І.О. Рудий¹, І.В. Курило¹, І.Є. Лопатинський¹, М.С. Фружинський¹, І.С. Вірт² ¹Національний університет "Львівська політехніка", кафедра фізики, кафедра напівпровідникової електроніки ²Дрогобицький державний педагогічний університет імені Івана Франка, Україна

ВЛАСТИВОСТІ ТОНКИХ ПЛІВОК AgSbSe₂ ДЛЯ ТЕРМОЕЛЕКТРИЧНИХ ПЕРЕТВОРЮВАЧІВ

© Рудий І.О., Курило І.В., Лопатинський І.Є., Фружинський М.С., Вірт І.С., 2012

I.O. Rudyi, I.V. Kurilo, I.Ye. Lopatynskyi, M.S. Fruginskyi, I.S. Virt

THE PROPERTIES OF AgSbSe₂ THIN FILMS FOR THERMOELECTRIC CONVERTERS

© Rudyi I.O., Kurilo I.V., Lopatynskyi I.Ye., Fruginskyi M.S., Virt I.S., 2012

Наведено результати досліджень структури та оптичних властивостей тонких плівок AgSbSe₂. Методом імпульсного лазерного осадження у вакуумі 1×10⁻⁵ Торр в інтервалі температур 300–473 К отримано плівки різної товщини на підкладках зі скла, Al₂O₃ та KCl. Товщина плівок становила 0,5–1 мкм залежно від кількості імпульсів лазера. Структуру масивного матеріалу мішені досліджено методом Х-променевої дифрактометрії, а плівок – методом дифракції електронів високих енергій на проходження. Досліджено оптичне пропускання та оптичне поглинання плівок AgSbSe₂, осаджених за різних температур. Досліджено термоелектричні властивості плівок.

Ключові слова: халькогенідні стекла, тонкі плівки, структура, оптичні властивості.

The results of experimental investigation of structural and optical properties of AgSbSe₂ films are presented in this work. The films of AgSbSe₂ of different thickness were obtained on Al₂O₃, glass and KCl substrates in vacuum of 1×10^{-5} Torr by the pulsed laser deposition method. The samples were obtained by the substrate temperature 300–473 K. A thickness of films was in the range of 0.5–1 µm depending on the number of laser pulses. The structure of target bulk materials was investigated by X-ray diffraction method. A structure of laser deposited films was investigated by the transmission high-energy electron diffraction method. The light transmission and absorption spectra of AgSbSe₂ deposited at various temperatures films were investigated.

Key words: chalcogenide glasses, thin films, structure, optical properties.

Вступ

Останнім часом, завдяки широкому застосуванню у твердотільних пристроях, напівпровідникові халькогенідні стекла викликають посилену увагу дослідників. До цих матеріалів належать також елементарний халькоген – склоподібний селен, в якому раніше детально досліджено фазові переходи стосовно процесів електрофотографії. Відомо також, що аморфний селен набув широкого застосування у виробництві електрофотографічних пристроїв, а згодом у пристроях перемикання та пам'яті. Передбачається, що матеріали, які вміщують селен, можуть мати привабливі властивості [1].

Очікується також, що напівпровідникові халькогенідні стекла, які містять срібло, зможуть набути широкого застосування у пристроях оптичного запису, твердих електролітах та термоелектричних перетворювачах. Тому знання щодо структурних, електричних, оптичних та термоелектричних властивостей цих халькогенідних матеріалів можуть бути вельми корисними. Системи AgSbTe₂, AgSbS₂ та AgInSbSe₂ вивчали раніше, однак маємо обмежену кількість праць, присвячених вивченню оптичних, електричних та термоелектричних властивостей дастивості масивного матеріалу AgSbSe₂ та композитів на його основі досить добре описано у працях [3–5].

Для отримання плівок AgSbSe₂ використовують різні методи: термічне напилення, магнетронне розпилення, осадження з парової фази та імпульсне лазерне осадження (ІЛО). Останній метод має низку переваг серед перелічених, зокрема, температура кристалізації плівок нижча завдяки високій енергії частинок у лазерній плазмі, істотно спрощується також технологія введення легувальних домішок. Зважаючи на сучасну тенденцію до мініатюризації термоелектричних пристроїв, поряд із дослідженням властивостей масивних зразків необхідно вивчати і властивості тонких плівок цих матеріалів. У цій праці подано результати досліджень тонких плівок AgSbSe₂, отриманих методом ІЛО.

Експериментальна частина

Полікристалічні зливки (мішені) потрійної сполуки AgSbSe₂ приготовлено прямим сплавленням суміші елементів напівпровідникової чистоти 5N (99.999%) у стехіометричному співвідношенні у вакуумованих кварцових контейнерах. Тонкі плівки отримували методом ІЛО попередньо синтезованих матеріалів на відповідно підготовлені та підігріті ($T_{\pi} = 300-473$ K) підкладки Al₂O₃ (0001), Si, свіжі відколи KCl (001) та скляні підкладки. Для видалення матеріалу мішеней використовували лазер YAG : Nd³⁺ ($\lambda = 1064$ нм, тривалість імпульсу $\Delta t = 10$ нс, частота повторення імпульсів f = 0.5 с⁻¹).

Структуру синтезованого матеріалу мішеней (AgSbSe₂) досліджували методом рентгенівської дифрактометрії (РД) в 0-20 конфігурації на дифрактометрі ДРОН-3М. Структурну досконалість плівок досліджували методом дифракції електронів високих енергій на проходження (ДЕВЕ) та дифракції електронів високих енергій на відбиття (ДЕВЕВ) з використанням електронографа ЭГ-100 в інтервалі пришвидшувальних напруг 60–80 кВ. Вимірювання коефіцієнтів оптичного пропускання та поглинання плівок провадили за допомогою спектрометра UNICAM UV 300.

Для проведення вимірювань теплофізичних параметрів плівок AgSbSe₂ використано сучасну апаратуру фірми NETZSCH LFA 457 Micro FlashTM – сканувальний термоелектричний мікроскоп (SThEM).

Результати і обговорення

Структурні властивості

Рентгенівські дифрактограми синтезованого матеріалу AgSbSe₂ зображено на рис. 1. У табл. 1 зіставлено експериментальні значення d_{hkl} для AgSbSe₂ зі стандартними (табличними) значеннями. Порівняння міжплощинних відстаней зі стандартними даними (табл. 1) РД (JCPDS) свідчить, що усі міжплощинні відстані відповідають кубічній фазі *F* m3m потрійної сполуки AgSbSe₂ зі сталою решітки *a* = 5.7900 Å. Ніяких відбить, які відповідають будь-якому з вільних елементів або бінарних сполук, не виявлено.

Рис. 1. Рентгенодифрактограма синтезованого масивного зразка-мішені AgSbSe₂

Таблиця 1

Табличні та експериментальні значення d _{hkl}	синтезованих
масивних кристалів AgSbSe ₂	

Табличні (/ А	величини d _{hkl} ASTM) gSbSe ₂		Експериментальні значення d _{ькі} синтезованих масивних кристалів (метод рентгенівської дифрактометрії)
$d_{ m hkl}$, (Å)	I/I ₀	hkl	$d_{ m hkl}$, (Å)
3.3429	47.6	111	3.3511
2.8950	100.0	200	2.9049
2.0471	68.7	220	2.0611
1.7458	18.9	311	1.7548
1.6714	22.4	222	1.6816
1.4475	9.7	400	1.4584
1.3283	6.5	331	-
1.2947	24.9	420	1.3052
1.1819	17.6	422	1.1913
1.1143	_	511	_

На рис. 2 зображено електронограми плівок, осаджених за $T_{\text{підкл.}} = 30$ °C та 200 °C на свіжі відколи лужногалоїдного монокристала KCl. Товщина плівок становила близько 400–1000 Å. Розшифровано електронограми та розраховано міжплощинні відстані d_{hkl} (табл. 2). Із електронограми (рис. 2, *a*) бачимо, що плівка AgSbSe₂ полікристалічна. Виявлено добре узгодження з табличними даними щодо масивних матеріалів. Рефлекси від полікристала доволі розмиті, що свідчить про дрібнодисперсність конденсату. Із застосуванням формули Шеррера з поправками на довжину хвилі електронів та геометрію в умовах дифракції електронів оцінено середній розмір кристалітів, які формують дифракційну картину [6, 7]. Його значення становило 60–80 Å.

Рис. 2. Електронограми від плівок AgSbSe₂, отриманих методом ІЛО за різних температур: $T_{ni\partial\kappa_n} = 30 \ ^{\circ}C(a), T_{ni\partial\kappa_n} = 200 \ ^{\circ}C(b)$

Аналіз електронограм свідчить, що міжплощинні відстані (розмиті рефлекси) плівки, осадженої за $T_{\text{підкл.}} = 30$ ° C, добре узгоджуються (див. табл. 2) із міжплощинними відстанями потрійної сполуки AgSbSe₂. Однак розрахунок електронограми плівки, отриманої за $T_{\text{підкл.}} = 200$ °C вказує на наявність значень d_{hkl} (табл. 3) які належать бінарним фазам Ag₂Se та Sb₂Se₃ поряд із основною фазою AgSbSe₂. Тобто, температура підкладки ($T_{\text{підкл.}} = 200$ °C) у цьому разі, на наш погляд, зависока для осадження цієї потрійної сполуки.

У праці [2] автори повідомляють про новий двостадійний метод отримання тонких плівок AgSbSe₂. Суть методу полягала у нагріванні стопи із Sb₂Se₃–Ag, де Ag-сторона була в контакті з хімічно осадженою плівкою Se. Тонкі плівки Sb₂Se₃ отримували хімічним осадженням, а плівки Ag – методом термічного випаровування. Процес відбувався в два етапи: формування сполуки Ag₂Se за 80 °C та реакції матеріалу цієї сполуки з плівкою Sb₂Se₃ за 200–300 °C, у результаті чого отримували плівки AgSbSe₂. Відомо, що в осаджених плівках AgSbSe₂ спостерігали перехід від аморфного стану до кристалічного за температури 150 °C, а внаслідок відпалу плівок за температури 250 °C, поряд із основною фазою AgSbSe₂, з'являлися додаткові фази Ag₃Sb та Sb₂Se₃. Після відпалу за температури 120 °C плівок AgSbSe₂, отриманих традиційним методом термічного випаровування, поряд із фазою AgSbSe₂ також виявлено додаткові фази Ag₂Se та Sb₂Se₃ [1].

Таблиця 2

Експериментальні значення d _{hkl} , мішень AgSbSe ₂ (метод рентгенівської дифрактометрії)		Експериментальні значення d _{hkl} , плівка (метод електронографії)	
hkl	$d_{ m hkl}(m \AA)$	$d_{ m hkl}({ m \AA})$	
200	2.9049	2.854	
311	1.7548	1.756	
422	1.1913	1.198	

Експериментальні значення d_{hkl} масивного кристала (мішені) AgSbSe₂ та плівки, отриманої за $T_{підкл} = 30^{\circ}$ C

Таблиця З

Метод рентгенівської дифрактометрії, експериментальні значення d _{hkl} , мішень AgSbSe ₂		Метод електронографії, експериментальні значення d _{hkl} , плівка AgSbSe ₂	Табличні значення d _{hkl} для сполук	
			Ag ₂ Se	Sb ₂ Se ₃
hkl	$d_{ m hkl}$, (Å)	$d_{ m hkl}$, (Å)	$d_{\rm hkl},$ (Å)	$d_{\rm hkl},({\rm \AA})$
200	_	2.477	2.5105	_
304	_	2.276	_	2.3134
220	2.0611	2.105	-	_
022	—	1.850		1.8567
311	1.7548	1.740	-	_
222	1.6816	1.640		_
703	—	1.525	-	1.5392
424	—	1.429	-	1.4245
321	_	1.346	1.3419	_
420	1.3052	1.313	-	_
624	_	1.232	_	1,2456
531	_	1.150	_	1.1520

Експериментальні значення d_{hkl} мішені AgSbSe₂ та плівки AgSbSe₂, отриманої за $T_{підкл} = 200$ °C, та табличні значення d_{hkl} сполук Ag₂Se i Sb₂Se₃

Із наведених результатів випливає необхідність вивчення процесів фазових перетворень та хімічних реакцій взаємодії вихідних компонентів (синтезу) потрійної сполуки AgSbSe₂, а також процесів фазових перетворень, які відбуваються під час нагрівання та абляції променем лазера цієї сполуки у вакуумі. Це дасть можливість правильно підбирати температуру підкладки за різних методів осадження цієї сполуки.

Оптичні властивості

Оптичні характеристики тонких плівок дають інформацію про значення енергії забороненої зони ($E_{g,ont}$), оптично активні дефекти, кластери та неоднорідності тощо. Отримано результати щодо впливу температури підкладки при осадженні плівок AgSbSe₂ методом ІЛО на коефіцієнт поглинання та на значення оптичної ширини забороненої зони.

Щоб отримати значення забороненої зони, коефіцієнт абсорбції (α) обчислено на основі даних щодо пропускання з використанням співвідношень:

$$I(t) = I_0 \cdot \exp(\alpha t), \ T = \frac{I}{I_0} \cdot 100\%,$$

де *t* – товщина плівки і *T* – коефіцієнт пропускання. На кривих пропускання не виявлено інтерференційних смуг, що свідчить про однорідність морфології поверхні плівок.

Зазначимо, що обчислений коефіцієнт абсорбції зазнає зміни з зростанням температури осадження, яка може бути наслідком зміни структури отриманих плівок. Аналіз довгохвильового краю абсорбції проводили, застосовуючи співвідношення;

$$a(hv) = A(hn - E_g^{opt})^g$$

де константа показника g вказує на тип оптичних переходів [1,8]. Аналіз коефіцієнта абсорбції було виконано при значенні g = 2, який характеризує непрямий характер оптичних переходів для аморфних напівпровідників згідно з теорією Тауца [9]. Залежність коефіцієнта абсорбції у представлених координатах $(a \cdot hv)^{1/2}$ від енергії фотона як показано на рис. З дає пряму лінію. Вигляд цієї кривої для плівок, отриманих за температури підкладки $T_{підкл} = 30$ °C, вказує на непрямі оптичні переходи, а її екстраполяція до осі абцис дає значення енергії оптичної зони – $E_{g,ont.} = 1.45$ еВ. Характерним є також значне поглинання у домішковій області (за краєм власного поглинання), яке у аморфних напівпровідниках пов'язано з хвостами станів у забороненій зоні. Вигляд кривої коефіцієнта абсорбції для плівки, одержаної при вищій ($T_{підкл} = 200$ °C) температурі підкладки, вказує на присутність як прямих (g = 1/2), характерних для кристалічних напівпровідниках (g = 2) оптичних переходів (крива спрямляється у координатах ($a \cdot hv$)² – hv). Отримане значення $E_{g,ont.} = 2.15$ еВ вказує на зникнення абсорбції у домішковій області. Варто очікувати, що при проміжних температурах підкладки буде відбуватися перетворення дрібнодисперсної (аморфної) структури AgSbSe₂ у кристалічну.

Рис.3. Спектри поглинання плівок AgSbSe₂, одержані за різних температур підкладки: 30 °C (1) та 200 °C (2)

У праці [1] повідомляється про такі значення оптичної ширини забороненої зони плівок AgSbSe₂, отриманих методом термічного випаровування: свіжовирощена плівка – 1.16 еВ; відпалена при 70 °C – 1.08 еВ та відпалена при 105 °C – 0.97 еВ. Стає очевидним, що метод отримання плівок та температура підкладок істотно впливають на їх оптичні властивості.

Термоелектричні властивості

Для дослідження термоелектричних властивостей плівок AgSbSe₂ використовували сучасну апаратуру фірми NETZSCH LFA 457 Місго FlashTM – сканувальний термоелектричний мікроскоп (SThEM). Температура вимірювань становила 20 °C, роздільна здатність – 25 мкм, площа сканування – $1 \times 1 \text{ мм}^2$; ΔT голки – 4.2 °C, голка в розрізі має близько 25 мкм та виготовлена зі сплаву Pt-Ir. На рис. 4 зображено скановане зображення поверхні та гістограма коефіцієнта Зеєбека плівки AgSbSe₂, осадженої на скляну підкладку. На рис. 5 зображеної на підкладку з кремнію.

Рис. 4. Скановане зображення поверхні та розподіл Гаусса коефіцієнта Зеєбека плівки AgSbSe₂, осадженої на скляну підкладку

Рис. 5. Скановане зображення поверхні та розподіл Гаусса коефіцієнта Зеєбека плівки AgSbSe₂, осадженої на підкладку Si

Зазначимо, що звичайні методи вимірювання фізичних параметрів *S*, σ та χ для масивних матеріалів не дають точних результатів для нанорозмірних плівок. Сканування за допомогою термолектронної мікроскопії дає можливість визначати коефіцієнт Зеєбека з мікронною роздільною здатністю.

На основі отриманих результатів можна зробити висновок про те, що плівки осаджені з матеріалу AgSbSe₂, мають доволі високі термоелектричні параметри порівняно із масивними аналогами [3].

Висновки

1. Прямим сплавленням взятих у стехіометричному співвідношенні компонентів напівпровідникової чистоти синтезований матеріал AgSbSe₂. Фазовий аналіз та дослідження структури цього матеріалу показали добре узгодження експериментальних значень міжплощинних віддалей з їх стандартними значеннями.

2. Методом імпульсного лазерного осадження отримані тонкі плівки AgSbSe₂. За допомогою дифракції електронів високих енергій на проходження установлено, що осаджені плівки мають полікристалічну структуру, а також розраховані середні розміри кристалітів, які формують плівки.

3. На основі спектрів поглинання розрахована ширина (оптичної) забороненої зони для плівок AgSbSe₂, осаджених за температур підкладки $T_{підкл} = 30$ °C та $T_{підкл} = 200$ °C, вона становить відповідно 1.45 еВ та 2.15 еВ.

4. Проведено вимірювання теплофізичних параметрів, зокрема коефіцієнта Зеєбека, осаджених плівок на основі матеріалу AgSbSe₂ за допомогою сканувального термоелектричного мікроскопа. Результати досліджень підтверджують правильність вибору методу імпульсного лазерного осадження для отримання тонких плівок з високими термоелектричними властивостями.

Подяка

Автори статті висловлюють подяку науковим працівникам Металургійної академії у м. Кракові, Республіка Польща, за допомогу в проведенні досліджень термоелектричних властивостей плівок на сканувальному термоелектричному мікроскопі.

1. Hamam M., El-Gendy Y. A., Selim M. S., Teleb N. H., and. Salem A.M. Structure and optical properties in the amorphous to crystalline transition in AgSbSe₂ thin films // Phys. Status Solidi. – 2010. C 7, N_{2} . 3–4. – P.861– 864. 2. Bindu K, Campos Jos'e, Nair M T S, S'anchez A and Nair P K Semiconducting AgSbSe₂ thin film and its application in a photovoltaic structure // Semicond. Sci. Technol. – 2005. N_{2} 20. – P.496–504. 3. Wojciechowski K., et al., Influence of doping on structural and thermoelectric properties of AgSbSe₂ // Journal of Electronic Materials. – 2010. Vol. 39, N_{2} 9. – P. 2053– 2058. 4. Wojciechowski K.T, et al. Crystal structure electronic and transport properties of AgSbSe₂ and AgSbTe₂,// J. Phys. Chem. Solids. – 2008. Vol. 69. – P. 2748–2755. 5. Wojciechowski K. et al. Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering // Vacuum. – 2008. Vol.82, N_{2} 10. – P. 1003–1006. 6. Cullity B.D., Elements of X-ray Diffraction, 2nd edn, pp. 284 and 366. Addison-Wesley, Reading, MA, 1978. 7. Pinsker Z.G., Electron diffraction, London, Butterworths Scientific Publication, 1953. 8. Hamam M., El-Gendy Y., Selim M.S., Salem A.M. and Teleb N .H. Optical Properties of thermally Evaporated AgSbSe₂ Thin Films // Journal of Applied Sciences Research, – 2009. Vol. 5, N_{2} 12. – P. 2323–2331. 9. Tauc J. Optical properties and electronic structure of amorphous Ge and Si // Materials Research Bulletin. – 1968. N_{2} 3. – P. 37–46.