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Sampling Theorem in Frequency-Time Domain 
and its Applications 

 

Kalyuzhniy N.M. 
 

Abstract: In the paper, the results of the sampling theorem in 
frequency-time domain are given; its consequences are founded, 
and directions of its practical use are proposed for signals de-
termination and restoration under conditions of the prior uncer-
tainty of their kind and parameters.   
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INTRODUCTION 

The efficiency of the complicated radio electronic condi-
tion control and radio electronic suppression of unauthorized 
radiations can be essentially increased by realization of quasi- 
and optimal methods of processing and reproduction of sig-
nals with the prior uncertainty of their structures and parame-
ters. When solving these problems, of paramount importance 
is the development of the mathematical description of signals, 
such that could adequately simulate actual processing and 
allow for the aforementioned prior uncertainty.   

MAIN PART 
The mathematical description of signals is based on the 

proof of the generalized sampling theorem [1] whose essence 
is in the following.   

Theorem. An arbitrary narrow-band signal s(t) with the 
limited spectrum enclosed in the frequency band ± Δfs /2 is 
fully specified by its frequency values taken with intervals 
ΔFℓ = Δfs /ℓ and time values ΔТℓ = 1/ΔFℓ  at any integer ℓ = 1, 
2, …L+M. 

In [1],  the theorem is proved basing on representation of 
spectrum-limited signals by a Kotelnikov series at the time 
domain with discretization Δt=/2Δfs, uniform grouping of ℓ 
samplings with expansion functions at the time interval ΔТℓ 
and their Fourier transform into the frequency domain. Finally 
the frequency-time representation of the complex envelope of 
the arbitrary signal is obtained as a special double series: 
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Expression (1) describes the complex envelope of the nar-
row-band signal as the time and frequency biaxial expansion. 
Therewith the frequency-time plane occupied by the signal is 
divided into frequency-time elements with the frequency band 

F∆  and duration T∆ . The basis expansion functions are of the 
sin x/x type with the frequency infill by harmonics of the Fou-
rier series (except ℓ = 0), that are biased in time by T∆  and in 
frequency by F∆ .  

Let us define complex spectrum (1) using the inverse Fou-
rier transform  
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Introducing the integral over time under the symbol of 
summation in the right side of the Fourier transform, and us-
ing property of changeability of F and t for even functions [2], 
after calculation of the integral, we obtain    
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21,1  is the rectangle strobing 

function with the frequency band  ΔF and the center at the 
point FF ∆= ll , introduced by Woodworth. 

The analogous proof of the generalized sampling theorem, 
based on representation of time-limited signals by the Kotel-
nikov series at the frequency domain, leads to the result   
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omparing (3) and (4) with (2) and (1), respectively, we see 
that either the complex signal envelope or its spectrum can be 
presented by biaxial expansions Fourier conjugate by func-
tions of  sin x/x type or by Woodworth’s rectangle strobing 
functions with the frequency infill by harmonics of the Fourier 
series. The presence of the frequency infill in basis expansion 
functions allows interpreting, e.g., expressions  (1) and (4) as 
description of signals in the form of sets of radio-frequency 
pulses in the frequency-time plane with the corresponding 
envelopes, frequencies, amplitudes and initial phases at points 
with  the (kΔT, ℓΔF) co-ordinates. 

Analytical expressions (1) – (4) can be used for descrip-
tion of signals both in the complex form and in the real one.  

Consider the consequences of this theorem and properties 
of the obtained frequency-time representation of signals (1) 
appropriate to be used at their practical application.   

1. It is easy to make sure that the basis expansion sin x/x 
functions  in (1) are orthogonal on the time axis. Given fixed ℓ 
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Replacing tF ⋅∆=τ  in (5), obtain 
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Therefore, for any ℓ, the basis functions are orthogonal on 
the entire axis ∞<<∞− t . The minimum shift of the argu-
ment, leading to orthogonalization on the time axis of sin x/x-
type function, can be obtained under  condition of 1=∆⋅∆ TF . 
In this case, a shift between the sin x/x functions along the 
frequency axis is T/1F ∆∆ = . 

Let us test the basis expansion function for a condition of 
orthogonality on the frequency axis. At  ΔF·ΔТ=1, the expan-
sion functions are   
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whereas the orthogonality condition on the frequency axis at 
the fixed k is 
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Replacing in (7) f = S·ΔF, obtain 
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The Woodworth basis strobing functions are orthogonal, 
as they do not overlap in frequency, and consequently, the sin 
x/x functions in (1) are orthogonal on the frequency axis. The-
rewith frequency samplings taken at the ℓΔF points and time 
samplings taken at the kΔT points are uncorrelated by virtue of 
the orthogonality of the expansion functions. 

The consequence of this result is in the possibility of using 
(1) – (4) for expansion of both deterministic and random sig-
nals into a double series of orthogonal by basis functions in 
time and frequency coordinates.   

2. By virtue of the fact that, at  k→ ∞, a norm of basis ex-
pansion functions, according to  [2], is 

Tkxxk ∆=Φ= Π
22

/sin llψ ,  (9) 
an accuracy of signal approximation by these functions is 
identical. This allows profitable using the approximating func-
tions and the order of obtaining samplings in frequency and 
time coordinates at the signal processing. 

3. In practice, models of signals limited both in spectrum 
width and in time are more often used. Such models describe 
actual signals observed with a sufficient accuracy [2]. Then 
the complex envelope and spectrum of the signal with dura-
tion τs and spectrum width Δfs   can be presented in the fre-

quency-time plane by expressions (1) – (4), at fixed  k=K and 
ℓ=L, respectively. For such signals, the total number of bins 
(sampling points) is  
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Therewith for each element, two elements, being an amplitude 
and a phase, should be defined. Consequently, the total num-
ber of samplings corresponds to the number of samplings at 
signal representation by he Kotelnikov series  and is equal to  

ss f∆⋅τ2 . But in signal representations (1) – (4), samplings are 
taken both in frequency and in time.   
Assuming either ℓ=0 in  (1) and (4) at the known signal spec-
trum width 

sf∆ =ΔF or  ķ=0 in (2) and (3) at the known signal 
duration sτ =ΔT, obtain, respectively, the known signal ex-
pansions into the Kotelnikov series by the sin x/x functions or 
by Woodworth’s rectangle strobing functions.  

These results testify the correspondence of an accuracy of 
signal representation as (1) – (4) to an accuracy of their repre-
sentation by the Kotelnikov series in accordance with the min-
imum root-mean-square error criterion.  

4. The important consequence of the sampling theorem in 
frequency-time domain is in that the obtained representation 
of signals explicitly contains the frequency-time function  

( ) ( )ll
l

TktFj
k etV ∆−∆= π2 . This allows, in the process of taking 

samplings, defining evolution and parameters of functions of 
frequency-time signal modulation. Correspondingly, when 
determining signals, defined can be not only their parameters, 
but also their forms.    

5. The remarkable consequence of the sampling theorem 
in frequency-time domain consists in its constructive charac-
ter. The theorem not only proves a way of the signal expan-
sion in the frequency-time plane into the corresponding dou-
ble series, but also defines a way for restoration (reproduc-
tion) of signals by their frequency and time samplings.    

For confirmation of practical importance of the obtained 
results, the experimental investigations  were carried out for 
signal determination- restoration on the testing stand whose 
flow chart is given in Fig.1 where  1 is the simulator of radio 
signals; 2, 9 are the direct dispersion Fourier processors; 3, 10 
are the analog-to-digital converters of frequency-time sam-
plings; 4, 11 are RAM blocks; 5, 12 are the bit-mapped indi-
cators of TV type; 6 is the inverse dispersion Fourier proces-
sor; 7 is the digital-to-analog converter of frequency-time 
samplings; 8 is the industrial spectrum analyzer С4-27.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 

 
 

Device of signal determination  

Device of signal determination-
reproduction  
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The a priori domain of the spectrum width and duration of 
signals under determination and restoration constituted 
П×Т = 100 MHz×1000 µs with the central frequency f0 = 750 
MHz. The experimental investigations were carried out by 
definition and restoration continuous, simple pulse and LFM 
signals. 

 
The simulated signals with the controllable parameters were 

carried to the input of the device for determination-
reproduction. After the discretization, i.e. formation in block 2 
of the biaxial signal expansion as (3), and the measurement-
digitization of frequency-time samplings in block 3, they were 
recorded in memory of block 4 with the simultaneous multiple 
display on the frequency-time panorama of the bitmapped indi-
cator 5 [3]. As memory was filled up, mode of block 4 was au-
tomatically changed into that of multiple reading of frequency-
time samplings for their conversion in block 7 into the analog 
form as (3) and formation of the restored signals as (4). For 
controlling the results of processing, the reproduced signals 
were carried to the spectrum analyzer 8, and then to blocks 9, 
10, 11 for redetermination in order to be displayed on the fre-
quency-time panorama of the second bitmapped indicator 12.  

The final results of experimental investigations on determi-
nation and restoration of two LFM signals (Δfs×Δτs. = 
10MHz×10µs and 30 MHz ×30µs) are visualized by photos 
presented in Figs. 2 and 3. 

 
 
 
 
 
 
 
 

FIG. 2 

Fig.2 shows spectra of reproduced signals taken from the 
screen of spectrum analyzer 8, whereas Fig.3 shows the fre-
quency-time signal panoramas of the primary and secondary 
determinations after restoration [3], taken from screens of bit-
mapped indicators 1 and 12, respectively. 

The interval between horizontal light-colored lines on the 
panoramas is 10 MHz. The frequency-time signal parameters 
within the panorama were measured by superimposing the 
dashdot adjusting mark with bright readings and displaying the 
results of measurements on the numeric display at the bottom 
of the screen. 

The results of experimental investigations confirm that 
practical realization of the signal processing based on the gen-
eralized sampling theorem allows, when determining signals 
(Fig.3a), assessing a shape of the signal, the modulation func-
tion and its frequency-time parameters,  whereas, when repro-

ducing the signal, restoring them (Fig. 3b). Yet the presented 
results indicate the possibility to overcome the a priori uncer-
tainty by the signal shape and parameters while processing 
them in the specified frequency-time domain  П×Т. 

 
 
 
 
 
 
 
 
 

a)  b) 

FIG. 3 
CONCLUSION 

In the paper, the sampling theorem in frequency-time do-
main is formulated. As a result of its proof, the effective mod-
el of the frequency-time signal representation as a double se-
ries is obtained. The model unlike the known ones  allows 
carrying out the biaxial expansion of an arbitrary signal by the 
system of orthogonal functions of the sin x/x type or by 
Woodworth’s rectangle strobing functions with the frequency 
infill by harmonics of the Fourier series, singling out, in the 
explicit form, the function of frequency-time modulation, to 
represent it by  ss fLKN ∆⋅=⋅= τ22  samplings and imple-
menting not only its determination, but also reproduction.   

The practical application of the obtained results allow 
increasing the efficiency of the processing of a large ensemble 
of signals under conditions of their a priori parametric and 
structure uncertainty.  
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