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Abstract: In the paper it is shown that differential 

equations describing an electromagnetic field in solid 
immovable media based on the vectors of intensities of 
electric or magnetic fields in most cases practically 
coincide with those based on the vector-potential of the 
electromagnetic field. This special feature essentially 
simplifies practical analysis, beginning with the 
determination of border conditions. The expressions for 
static and differential parameters of the medim are given. 
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Introduction 
The analysis of electromagnetic processes in a solid 

medium is based on partial differential equations 
describing vectors or potentials of the electromagnetic 
field. The choice of equations in every given case 
depends on a minimum number of differential equations 
which are to be integrated, or on the method of deter-
mining border conditions, or, sometimes, on the 
possibility of determining medium parameters. In the last 
case, as a rule, we must resort to a linear coordinate 
transformation [16]. The choice of differential equations 
sometimes depends on the degree of detalization of 
physical properties of the medium, for example, non-
linearity, anisotropy etc. In the paper it is shown that 
differential equations of electromagnetic field in the 
linear isotropic medium written using different vectors 
or potentials fully coincide with each other. In non-linear 
or isotropic media they can differ only in matrixes of 
differential or static medium parameters. Taking this 
symmetry into consideration, we can considerably 
simplify the analysis not only on the stage of forming a 
specific boundary problem of space-time electro-
dynamics but in the main while creating algorithms and 
applied computer programs. In that case the algorithm of 
integration of differential equations set for some vector 
may be fully used for integration of differential equa-
tions set for another vector or potential. The proposed 
method of analysis has been thoroughly investigated 
during the computer simulation. 

We obtain theoretical results step by step: at first for 
a linear isotropic medium, later on the results are given 
in full form for a non-linear isotropic and anisotropic 

media as well as in form of quasi-stationary 
approximation. 

Linear isotropic medium. Maxwell’s equations, 
which belong to the main differential equations of linear 
media electrodynamics, can be written using vectors of 
an electromagnetic field, 

;
t


    


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where E, H – vectors of the intensities of electric and 
magnetic fields;  – conductivity;  – permittivity;  – 
reluctivity. 

We obtain calculating equations by excluding the 
vector E or the vector H.  

So, having applied the operator    to (2), we get as 
follows  

1
( ).

t


   

 
E H                  (3) 

Having substituted the right part of (3) for its 
expression (1), we receive the calculating differential 
equation for the vector of electric field intensity 

2

2
.

t t

   
  

   
E E E                (4) 

Having obtained the spatial-time distribution of the 
vector E as a result of integration of (4) at given initial 
and boundary conditions, we get the vector H as a result 
of time integration of (2). The vectors of electric 
induction D and magnetic induction B are obtained 
according to the expressions as follows 

/ ; B H                                   (5) 

. D E                                   (6) 

Now we apply the operator    to (1): 

= ( ).
t


   


H E E                (7) 
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Having substituted the operator in the right part of 
(7) for its expression (1), we obtain a calculating 
differential equation for the vector H: 

2

2
.

t t

   
  

   
H H H                (8) 

In this case we can find the vector E according to 
(1), and other vectors – according to (5), (6).  

Using the vector A and the scalar potentials  of 
electromagnetic field, we should avoid applying 
Lorenz’s gauge which does not simplify the analysis in 
non-linear media, but, on the contrary, complicates it. In 
this case it is reasonable to accept the gauge [8–10] 

0  .                                 (9) 

Then we can find the vectors B and H according to 
the spatial-time distribution of the vector A: 

 B A ;                          (10) 

E = – A/t.                         (11) 

Having substituted the vectors in (1) for the 
expressions (5), (10), and (11), we get the calculating 
differential equation of the vector potential  

2

2
.

t t

   
  

   
A A A              (12) 

As we can see, calculating differential equations of 
electromagnetic field describing vectors (4), (8) and 
potential (12) are identical. By the way, (4) and (12) 
coincide in form not only in a vector entry, but also 
being applied in this or that coordinate system, what is 
the consequence of the spatial colinearity of vectors A 
and E according to (11). Equation (8) in this or that 
coordinate system may differ from the first two in the 
consequence of a probably different spatial orientation of 
the vector H in comparison with the orientation of the 
vectors A and E. 

Non-linear anisotropic medium. In a non-linear 
anisotropic medium the expressions (5), (6) are more 
complicated [10, 11] 

H = NB;                               (13) 

D = E,                                (14) 
where N is the matrix of static reluctivities;  is the 
matrix of static permittivities. 

Taking into consideration (13), (14), the equations 
(1), (2) are more complicated as well 

d ;
t


    


EH E                    (15) 

1
d ,

t
 

  

HE                         (16) 

where  is the matrix of static conductivities; d  is the 

matrix of differential permittivities; Nd is the differential 
reluctivities matrix. 

Having substituted the vectors in (15) for the 
expressions (10), (11), (13), we obtain an analogous 
differential equation for the vector potential A 

2

d 2
.

t t

 
    

 
A A A              (17) 

Thereby, in formula (17) we can see matrix N of 
static reluctivities, matrix Г of static conductivities and 

matrix d of differential permittivities. 

Unfortunately, analogous differential equations for 
vectors of electric and magnetic fields cannot be 
obtained in acceptable form using formula (17). They are 
quite complicated and do not have desirable symetry. By 
the way, the solutions here are simpler for vectors B, D, 
but it seems to be meaningless to give here these 
expressions. It is possible to be done for vector-potential 
A only, because it alone is the fundamental vector of 
electromagnetism. The field vectors , , ,D E B H  are 

spatial-time derivatives of A (10), (11), (13), (14). It is 
confirmed by the recent investigations [3, 17], which are 
made on the basis of the leading principles of energy 
variation. It can be shown that by using the Hamilton-
Ostrogradsky principle we can obtain only equation (17). 

If gyro effects are not taken into consideration, the 
matrixes of static parameters S in main anisotropy axes, 
as a rule, are diagonal [5] 

diag( , , ).x y zS s s s                       (18) 

The elements of matrix N (18) are found using the 
B-H curve in the main axes of magnetization [8] 

( ) ( ) ( ), , , ,i iH H B i x y z                  (19) 

where B is a module of B  

2 2 2 ,x y zB B B B                          (20) 

as such derivatives 

( )( )/ , , , .i
is H B B i x y z                      (21) 

Matrix S loses its diagonal form only by rotating 
main coordinate axes by the angle . It is done on 
grounds of linear transformation matrixes [17]. 

The formulae of forth and back coordinate 
transformations have a canonical form  

1 ,
    Пλ λ λ λ                  (22) 

where λ  is a vector; П is a transformation matrix. In 
2D-dimensional space we have 
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1cos sin cos sin
; ,

sin cos sin cos
    

   
    

 (23) 

It is important that П-1 = Пt.  

So, by rotating around the z-axe this matrix takes the 
form [17]  

 
 

2 2

2 2

cos sin sin cos

sin cos sin cos

x y x y

x y x y

z

s s s s

s s s s

s

    

        (24) 

The determination of matrixes of differential 
parameters D is a vastly difficult problem as opposed to 
matrixes of static parameters S. It is convenient to use 
there an expression, which connects matrixes S and D [7] 

( )
( ) ( ),

S X
D X X S X

X


 


                 (25) 

where X = ( , , )x y z tB B B  is a column of arguments. 

The matrix Nd according to (21), (25) is always 
filled [10, 19] 

...

D=N ...

...

...

... ,

...

2 2 2
x x x x x x x y

2 2 2
d y y y x y y y y

2 2
z z z x z z z y

2
x x x z

2
y y y z

2 2
z z z z

s +(d - s )B /B (d - s )B B /B

= (d - s )B B /B s +(d - s )B /B

(d - s )B B /B (d - s )B B /B

(d - s )B B /B

(d - s )B B /B

s +(d - s )B /B

     (26) 

where 

 ( ) ( ) / , , , .i
id dH B dB i x y z   (27) 

The elements (21) are main static reluctivities, the 
elements (27) are main differential reluctivities of the 
anisotropic medium in main axes of ferromagnetic 
magnetization. In an isotropic medium 

;x y z x y zs s s s d d d d      and matrixes (18) and 

(26) are simpler. 
In an isotropic non-linear medium the differential 

equations (17) are much more simpler, since the 
matrixes of static parameters Г, N are reduced to an 
identity matrix multiplied by scalar values ,  , and 

differential parameters d  (26) are simplified to d , 

because 
;x y z x y zs s s s d d d d      . 

Then we get 
2

d 2
.

t t

 
    

 
A A A            (28) 

Quasistationary approach. The largest interest 
concerning the differential equations in the non-linear 

anisotropic media is taken in a quasistationary approach 
( / 0)t  D . In such a case we obtain 

.
t


 


A A                    (29) 

where 1    is the matrix of static resistivity. 
In the quasi-stationary approach there is a possibility 

to get differential equations for vectors of electric and 
magnetic fields analogous to (29).  

Solving (15) with respect to E, we receive 

. E H                           (30) 
Having expressed (16) in a natural form 

/ t   E B                         (31) 

and having put into this expression eqn. (30) and eqn. 
(13), we get 

; .
t


   


B H H B             (32) 

The equations (32) are irreplaceable in practical 
computations, but according to (29) we may get another 
form 

d .
t


  


H H                     (33) 

Having differentiated (30) with respect to t, we 
obtain 

                             .dt t

 
  

 
E H

                    (34) 

Having solved (31) concerning the vector H and 
substituting the obtained result into (34) we get finally 

d ;dt


   


E E                   (35) 

Naturally, the equations (29), (32), (35) in non-linear 
isotropic media will be simpler.  

In practical analysis we prefer to apply the 
equation of vector-potential (29) and the equation of 
vector magnetic induction (32), because they contain 
matrixes of static medium parameters, which are 
simpler than analogous matrixes of differential 
parameters in equation (35).  

The results obtained present not only formal 
mathematical exercising in electromagnetic field 
theory, but they give the possibility to grasp the idea 
of nature of electromagnetic phenomena in solid 
media from a different point of view. They also help 
interested persons get their bearing in the 
complicated labyrinth of numerical analysis applied 
to programming and computation.  

131

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Vasyl Tchaban 

 

References 
1. Ida N., Bastos J. P. A. Electromagnetics and 

calculation of fields.– N. Y.: Springer–Verlag.– 1997. 
2. Kiwitt J. E., Huber A., Reiß: Modellierung 

geblechter Eisenkerne durch homogene anisotrope Kerne 
für dynamische Magnetfeldberechnungen // Electrical 
Engineering. –1999. –№81. – P. 369-374.  

3. Tchaban A. Mathematical Modeling of oscil–lating 
processes in electromechanical systems. Lviv: T. Soroka 
publisher house.–  2008. – 328 p.[Ukr] 

4. Tchaban V. Algorithm of solution of two point 
bondary value problem for differential equations of 
electrodynamics of movable media // Technical News.– 
2007. – No.1(25), 2(26).–P. 20 – 22. [Ukr] 

5. Tchaban V. Differential and static parameters in 
computation of electromagnetic fields// Electricity.– 
1987. –  No 4.– P. 57–58.[Rus] 

6. Tchaban V. Accelerated search of steady-state 
electromagnetic fields in conductive medium // 
Theoretical electrotechnics.– 1989.– No 46.– P. 120-
123.[Rus] 

7. Tchaban V. The mathematical model of 
sensitivity of electromagnetic field in conductive medi-
um// Theoretical electrotechnics.–1989.–  
No 50.–  P. 34–37. [Ukr] 

8. Tchaban V. The methods of non-linear 
electrotechnics. – 1990.– 170 p. [Ukr]  

9. Tchaban V. Mathematical modeling of 
electromagnetic processes. – Kyiv: HMK BO.– 1992.– 
390 p.[Ukr] 

10. Tcchaban V. Mathematical model of electromag-
netic field in conductive medium // Modeling, Measurement 
and Control.– 1992.– Vol. 45.– No 1.– P. 61–64. 

11. Tchaban V. Mathematical modelling of 
electromechanical processes. – Lviv.– 1997.– 344 
p.[Ukr] 

12. Tchaban V. The functional of quasi stationary 
electromagnetic field // Theoretical electrotechnics.– 
1995.– No 52.– P. 208–211.[Ukr] 

13. Tchaban V. The differential equations of 
electromagnetic field in piece homogeneous medium // 
Theoretical electrotechnics. –1995.–No.52.–   
P. 215–222.[Ukr] 

14. Tchaban V., Dmytryshyn O., Haddad O. 
General algorithm of electromagnetic field analysis in 
the complicated systems using finite elements method// 
Intern. symp. on nonlinear theory and its application. 
NOLTA’95, USA.– 1995.– P. 6-9.  

15. Tchaban V., Peleshko D. Kovivchak Y. Mathe-
matical model of choke // Technical electrodynamics.– 
1996.– No 3.– P.17–19. [Ukr] 

 

16. Tchaban V. Application of Coordinate 
Transformation in Electromagnetic Field Theory // 
Proceedings of International Conference on Modeling 
and Simulation MS’2000.– 2000.– P. 225-228.  

17. Tchaban V. Mathematical Modeling in Elec–
trical Engineering.– Lviv: T. Soroka publisher house.– 
2010.– 508 p.[Ukr] 
 
СИМЕТРІЯ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ 

ЕЛЕКТРОМАҐНІТНОГО ПОЛЯ  
В НЕРУХОМОМУ СЕРЕДОВИЩІ  

В. Чабан  

Показано, що диференціальні рівняння електромаґнетного 
поля в суцiльному нерухомому середовищі, записані стосовно 
векторів напружености електричного й маґнетного полів чи  
стосовно вектор-потенціалу електромаґнетного поля, у 
переважній більшості випадків збігаються за формою одне з 
одним. Ця особливість суттєво спрощує практичний аналіз, 
перш за все під кутом зору визначення крайових умов. 
Подаються вирази статичних і диференційних параметрів 
середовища. 
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