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Abstract: On the basis of electrodynamic analysis a
considerable nonuniformity of the current density
distribution on the perimeter of a cylindrical conductor
of a waveguide exciter has been detected. It has been
proved that the above mentioned nonuniformity mostly
affects the input reactance of the exciter. Such effect is
minimum at central location of the exciter in the
waveguide. It rises sharply when the exciter is diplaced.
Therefore, we come to conclusion that it is necessary to
take into consideration the nonuniformity of the current
density distribution when analyzing a vibroexciter.
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1. Introduction

Modern programs for analyzing VHF devices are
intended to ensure adequate accuracy of specific
calculations. Such a necessity requires that all the
possible impacting factors be taken into account. The
given paper considers the nature of nonuniformity of the
current density distribution on the surface of a
cylindrical vibrator, and the influence of this
nonuniformity on the input impedance of the vibrator as
an exciter of a rectangular waveguide.

The current density distribution over the perimeter

a
of a thin vibrator (K <003; a—is the radius of the

vibrator’s conductor; A— is the crosscut width of the
rectangular waveguide) is practically uniform. The
influence of a nonuniformity manifests itself in vibrators

a
of enlarged diameter (0,03 < A <0/07), as well as of

a
large diameter (K20,07). It is obvious that

inaccuracy of the input impedance’s calculation leads to
inaccuracy in the determination of all other parameters
of the exciter [6].

The current density distribution over the surface of a
passive inductive vibrator in a rectangular waveguide
was described in some scientific works [2 - 5]. It was
established that in the vibrator of this type, the

distribution of the surface current density is
unsymmetrical with respect to the transverse coordinate
of the waveguide. The given work considers an active
vibroexiter when the symmetry of the structure ensures
symmetrical distribution of the current density with
respect to the coordinate mentioned. The reciprocity
theorem has been applied to avoid singularity of the
Green’s functions and to simplify the analysis.

2. Application of thereciprocity theorem

It has been assumed that the waveguide walls and
the vibrator’s conductor are ideal conductors. In such
case we may consider the vibrator’s current as a surface

current with the density 77(X,9), where X — is the
coordinate of the vibrator’s height (X =0 on the wide
wall of the waveguide), and the angle & — is the angular
coordinate of a point on the perimeter of the cylindrical

vibrator, measured in the polar coordinate system
centered on the vibrator’s axis. The elementary

longitudal current dl, =7 (x,0)ad@ flows thruogh
the elementary arc ad& . The volume density of the

current can be represented as threads of the current with
the help of the following delta functions:

5x(X'9):d|x5(y_yi)5(z_zi) )
where Y — is the transverse coordinate of the
waveguide’s width (Y =0 on the narrow wall of the
waveguide); Z is the coordinate of the waveguide’s
length (Z =0 on the vibrator’s axis ); (yi ,Zi) are the

coordinates of the current threads’
perimeter of the vibrator.

It is known that the reciprocity theorem may be
written in the form [1]:

IEx2§xl(X’9)dVl = IExlé‘xZ(X’H)dVZ . ()
Vi v,

location on the

The theorem (2) is true in the given structure
because the surface integral of the electric field intensity
on the waveguide walls is equal to zero, and two
symmetric arms are considered to be infinitely long. The
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volume V, - is the volume of a current thread on the
vibrator surface with the current density &,,(X,8); the
volume V, - is the volume of a thread with the unknown
current density &, (X,8) , located on the vibrator's axis.

Obviously, these volumes are equal: V, =V, . Later in
the article, we substantiate that the electric field
intensities are equal (EXl = Exz) if the first intensity,

induced by the current on the vibrator's axis, is
determined on the vibrator’ s surface, and the second one,
induced by the elementary current on the vibrator's
surface, is determined on the vibrator's axis. Thus, as
the theorem (2) proves, the densities of elementary
current threads both on the axis and on the surface of the

vibrator are aso equal:J,,(x,0)=5,(x,0). The
result obtained will serve to moddl the current threads on
the vibrator’s perimeter.

The distribution of the current density on the
vibrator's surface may be approximated by the sum of

the current (Io), distributed uniformly over the

perimeter, and of two currents (Il, Iz), distributed
harmonically, what ensures the similar distribution at
6 > 27 . To satisfy symmetry condition the distribution
function must be of the same sign for 2<0,z>0,

Otherwise, when analyzing, integration provides zero
result. The harmonic functions of this kind can be

(gaf) « <

longitudal current density distribution can be represented
by the fundamental harmonic of the space distribution.
So, the uniformly distributed component of the
elementary current takes the following form:

diy = 7,(x)add = 1.di(x.0), (3

, etc. The

where

27

dio(x,a):ign(%(h— x)jde. @

Similarly, we obtain

di, (x,0) = isin(gj sin(i(h _ x)jde ;

2 2h

, 1
dIZ(X,H)ZE

z sin(l(h-x)]de, 5

COsS—
2h

where h— is the vibrator’s height. The surface current
density now equals:
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I,(x,0
U(X’H):Mde;
2
1,(x,0)=1,i,(x,0)+ Li,(x,0)+ 1,i,(x,0). (6)
The goal of our analysis the currents |, 1,. The
necessary equations are obtained from the boundary
condition on the vibrator's surface: dE, =0. The
eectric field intensity dEX comprises not only field

intensities induced by the current’s components in the
vibrator, but also that of the vibrator’s power sourse. Let
us utilize the structural model of the vibrator's power

source, supplying the voltage U , in the form of a delta
generator; then the field intensity is expressed by the

delta function: dE, =US(x)5(0—&)d@. The
boundary condition looks like:

dE, +dE,, +dE, +dE, =0. (7

Given that the field intensities can be written as

products dE_, =1,p.6,(X,0)dE, etc,

P, =120z Ohm is the wave impedance of free space,

where

their scalar products with the current di ( X, ) may be
unknown  values:
etc. Thus, the

written for such normalized
X = IOpOIU; X1 = IlpolU ,

o]

equation (7) takes the following form:

X,(&,(x0)d6,d, (x.0))+X,(&(x0)do,d,(x0))+
+X,(6(%6)d6,diy (%)) = )
=—{5(x)5(0-0)d6,d,(x.0))

The scalar products in the equation (8) are
determined by the surface integral taken through the

vibrator's  surface (9 =0..27r; X = O...h). Such

products can be considered as the sum of the scalar
products of al elementary currents on the vibrator's
perimeter and the elementary electric field intensity for
the x-coordinate only. The iterated integration of the
equation (8) over the vibrator’s perimeter is the very sum
of scalar products of the elementary intensities induced
by all elementary currents. As aresult the equation (8) is
expressed as:

oni,l + X1A1,2 + X2A1,3 =-1 9

Equations similar to (9) can be written for al the
three vibrator's currents, and their solutions provide
sought unknown values. The input impedance of the
vibrator is determined as the ratio of the voltage U to
the mean perimeter value of the current.
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3. Uniform distribution of current density

Let us show the application of the above-mentioned
algorithm on the example of uniform distribution of the
current density (3), (4) over the vibrator perimeter. We

count the angular coordinate @ off from the transversal
axis of the waveguide (y) We choose an elementary
current (a thread) at the pointy;,z on the vibrator's
perimeter where

y, =d+acosd; z =asing . (10)

where d is the distance between the vibrator's axis and
the narrow waveguide's wall (i.e. the origin of the
coordinate system). We express the volume current
density on the vibrator’s axis according to the formula
(4) by using delta functions:

52X(x,e)='E°gn(%(h-x)jdea(y_d)5(z) (1)

Both the magnetic vector potential and the electric
field intensity may be found by using the known
formulae[1]:

A==t [G(TIT (M aV';

E :;[52? +k2AK], (12)

Joue, | OX
where @ — is the circular frequency of the current;
Eorlly —
space; K = we 1, ;

are the permittivity and permeability of free

G,(F| )~ is the component of
the tensor Green's function for a rectangular waveguide

[1]:

I’ r'

23> an|

PH Ny j 13)
Xsin(mzyjcos( n;;x jcos[ ”’éxjexp(—ﬂz— z))

where B— is the height of the waveguide wall
(B<A); g,=1/2 for n=0, &, =1 for n>0;

r‘(x,y,z) are the coordinates of a point of the field,

r (X Y.z ) are the coordinates of a point of the power

source; V' ()C Y ,Z)— is the volume taken by the
source currents; ¥ — is the propagation constant of the
wave in the waveguide:

SGROES

(14)
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On the basis of the expressions (10) - (14) we obtain

the electric field intensity a the point (%2) o the
vibrator's perimeter, induced by the electric current on

the vibrator’ s axis:
[( ]2 kzjs”(mﬁdj (15)
xcos( ngXan(w;y‘ jexp(—y\z |)do

where

BF(n)= Bhij)B cos(%} s n(%(h - X )jd(%j (16)

The expression (15) aso is true in the case of
determination of the electric field intensity on the
vibrator's axis. In such case the vector potentia is

determined at Y, =d,Zz =0, and the coordinates of the

X ) W&, 271-Am:ln—0 7/

field point (y,z) are given by the formulae (10). This
has proved the appropriateness of the reciprocity
theorem application.

The scalar product in the equation (8) can be
obtained by integrating the products of the expressions
(15) and (4) through the vibrator's surface

(x=0..h;8=0..27):
<eo(x,¢9)d¢9,dio(x, )>:
nr

_ 12/15 33 ey {[

Am—ln 0 /
><Fo(

| i) 0D
,n)dg
where
2
F,(mn)= | sin(%jexp(— ;/|;|)d6?. (18)
0

The iterated integration over the angle & gives us
the coefficient A ; that is present in the equation (9):

o] e

The right part of the equations (8) and (9) has the
form:

j2AB< N 2 (19)
As= 27 A zz

mein=0 7

—(8(X)5(0 - )do,di,(x6)) = —Zide . (20)
JT

The solution of the equation (9), ifl, =1,=0,
gives the ratio X, its inverse negative value is equal to

the normalized input vibrator’ s impedance

(Z/po =-1/ Xo = _Al,l)
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if the current density is uniformly distributed. The
obtained result characterizes the influence of a vibrator’'s
conductor radius. By using the above given algorithm
one can determine the input vibrator’ s impedance, whose
conductor has a cross section other than circular.

4. Nonuniform distribution of current density

It has been suggested above to describe the
nonuniform distribution of the current density by the
sum of the current (3), (4), distributed uniformly, and
two other currents (5), distributed harmonically.

90

FL(t)

R(t)

R3(t)

Fig. 1. The distribution of the current density
F(t)= || (0)]1 Xmax| over the vibrator’s perimeter

for s=017;t=60°.F1(t)

for =06;e=03; F2(t),F3(t)

for e=04;9=06;08.

In a linear system, the fields induced by each

particular current can be considered separately. Let us
apply the above suggested algorithm to determine the

current |, . As a result, the function sin(@/ 2) of the

current distribution over the perimeter appears in the
expression for the electric field intensity (15). That is

why the scalar product <dE1x,di1(X,H)> is

complemented by the factor F,(m,n):

F(mn)= T(si r(ng s {%) exd—7/z|)do. (21)

0
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Obviously, the scalar product (dE,,di,(x,0))

includes the factor F,,(m,n) with the function
sin(gj raised to the first power, and the product

(dE,, ,di,(x,0)) includesthefactor F,(m,n):

%
COS—
2

F,(mn)= (j:z sing sin%exp(— y|;|)d0.(22)

For the extrana intensity we obtain:

. . (6)\dg
(dE,,di;(x,0)) =U sm(i)z. (23)

After the second integration, the right part of the
expression (22) equals U2/ 7z both for the function

.0 o
SmE and the function COSE

The given recommendations allow us to formulate
for each distribution function an equation like (9), and
the solution of the simultaneous equations provides the

sought currents |, 1,1 ,.

5. Numerical examplesand conclusions

According to the above considered algorithm the
distribution of the current density over the surface of a
cylindrical vibrator located in a rectangular waveguide
has been computed. The parameters of the structure are

written in the normalized form: ¢ =B/ A=0.44,

where Bis the height of the waveguides B < A;
v =h/B=0.7,where his the height of the vibrator.

The variable parametersare e=d / A, where d isthe
distance between the location of the vibrator's axis and

the narrow waveguide'swall; S=a/l A; q=4,/ 2A

isthe normalized length of atransmitting wave.

As we have aready mentioned, the structure of the
vibrator power source has been represented by the delta-
generator model. The edge effects have aso been
neglected, i.e the vibrator is assumed to be tubular one
with thin walls. We do not take into consideration the
effect of the transverse electric currents on the vibrator’s
surface. The distribution of the current density is
approximated by the functions (4) and (5).

Fig. 1 illustrates the distribution of the current
density module on the perimeter of the cylindrica
vibrator. Maximum of the current density is located on
the closer side of the waveguide’'s wall. Such a result is
logical due to the proximity effect.
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Fig. 2. Dependence of the input reactance ( X'= X / p)
on Ay, (=4, 1 2A).

The nonuniformity of the current density distribution
increases when the transmitting wave's length decreases,
the vibrator’s diameter increases, and when the distance
between the vibrator and the wall decreases. The
nonuniformity of current density distribution on the
perimeter remains even when S< 0.1.

The input impedance of the vibrator is determined as
the ratio of the voltage to the total current defined as the
integral of the current density along the vibrator's
perimeter. The nonuniformity of the current density
distribution has a poor influence on the working
component of the input impedance. With respect to the
uniform distribution, this component decreases up to
about 10%. However, the nonuniformity of the current
density distribution considerably affects the input
reactance of the vibrator. This impact increases with the
increasing of the vibrator's diameter, with the
descreasing of the transmitting wave's length, and with
the decreasing of the distance between the vibrator's axis
and the narrow waveguide’'s wall, as Fig. 2 shows. (In

Fig. 2 the curves 1, 2, 4, 5 correspond to S=0.17; the
curve 3 corresponds to S=0.1; the curves 1, 2
correspond to € = 0.3; the curves 3, 4, 5 correspond to
e=0.4; the curves 1, 3, 4 are vdid for the nonuniform
digribution, the curves 2, 5 are valid for the uniform
distribution of the current density). Especially, with values
of the parameter € getting smaller, the reactance value,
determined by taking into consideration the nonuniformity
of the current density distribution, can noticesbly differ
from its value under uniform digtribution. The central
location of the vibrator (€=05) “drags’ the linear
dependences of the reactance on the vibrator’s radius closer
to each other (Fig. 3). (Fig. 3 depicts curves for = 0.6:
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the curves 1, 2 correspond to €= 0.3, the curves 3, 4

correspond to € = 0.4; the curves 1, 3 are valid for the

nonuniform distribution, the curves 2, 4 are valid for the
uniform distribution of the current density).
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Fig. 3. Dependence of the input reactance on the vibrator’s
radius S=a/ A.

The given examples of the analysis show that it is
necessary to take into account the effect of
nonuniformity of the current density distribution on the

perimeter of a waveguide's vibrator, when s> 007 .

Assumption of solely uniform distribution leads to
significant errors, primarily, in determining the input
reactance of avibrator.
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PO3NOAITI TYCTUHHU CTPYMY
HA HEPUMETPI IMJITHAPUYHOI'O
IMPOBIJJHUKA BIBPATOPHOI'O
3BY’/KYBAYA XBHUJIEBOJIA

1. 3axapis

Ha OCHOBi eNeKTpOIMHAMIYHOTO AHAJI3y BWSBICHO 3HAYHY
HEpIBHOMIPHICTE PO3MOAUTy TYCTHHH CIPYMy IO HEpHMETpY
[T HPUYHOTO MPOBITHIKA 30yIKyBayda XBHIIEBO/A.

BcraHoBneHo, 110 3rajaHa HEpPiBHOMIPHICTH pPO3MOIITY
Haif0UIbIIe BIUIMBAE HA BXiMHUIA peakTaHc 30ymxyBada. Takuit
BIUIMB € HalMEHIIUM IPH ILEHTPAJbHOMY pO3TAIlyBaHHI
30ymKyBada y XBHIEeBOAl. BiH pi3ko 3pocrae mpu 3MimeHHi
30y/kyBada. [luM 0OrpyHTOBaHO BHCHOBOK MPO HEOOXIiHICTh
BPAaxOBYBaHHS HEPIBHOMOPHICTI PO3MOAUTY TYCTHHH CTPYMY
Tpu aHaii3i BibpaTopHOro 30yKyBaua.
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