Renormalization the Tensor Model of the Info-Communication Network

Victor Tikhonov

Abstract - **Renormalization technique provided for the tensor model of the object interaction in the open info-communication network based on the least action principle.**

Keywords – **Object interaction, info-communication network, tensor renormalization.**

The tensor math modeling is an actual issue in the sphere of info-communications [1], [2]. However, the network tensor analysis needs further development. *The objective of this work is to determine renormalization technique for the tensor model of the open info-communication network based on the least action principle*.

Let $P(n,m) = \{p_{nm}\}, n = 0,1,2,...,N -$ non-directed matrix graph of the open network built on the open set of vertices $X = \{x_n\}$; $p_{nm} = p(x_n, x_m) = p_{mn} = p(x_m, x_n)$ – nonnegative real numbers; x_0 is open zero element of *X*. The non-diagonal elements $p_{nm} = p_{mn}$, $n \neq m$; $n, m = 0,1,...,N$ are internal and the diagonal elements $p_{nn} = p_n = p(x_n)$, $n = 0,1,2,...,N$ are external interaction edges of vertices.

We want to determine a Riemann metric tensor $R(P) = \{r_{nm}\}\$ as a function of *P*, where *R* is a real symmetric positively defined matrix, that meets the following requirements: all the non-diagonal elements of *R* and *P* are equal: $r_{nm} = p_{nm}$, $n \neq m$; all the diagonal elements of *R* satisfy the inequality $r_{nn} \geq p_{nn}$. Let $x = \{x_n\}$, $n = 0,1,2,...,N$; $r(x) = r(x_n) = r_n$ is unknown vector of a posterior estimation for the matrix *R* diagonal elements; $\zeta(x) = \zeta(x_n) = \zeta_n - a$ prior defined value of $r(x)$; $q(x) = q(x_n) = q_n$ the measured value of $r(x)$ obtained from the matrix *P* as following: $q_n = q(P) = \sum_{m=0}^{N} p_{nm}$.

We formulate the principle of least action due to the following lagrangian $L(x, r(x), a)$:

$$
L(x, \rho(x), \alpha) = [\rho(x) - \vartheta_{\alpha}(x)]^{2};
$$

\n
$$
\rho(x) = \sqrt{r(x)};
$$

\n
$$
\vartheta_{\alpha}(x) = \sqrt{g_{\alpha}(x)};
$$

\n
$$
g_{\alpha}(x) = \frac{\widetilde{g}_{\alpha}(x)}{\int \widetilde{g}_{\alpha}(x)};
$$

\n
$$
\widetilde{g}_{\alpha}(x) = \frac{q(x) + \alpha \zeta(x)}{1 + \alpha \zeta(x)};
$$

\n
$$
0 < \alpha < \infty.
$$

Victor Tikhonov - Odesa National Academy of Telecommunication n.a. A.S.Popov, Kovalska Str., 1, Odesa, 65029, UKRAINE, E-mail: victor.tykhonov@onat.edu.ua

The variable factor α generates a family of $\tilde{g}(x)_{\alpha}$ performing the smooth transition of $\tilde{g}_{\alpha}(x)$ from the $q(x)$ function (if $\alpha \rightarrow 0$) to the $\zeta(x)$ function (if $\alpha \rightarrow \infty$).

The least action principle for the lagrangian *L* means [3]:

$$
S(\rho, \alpha) = \int L(x, \rho(x), \alpha) dx = \min.
$$
 (1)

This turns to the variance optimization task [3]:

$$
\delta S(\rho, \alpha) = 0. \tag{2}
$$

The variance task Eq. (2) results the Euler equation that formulates the necessary condition of an extrema for the Eq.(1), [3]:

$$
\frac{\partial L}{\partial \rho} - \frac{d}{dx} \cdot \frac{\partial L}{\partial \rho} = 0,
$$
\n
$$
\rho = \frac{d\rho(x)}{dx}.
$$
\nIn our case $\frac{\partial L}{\partial \rho} = 0$; $\frac{\partial L}{\partial \rho} = 2\rho(x) - 2\vartheta_{\alpha}(x)$.

Therefore, $\rho(x) = \vartheta_{\alpha}(x)$, or $r(x) = g_{\alpha}(x)$. Now, we put the $r(x) = g_\alpha(x)$ vector into the main diagonal of matrix *R*. It results a family ${R_\alpha}$ of tensors $R(P,\alpha)$. To select a subset $(R_{\alpha}) \subseteq \{R_{\alpha}\}\$ of "good candidates" for the final solution of the variance task Eq. (1) we inspect the spectrum family λ_{α} of Eigen values of R_α tensor's family. The decision criteria is $(\lambda_{\alpha})_{\min} \ge \varepsilon$, where ε is predefined critically minimal positive value of λ_{α} . The subset $(R_{\alpha}) \subseteq \{R_{\alpha}\}\$ presents the limited number of tensors that consider "good candidates" for the final choice. The tensors $R_{\alpha} \in (R_{\alpha})$ satisfy the requirements of Riemann metric tensor [3].

REFERENCES

- [1] A.E. Petrov, "Dual Network Models of Large Systems", Large System Control, vol.30.1 *Network Models in the Control*, pp.76–90, Nov. 2010. Available: *http://ubs.mtas.ru/upload/library/UBS30106.pdf.*
- [2] V.V. Popovsky, A.V. Lemeshko, O.U. Evseeva, "Mathematic Models of the Functional Properties of the Tekecommunication Systems", *Telecommunication Problems*, Nº 2 (4), pp.3–41, 2011. Available: http://pt.journal.kh.ua/2011/2/1/112_popovsky_function al.pdf.
- [3] G.A. Korn, T.M. Korn, "Mathematical Handbook for Scientists and Engineers: Definitions, Theorems and Formulas for Reference and Review, Dover Publicatio, 2000, 1152 p.

TCSET'2012, February 21–24, 2012, Lviv-Slavske, Ukraine