
TCSET'2012, February 21–24, 2012, Lviv-Slavske, Ukraine

Simple E1 Software Synchronization Algorithm
Based on the Windows PIPE Concept.

Yuriy Dorozhovets, Mykhailo Klymash

Abstract – This work demonstrate algorithm invented for
software realization at Windows PC, and demonstrate principles
of E1 stream synchronization handling particular for fractional
E1 to.

Keywords – E1, G.704, ITU-T, algorithm, PIPE,
synchronization.

I. INTRODUCTION
Every telecommunication system requires some low level

data transmitting protocol. In Microwave radio relay, Satellite
system is very common used E1 Frame to convey any
transmitted data. E1 can handle with stream up to 2048kbps
and it’s still a base for GSM Abis interface, HDLC and
DCME links. E1 is based in few concepts:

• Frame alignment signal(FAS)
• 8000 fps
• Timeslot

Data traffic can be conveyed inside E1 in any order but
maximum throughput is up to 1984kbps.

During projecting some receive equipment for E1 streams, it is
very important to implement simple and efficient E1
synchronization algorithm, and synchronization is only a half of all
story. Most important to receiver site is a second part –
resynchronization. This term mean recovering of the Frame
alignment signal in various points of the time. To provide this
possibility in real-time mode it is required some cycle buffer.
Almost all modern OS has very convenient way to do this – PIPE.
There is two kinds of this objects – named and anonymous.
Named pipe is an extension to the traditional pipe concept on
UNIX and Unix-like systems, and is one of the methods of inter-
process communication. The concept is also found in Microsoft
Windows, although the semantics differ substantially. A traditional
pipe is "unnamed" because it exists anonymously and persists only
for as long as the process is running. A named pipe is system-
persistent and exists beyond the life of the process and must be
deleted once it is no longer being used. Processes generally attach
to the named pipes (usually appearing as a file) to perform inter-
process communication (IPC). As you see from this definition, the
main purpose of this concept is to organize multithread and
multiprocessors interaction, but also you can use PIPEs as very
efficient FIFO buffers managed by OS. In this article we will
demonstrate how to use it in this mode to provide software E1
synchronization and resynchronization module.

II. E1 BASE SYNCHRONIZATION PRINCIPLES
In accordance to ITU-T G.704(E1) bits 1 to 8 of the both

frame types (frame containing the frame alignment signal -

FAS, and frame not containing the frame alignment signal -
NFAS) are used for sending some signaling/management
information, normally not used for any content data
transmission. Synchronization signal present in the bits 2…8
in the each FAS frame, format of this signal is in binary
0011011(LSB).

Fig.1 Binary FAS in the real E1 stream.

All other features described in the G.704, like MFAS
CRC4 or 4kbprs are not the part of this work, because it’s
optional E1 features.

So base purpose of the realized software algorithm is FAS
search/monitoring. There is wary important notation that
proposed technic is designed to work in very hard condition,
where synchronization of the signal can be lost many times
during receiving signal, and it’s very important to understand
that output of such kind system will be very complex to future
information recovery. But without such algorithms there will
be no any possibility to provide any data receiving.

III. WINDOWS PIPE CONCEPT
For simple FIFO realization it is enough anonymous PIPE.

It’s requiring less overhead than named pipes and easily to
use. To create anonymous PIPE call:

BOOL WINAPI CreatePipe(
 __out PHANDLE hReadPipe,
 __out PHANDLE hWritePipe,
 __in_opt LPSECURITY_ATTRIBUTES lpPipeAttributes,
 __in DWORD nSize);

hReadPipe and hWritePipe – HANDLE for FIFO
read/write functions. nSize – FIFO buffer size.
lpPipeAttributes – to set binary/massage mode, by default –
binary.

Fig.2 Base PIPE read algorithm.

Yuriy Dororzhovets, Mykhailo Klymash - Lviv Polytechnic
National University , S. Bandery Str., 12, Lviv, 79013, UKRAINE,
E-mail: ydor@ukr.net

369

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

TCSET'2012, February 21–24, 2012, Lviv-Slavske, Ukraine

. When working with this concept bandwidthit’s very
important to know that starting from Windows XP it is
required to control PIPE read side, because Microsoft make
some undocumented changes in to PIPE logic and according
to this changes all read function must control read size by
algorithm.

Another PIPE feature – blocking (by default), require read
and write counters to avoid thread blocking during read from
empty PIPE.

IV. ALGORITHM DESCRIPTION
Signal monitoring requires two threads, one realize write

to FIFO function, another read and provide search/monitoring
logic. When we have some E1 input, read write thread will
call function what provide write frames to our FIFO buffer,
size of this buffer must be enough to compensate time wasted
by search logic. In the first cycle read thread provide read 256
bytes (8 frames (4 FAS frames)) from FIFO using base PIPE
read algorithm and search for 3 times FAS signal code
sequence much in period from 2 to 32 bytes by step in 2 bytes,
this way is very important to avoid wrong sequence detection
in fractional E1. After this program will obtain E1 period and
copy all good at least 6 good frames to output FIFO buffer. If
period not detected drop all data, read new portion, and start
from the beginning.

Fig. 3 E1 synchronization algorithm.

Next depending to the input parameter (MismatchCounter)
program will monitor stream for detection of sequent
MismatchCounter loss of the FAS. To perform better algorithm
flexibility proposed to use byte weight table, to avoid wrong
starting of the FAS search module. If detected loss of the FAS then
call search module to detect new position of the FAS sequence and
loop monitoring again. All good frames during this process must
be copied to output FIFO and read from it each 64 bytes (one FAS
+ one NFAS frame). MismatchCounter in accordance to ITU-T
recommendation is from 2 to 4, but it can be lager for some types
of traffic.

V. ALGORITHM PERFORMANCE RESEARCH.

It’s performed a research of output E1 speed limit
according to input stream synchronization loss. Research
consist of the two parts, first linear sync loss and second –
random sync loss. All research provided at Windows PC
based on Intel Core i3 3GHz processor.

The obtained results are shown on the Fig. 4 and Fig. 5:

Fig. 4 Output rate in different sync loss ps level.

Fig.5 Random sync loss ps level.

All research where provide in correct limits. This mean
that to high level of the sync loss per second is uninteresting,
because data recovery at these conditions can’t take place.

VI. CONCLUSION
This work described a simple E1 synchronization

algorithm designed for software implementation at Windows
PC using PIPE concept. After offered results of the
performance research and demonstrated no linear dependence
of the algorithm performance and FAS loos frequency. Output
stream rate, and quality various directly proportional.

Maximum algorithm performance in condition from 1 to 5
FAS loos per second is more than 140Mbps, and this is
equivalent to 70 parallel E1. So, proposed algorithm provides
opportunity to create software processing units with good
performance.

VII. REFERENCE
[1] ITU-T G.704 Synchronous frame structures used at 1544,

6312, 2048, 8448 and 44 736 kbit/s hierarchical levels
10.1998. [Electronic resource] http://www.itu.int/rec/T-
REC-G.704/en

[2] Microsoft developers network [Electronic resource]
http://msdn.microsoft.com

[3] ITU-T G.706 frame alignment and cyclicre dundancy
check (CRC) procedures relating to basic frame structures

370

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

