44.0A/B  , 

where B is the height of the waveguide: AB  ; 

,7.0B/h  where h is the height of the vibrator. 

The variable parameters are A/de  , where d  is the 

distance between the location of the vibrator’s axis and 

the narrow waveguide’s wall; A/as  ; A2/q o  

is the normalized length of a transmitting wave.  
As we have already mentioned, the structure of the 

vibrator power source has been represented by the delta-
generator model. The edge effects have also been 
neglected, i.e the vibrator is assumed to be tubular one 
with thin walls.  We do not take into consideration the 
effect of the transverse electric currents on the vibrator’s 
surface. The distribution of the current density is 
approximated by the functions (4) and (5). 

Fig. 1 illustrates the distribution of the current 
density module on the perimeter of the cylindrical 
vibrator. Maximum of the current density is located on 
the closer side of the waveguide’s wall. Such a result is 
logical due to the proximity effect. 
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Fig. 2. Dependence of the input reactance ( o/X'X  )  

on 0  ( A2/q o ). 

The nonuniformity of the current density distribution 
increases when the transmitting wave’s length decreases, 
the vibrator’s diameter increases, and when the distance 
between the vibrator and the wall decreases. The 
nonuniformity of current density distribution on the 

perimeter remains even when 1.0s  . 
The input impedance of the vibrator is determined as 

the ratio of the voltage to the total current defined as the 
integral of the current density along the vibrator’s 
perimeter.  The nonuniformity of the current density 
distribution has a poor influence on the working 
component of the input impedance. With respect to the 
uniform distribution, this component decreases up to 
about 10%. However, the nonuniformity of the current 
density distribution considerably affects the input 
reactance of the vibrator. This impact increases with the 
increasing of the vibrator’s diameter, with the 
descreasing of the transmitting wave’s length, and with 
the decreasing of the distance between the vibrator’s axis 
and the narrow waveguide’s wall, as Fig. 2 shows. (In 

Fig. 2 the curves 1, 2, 4, 5 correspond to ;17.0s   the 

curve 3 corresponds to ;1.0s   the curves 1, 2 

correspond to ;3.0e   the curves 3, 4, 5 correspond to 

;4.0e   the curves 1, 3, 4 are valid for the nonuniform 

distribution, the curves 2, 5 are valid for the uniform 
distribution of the current density). Especially, with values 
of the parameter e  getting smaller, the reactance value, 
determined by taking into consideration the nonuniformity 
of the current density distribution, can noticeably differ 
from its value under uniform distribution. The central 

location of the vibrator ( 5,0e  ) “drags” the linear 

dependences of the reactance on the vibrator’s radius closer 
to each other (Fig. 3). (Fig. 3 depicts curves for 6.0q : 

the curves 1, 2 correspond to ,3.0e   the curves 3, 4 

correspond to ;4.0e   the curves 1, 3 are valid for the 

nonuniform distribution, the curves 2, 4 are valid for the 
uniform distribution of the current density). 

 
Fig. 3. Dependence of the input reactance on the vibrator’s 

radius A/as  .  

The given examples of the analysis show that it is 
necessary to take into account the effect of 
nonuniformity of the current density distribution on the 

perimeter of a waveguide’s vibrator, when 07,0s  . 

Assumption of solely uniform distribution leads to 
significant errors, primarily, in determining the input 
reactance of a vibrator.  
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РОЗПОДІЛ ГУСТИНИ СТРУМУ  
НА ПЕРИМЕТРІ ЦИЛІНДРИЧНОГО 
ПРОВІДНИКА ВІБРАТОРНОГО 
ЗБУДЖУВАЧА ХВИЛЕВОДА 

Й. Захарія 

На основі електродинамічного аналізу виявлено значну 
нерівномірність розподілу густини струму по периметру 
циліндричного провідника збуджувача хвилевода.  

Встановлено, що згадана нерівномірність розподілу 
найбільше впливає на вхідний реактанс збуджувача. Такий 
вплив є найменшим при центральному розташуванні 
збуджувача у хвилеводі. Він різко зростає при зміщенні 
збуджувача. Цим обгрунтовано висновок про необхідність 
враховування нерівноморністі розподілу густини струму 
при аналізі вібраторного  збуджувача. 
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