УДК 681.2.08

ВИМІРЮВАННЯ ПАРАМЕТРІВ ВИСОКООМНИХ ТРИКОМПОНЕНТНИХ КОМПЛЕКСНИХ ОПОРІВ МЕТОДОМ ЗМІЩЕННЯ СИСТЕМИ КООРДИНАТ ЗА СТРУМОМ

© Грибок Микола, 2008

Національний університет "Львівська політехніка", кафедра інформаційно-вимірювальних технологій, вул. С. Бандери, 12, 79013, Львів, Україна тел (032)258-26-19, 238-02-60

Досліджено можливість вимірювання параметрів високоомних трикомпонентних комплексних опорів у dianasoni частот методом зміщення системи координат за складовими струму.

Исследована возможность измерения параметров высокоомных трикомпонентных комплексных сопротивлений в диапазоне частот методом смещения системы координат по току.

The high complexe three-elements resistance parameters in a range of frequencies by the coordinates system displacement method on the current components is investigated.

1. Вступ. У багатьох галузях науки і техніки [1, 2, 3] виникає необхідність визначення параметрів комплексних опорів у діапазоні частот. Часто компоненти комплексних опорів відповідають певним якісним характеристикам об'єкта досліджень, а тому точність їхнього вимірювання є актуальною задачею.

2. Аналіз літературних джерел та попередніх розробок. Методи зрівноваження (компенсаційні або мостові [1, 2]) забезпечують високі метрологічні характеристики лише на фіксованих частотах, як правило, 1 кГц. Аналогічний недолік притаманний засобам [7], в яких реалізовано метод фазочутливого детектування. Впровадження засобів обчислювальної техніки у вимірювальні кола [4, 5, 6, 7, 8] відкрило нові можливості у вимірюванні параметрів комплексних опорів. У [5] досліджена можливість використання методу заміщення для вимірювання RLC-параметрів. Однак необхідність наявності апріорної інформації про комплексний вхідний опір вимірювача фази і вимірювача діючого значення напруги і застосування високоточного вимірювача фази у діапазоні частот звужують області використання і знижують потенційну точність вимірювань. Впровадження алгоритмічних методів [9, 10, 11] у вимірювання відкрило нові можливості для визначення параметрів векторних величин методом зміщення системи координат за опором і провідністю [12], а також за напругою [13]. У [14] вперше досліджена можливість використання методу зміщення системи координат за струмом для вимірювання складових паралельних двокомпонентних комплексних

опорів. Однак увімкнення послідовно з досліджуваним комплексним опором зразкового активного опору для вимірювання струму призвело до виникнення методичної похибки вимірювань [14].

3. Мета дослідження. Розроблення методу та схеми підвищення точності вимірювання складових високоомних трикомпонентних комплексних опорів у діапазоні частот методом зміщення системи координат за струмом.

4. Схема вимірювання та основні математичні співвідношення. Схеми вимірювання RLC-параметрів комплексних опорів синтезовано на основі означень комплексного опору і провідності та законів Ома на змінному струмі

$$\dot{Z} = rac{U}{\dot{I}} = r + jx;$$

 $\dot{Y} = rac{\dot{I}}{\dot{U}} = g - jb.$

Узагальнена структурна схема вимірювання (рис.1) містить джерело синусоїдної напруги ДСН, комутатор К, блок управління БУ, аналого-цифровий перетворювач АЦП діючого значення напруги, цифровий частотомір ЦЧ, обчислювальний пристрій ОП, зразкові активні опори R₀₁, R₀₂, R₁, R₂.

Спад напруги на резисторі R_{01} пропорційний до значення струму i_1 , що протікає через досліджуваний комплексний опір \dot{Z} . На резисторі R_{02} маємо спад

напруги, що пропорційний до значення струму \mathbf{i}_2 , а на резисторі \mathbf{R}_1 маємо спад напруги, що пропорційний до \mathbf{i}_{R0} . Значення синфазної \mathbf{i}_x та квадратурної \mathbf{i}_y складових струмів у комплексному опорі $\dot{\mathbf{Z}}$ визначаються із співвідношення, якщо $\mathbf{R}_{01} \ll |\dot{\mathbf{Z}}|$, $|\dot{\mathbf{Z}}\mathbf{v}| \gg |\dot{\mathbf{Z}}|$

$$\mathbf{i}_{x} = \frac{\mathbf{i}_{2}^{2} - \mathbf{i}_{1}^{2} - \mathbf{i}_{R0}^{2}}{2\mathbf{i}_{R0}}; \quad \mathbf{i}_{y} = \sqrt{\mathbf{i}_{1}^{2} - \mathbf{i}_{x}^{2}}.$$

Оскільки $\mathbf{i}_{RO} = \mathbf{U}_{23} / \mathbf{R}_0$, то $y = i_x / U_{2'3}$, $b = i_y / U_{2'3}$, або $b = \sqrt{\mathbf{y}^2 - \mathbf{g}^2}$, де $\dot{\mathbf{Z}}$ v – комплексний вхідний опір

АШП.

Рис. 1. Узагальнена структурна схема вимірювача RLC-параметрів високоомних комплексних опорів методом зміщення системи координат за струмом

Рис. 2. Координатні системи при вимірюванні синфазної та квадратурної складових струмів

За $R_{01} \approx |\dot{Z}|$, $|\dot{Z}v| \approx |\dot{Z}|$, виникає значна методична похибка знаходження g і b [16]. Забезпечення $R_{01} << |\dot{Z}|$ не завжди технічно можливе. Недоліком умови $R_{01} << |\dot{Z}|$ є і те, що напруга $U_{22'} << U_{2'3}$, а це означає, що вольтметр буде працювати на різних піддіапазонах вимірювань при знаходженні $U_{22'}$ і U_{12} , U_{23} і $U_{2'3}$ [16]. Цей недолік можна усунути, замінивши опір R₀ двома опорами R₁ і R₂. Напругу U₂₃ знаходимо з виразу $U_{23} = \frac{U_{2'3}}{k}$; де $k = R_1/(R_1 + R_2)$. Подамо комплексний опір $\dot{Z} = r + j x$ через провідність $Y = \frac{r}{Z^2} - j \frac{x}{Z^2} = g - j b$. Опір між точками 2 і 3 правої гілки $\dot{Z}_1 = \dot{Z} + R_{01} = (r + R_{01}) + j x = r_1 + j x_1$ виражаємо через провідність $\dot{Y}_1 = \frac{r_1}{Z_1^2} - j \frac{x_1}{Z_1^2} = g_1 - j b_1$. Синфазна складова струму i_x , що протікає через провідність $g_1,$ дорівнює

$$i_x = \frac{i_2^2 - i_1^2 - i_{R0}^2}{2 i_{R0}},$$

де $\boldsymbol{i}_2 = \frac{\boldsymbol{U}_{12}}{\boldsymbol{R}_{02}}; \quad \boldsymbol{i}_1 = \frac{\boldsymbol{U}_{22}}{\boldsymbol{R}_{01}}; \quad \boldsymbol{i}_{R0} = \frac{\boldsymbol{U}_{23}}{\boldsymbol{R}_0}.$ Визначаємо

провідність $g_1 = \frac{i_x}{U_{23}} = \frac{r_1}{Z_1^2}$.

Ввідси
$$\boldsymbol{r}_1 = \boldsymbol{g}_1^* \boldsymbol{Z}_1^2;$$
 де $\boldsymbol{Z}_1 = \frac{\boldsymbol{U}_{23}}{\boldsymbol{i}_1}.$ Якщо

 $R_1 \approx R_{02} \approx R_0$, напруги $U_{2 3'}$, U_{12} і $U_{22'}$ будуть співмірними.

Оскільки значення опорів R_{01} і R_{02} відомі, то знаходимо синфазну $\mathbf{r} = (\mathbf{r}_1 - \mathbf{R}_{01})$ і квадратурну складову опору $\dot{\mathbf{Z}}$ $\mathbf{x} = \sqrt{\mathbf{Z}_1^2 - \mathbf{r}_1^2}$. За такої оцінки г і х опір R_{01} може бути співмірним з модулем комплексного опору $\dot{\mathbf{Z}}$.

Для знаходження параметрів x_1 , x_2 , x_3 трикомпонентних комплексних опорів на двох частотах ω_1 і ω_2 визначаються Re $\dot{\mathbf{Z}}$ (ω_1 , x_1 , x_2 , x_3), Re $\dot{\mathbf{Z}}$ (ω_2 , x_1 , x_2 , x_3), Im $\dot{\mathbf{Z}}$ (ω_1 , x_1 , x_2 , x_3) i Im $\dot{\mathbf{Z}}$ (ω_2 , x_1 , x_2 , x_3). Розв'язанням системи рівнянь [15]

5. Визначення RLC-параметрів трикомпонентних комплексних опорів. З урахуванням положень методу зміщення системи координат за струмом під час вимірювання параметрів комплексних опорів синтезуємо узагальнену структурну схему вимірювального кола (рис. 3). У ній як Ż подано об'єкт досліджень як трикомпонентний комплексний опір ТКО. Залежно від конфігурації (архітектури) схеми математичну модель ТКО можна подати у вигляді комплексного опору \dot{Z} або комплексної провідності \dot{Y} . Якщо легше математично описати ТКО у вигляді провідності, то з виразу $\dot{Y} = g - j$ b легко перейти до подання опору $\dot{Z} = r + j x = \frac{g}{v^2} + j \frac{b}{v^2}$.

Рис. 3. Узагальнена схема вимірювального кола

Оскільки вимірювання здійснюється на двох частотах, то одержуємо системи рівнянь відповідно для послідовних і паралельних RLC-схем:

$$\dot{\boldsymbol{Z}}_{1} = \mathbf{r}_{1} + \mathbf{j} \mathbf{x}_{1}; \ \dot{\boldsymbol{Z}}_{2} = \mathbf{r}_{2} + \mathbf{j} \mathbf{x}_{2} \quad \dot{\boldsymbol{Y}}_{1} = \mathbf{g}_{1} - \mathbf{j} \mathbf{b}_{1}; \ \dot{\boldsymbol{Y}}_{2} = \mathbf{g}_{2} - \mathbf{j} \mathbf{b}_{2};$$

$$\dot{\boldsymbol{Z}}_{3} = (\mathbf{r}_{1} + \mathbf{R}_{0}) + \mathbf{j} \mathbf{x}_{1}; \ \dot{\boldsymbol{Z}}_{1} = \mathbf{r}_{1} + \mathbf{j} \mathbf{x}_{1} = \frac{\boldsymbol{g}_{1}}{\boldsymbol{Y}_{1}^{2}} + \boldsymbol{j} \frac{\boldsymbol{b}_{1}}{\boldsymbol{Y}_{1}^{2}};$$

$$\dot{\boldsymbol{Z}}_{2} = \mathbf{r}_{2} + \mathbf{j} \mathbf{x}_{2} = \frac{\boldsymbol{g}_{2}}{\boldsymbol{Y}_{2}^{2}} + \boldsymbol{j} \frac{\boldsymbol{b}_{2}}{\boldsymbol{Y}_{2}^{2}}; \ \dot{\boldsymbol{Z}}_{4} = (\mathbf{r}_{2} + \mathbf{R}_{0}) + \mathbf{j} \mathbf{x}_{2};$$

$$\dot{\boldsymbol{Z}}_{3} = (\mathbf{r}_{1} + \mathbf{R}_{0}) + \mathbf{j} \mathbf{x}_{1}; \ \dot{\boldsymbol{Z}}_{4} = (\mathbf{r}_{2} + \mathbf{R}_{0}) + \mathbf{j} \mathbf{x}_{2};$$

Отже, на підставі R_0 , f_1 , f_2 і виміряних напруг U_{12} , U_{23} , U_{22} [.] можна визначити Z_1 , Z_2 , Z_3 , Z_4 , r_1 , r_2 , x_1 , x_2 , Y_1 , Y_2 , g_1 , g_2 , b_1 і b_2 . Ці значення повною мірою достатні для знаходження RLC-параметрів ТКО будьякої конфігурації (таблиця). Результати вимірювань не залежать від значення коефіцієнта передачі аналогоцифрового перетворювача змінної напруги на код. Його стабільність вимагається лише на час визначення RLC-параметрів.

N⁰	Схема вимірювального кола	Основні математичні співвідношення
1	2	3
1	$ \begin{array}{c} $	$\dot{\boldsymbol{Z}}_{1} = \mathbf{R} + \mathbf{j} \left(\omega_{1} \boldsymbol{L} - \frac{1}{\omega_{1} \boldsymbol{C}} \right) = \mathbf{r}_{1} + \mathbf{j} \mathbf{x}_{1};$ $\dot{\boldsymbol{Z}}_{2} = \mathbf{R} + \mathbf{j} \left(\omega_{2} \boldsymbol{L} - \frac{1}{\omega_{2} \boldsymbol{C}} \right) = \mathbf{r}_{2} + \mathbf{j} \mathbf{x}_{2};$

Схеми вимірювальних кіл та основні математичні співвідношення

6. Висновки. Результати вимірювання RLC-параметрів високоомних трикомпонентних комплексних опорів методом зміщення системи координат за струмом не залежать від значення вхідного опору і коефіцієнта передачі АЦП, що особливо важливо під час вимірювань у діапазоні частот. Похибка вимірювання RLC-параметрів мірою значною визначається співвідношенням g і b і співмірністю 1/R0 і g, а також осо і b і розрядністю АЦП. За відсутності апріорної інформації про значення д і в необхідні пробні вимірювання з метою уточнення значень 1/R0. У разі значної відмінності д і в треба змінити частоту ω, при якій g ≈ b.

1. Гриневич Ф.Б. Автоматические мосты переменного тока. – Новосибирск, 1964. 2. Кнеллер В.Ю. Автоматические измерения составляющих комплексных сопротивлений. – М.; Л.; Энергия, 1967. 3 Кнеллер В.Ю., Боровских П.П. Определение параметров многоэлементных двухполюсников. – М.: Энергоатомиздат, 1986. 4. Добровинский И.Р., Ломтев Е.А. Проектирование ИИС для измерения параметров электрических цепей. – М.: Энергоатомиздат, 1997. 5. Добровинский И.Р., Бондаренко Л.Н., Блинов А.В. Повышение точности измерений параметров двухполюсников // Измерительная техника. - 2003. -№7. – C.49–53. 6. Modern impedance measurement techniques. Bate Alan. Electron.World. - 2003, 10. -, № 1803. – C.52–59. 7. PC-based devices for immitance control of multidimensional objects. Pohodylo E., Stolyarchuk P., Chyrka M. IEEE Trans. Instrum. and Meas. – 2002. – 51. – №5. – С.1132–1135. 8. Агамалов Ю.Р. Теоретические основы построения и техническая реализация многофункциональных преобразователей комплексного сопротивления на базе адаптивного подхода. Автореф. дис. на соиск. уч. степени докт. техн. наук. Ин-т проблем упр. РАН. – М., 2003. – 46 с. 9. Свистунов Б.Л. Структурно-алгоритмические методы синтеза средств инвариантного измерения параметров электрических цепей. Автореф. дис. на соиск. уч. степени докт. техн. наук. Пенз. гос. ун-т. – Пенза, 2004. – 47 с. 10. Грибок М. Алгоритмічні методи вимірювання параметрів скалярних величин // Вимірювальна техніка та метрологія, 2001. – № 58. 11. Грибок М. Інтелектуальні методи вимірювання параметрів векторних величин // Вісник ДУ "Львівська політехніка", "Комп'ютерні системи проектування. Теорія і практика". – 2001. – № 415. 12. Грибок М. Вимірювання параметрів двокомпонентних комплексних опорів методом зміщення системи координат по складових опору і провідності // Вісник ДУ "Львівська політехніка". – 2002. – № 445. 13. Грибок М. Вимірювання параметрів двокомпонентних комплексних опорів методом зміщення системи координат по складових напруги і струму // Вимірювальна техніка та метрологія. – 2002. – № 59. 14. Грибок М.І. Вимірювання параметрів паралельних RLC схем методом зміщення системи координат по струму //Вісник ДУ "Львівська політехніка", "Автоматика, вимірювання та керування". – 2006. – № 551. 15. Грибок М. Вимірювання параметрів трикомпонентних комплексних опорів методом зміщення системи координат // Додаток до науково-технічного журналу ВАК України "Стандартизація, сертифікація, якість". – аарків, 2006. 16. Hrybok M. Measurement of complex resistance parameters by the method of coordinate system displacement on current // Pomiary. Automatyka. Kontrola. - Warszawa. - № 12/2006. - P.53-57.